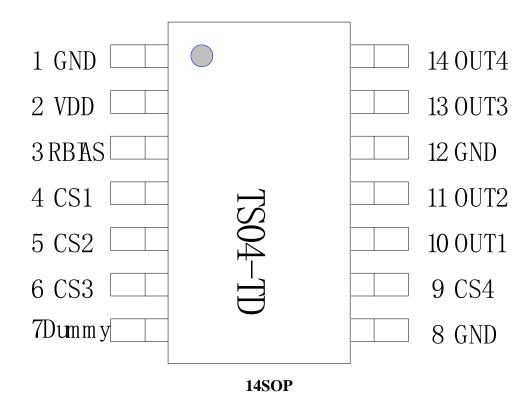


4 通道自校准电容式触摸传感器


特点

- 带有自动灵敏度校准的4通道电容式 传感器
- 并行输出接口
- 独立可调的灵敏度与外部电容
- 通过外部电阻可调节内部频率
- 内置高频率的噪音消除电路
- 静态电流小
- 14SOP 封装

应用

- 移动应用(移动电话/PDA / PMP / MP3 播放等)
- 薄膜开关
- 密封式的控制面板,键盘
- 门禁锁矩阵

封装

引脚定义

Pin No	名称	I/0	描述	保护	
1	GND	_	连接到地	VDD/GND	
2	VDD	电源	电源(2.5V-5.0V)	GND	
3	RBIAS	模拟输入	内部偏置校准输入	VDD/GND	
4	CS1	模拟输入	CH1 电容传感器输入	VDD/GND	
5	CS2	模拟输入	CH2 电容传感器输入	VDD/GND	
6	CS3	模拟输入	CH3 电容传感器输入	VDD/GND	
7	Dummy	模拟输入	内部噪声监控输入	VDD/GND	
1	Duniny	(矢1以相)八	不用连接	VDD/ GND	
8	GND	地	地	VDD	
9	CS4	模拟输入	CH4 电容传感器输入	VDD/GND	
10	OUT1	数字输出	CH1 输出(开漏)	VDD/GND	
11	OUT2	数字输出	CH2 输出(开漏)	VDD/GND	
12	GND	地	地	VDD	
13	OUT3	数字输出	CH3 输出(开漏)	VDD/GND	
14	OUT4	数字输出	CH4 输出(开漏)	VDD/GND	

极限参数

参数	值	单位
电池电压	5. 0	V
每个引脚的最大电压	VDD+0.3	V
每个 PAD 的最大电流	100	mA
功耗	800	mW
保存温度	-50~+150	$^{\circ}$
操作温度	-10 [~] 70	$^{\circ}$
结温	150	$^{\circ}$

ESD 和 闩锁特性

ESD 特性

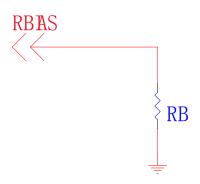
模式	极性	最小	参考		
		2000V	VDD		
Н. В. М	Pos/Neg	2000V	VSS		
		2000V	P to P		
		200V	VDD		
M. M	Pos/Neg	200V	VSS		
		2000V 2000V 2000V 2000V	P to P		
0.5.11	D (V	500V	D :		
C. D. M	Pos/Neg	200V 200V 200V 500V	Direct		

闩锁特性

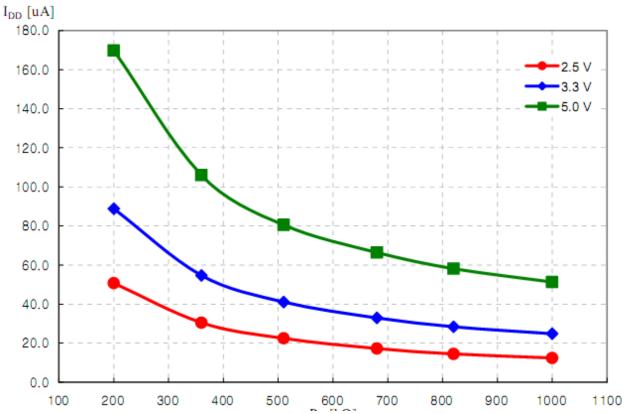
模式	极性	最小	参考	
T. T.	Pos	200mA	Q.FA	
I Test	Neg	-200mA	25mA	
V Supply Over 5.0V	Pos	8. 0V	1. 0V	

电特性

特性	符号	测试条件	Min	Тур	Max	Units
工作电压	V_{DD}		2.5	3. 3	5. 0	V
数 大 由	$I_{ ext{ iny DD}}$	$V_{DD}=3.3V, R_{B}=510K, R_{SB}=0$	_	40	70	uА
静态电流		$V_{DD}=5.0V, R_{B}=510K, R_{SB}=0$	-	80	140	uA
数字输出端最大陷电流	$I_{ ext{out}}$	$T_{\scriptscriptstyle A}$ = $25^{\circ}\mathrm{C}$	-	-	4. 0	mA
内部复位标准 Vpp 电压	$V_{\tiny DD_RST}$	$T_A=25$ °C, $R_B=510$ K	_	-	0.3V _{DD}	V
检测输入电容范围(注1)	Cs		_	-	100	pF
最小侦测电容值	ΔC	Cs=10pF	0.2	_	ı	pF
+A .1. PR +> / T 'PI	Zo	ΔC>0.2pF, Cs=10pF	_	12	-	
输出阻抗(开漏)		ΔC<0.2pF, Cs=10pF	-	30M	1	Ω
不仅有比广点长米时间	$T_{\scriptscriptstyle CAL}$	$V_{DD} = 3.3 V, R_{B} = 510 K$	_	100	-	
系统复位后自校准时间		$V_{DD} = 5.0V, R_{B} = 510K$	-	80	_	mS
灵敏输入电阻范围	Rs		_	200	1000	Ω
推荐偏置电阻范围	D	V _{DD} =3.3V	200	510	820	и О
(注 2)	$R_{\scriptscriptstyle B}$	V _{DD} =5. 0V	330	620	1200	KΩ

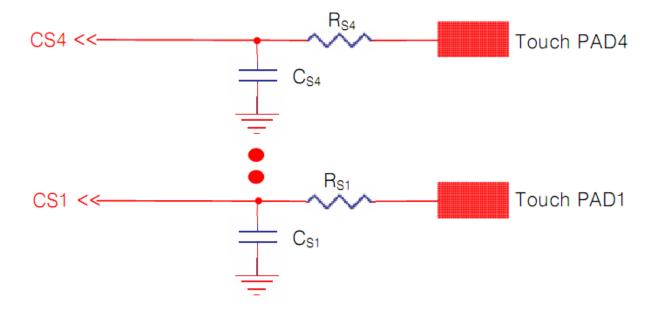

注1: 低 Cs 可提高灵敏度,

The recommended value of Cs is 10pF When using 3T PC(Poly Carbonate) cover and 10mm*7mm touch pattern 注 2: 在噪声大的环境下推荐使用低 R_{B} 。



TS04-TD实现

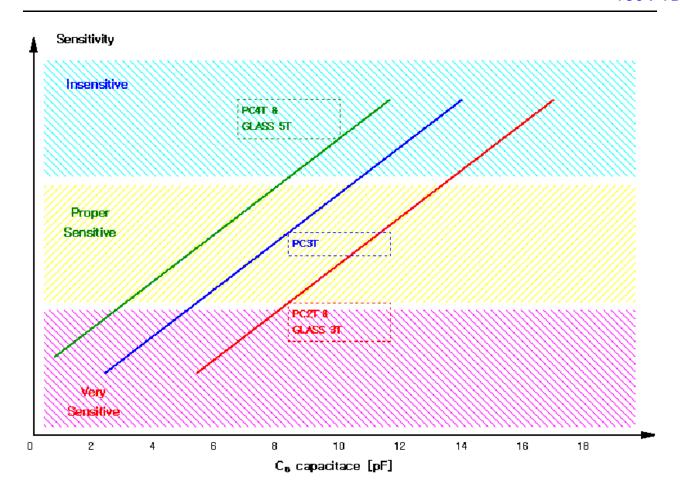
1.RBIAS & SRBIAS 实现


RBIAS 连接到决定振荡器及内部偏置电流的电阻, 感应频率、内部时钟频率和电流损耗能够通过 R₈进行调节。一个纹波电压能造成内部严重错误。

TS04-TD电流消耗曲线是按照 $R_{_{B}}$ 的值如上表示。虽然低 $R_{_{B}}$ 需要消耗更多的电流,但推荐在噪声大的环境下使用,例如:冰箱、空调等。

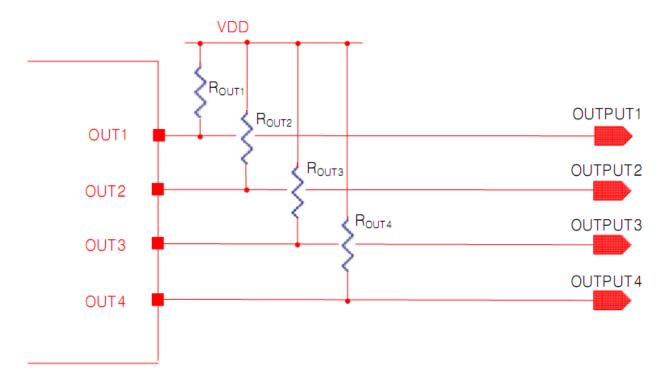
2.CS 实现

TS04-TD有四个可感应通道。 并联电容 C_{S1} 加到 CS1, C_{S4} 加到 CS4 来调整优良的灵敏度, 小的 Cs 能够提高灵敏度。(参考下面的灵敏度图) 当需要细微的调解灵敏度的情况下, 这可能是有用。触摸内部每个通道之间是彼此隔离的。因此, 设计四通道触摸按键板应用可以仅用一个 TS04-TD, 故没有耦合问题。Rs 串联连接用来避免外部浪涌和 ESD 可能造成的故障 (Rs 是可选的);推荐使用 200 Ω 到 1 K Ω 。触摸 PAD 的尺寸和外形可能影响灵敏度, PAD 的尺寸为半个指关节 (大约 10mm*7mm) 时灵敏度达到最佳。为了防止连线引起异常触发, 连接到 $CS1^{\sim}$ CS4 的连接线越短越好。


由于内部寄生电容导致在 CS1、CS2 和 CS3、CS4 中存在一些灵敏度差异。这些差异可以通过不同的 Cs 或用内部寄存器设置灵敏度来补偿。通过使用不同面积的 PAD 也能够补偿灵敏度,但并不推荐。每个通道的灵敏度可以表示如下:

CS1 的灵敏度≥CS2、CS3 的灵敏度>CS4 的灵敏度(在外部寄生电容值相同的情况下)

 $C_{CS1\ PARA}$ + 大约 3.5pF = $C_{CS2.3\ PARA}$ + 大约 3pF = $C_{CS4\ PARA}$

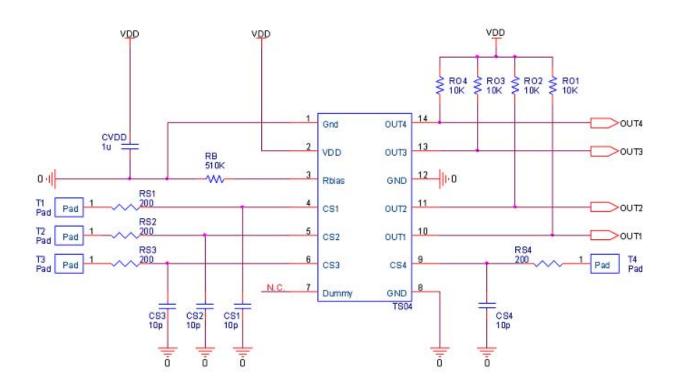

- C_{CS1 PARA} CS1 的寄生电容
- C_{CS2.3 PARA} CS2 和 CS3 的寄生电容
- C_{CS4 PARA} CS4 的寄生电容

Sensitivity example figure with default sensitivity selection

3.输出电路的实现

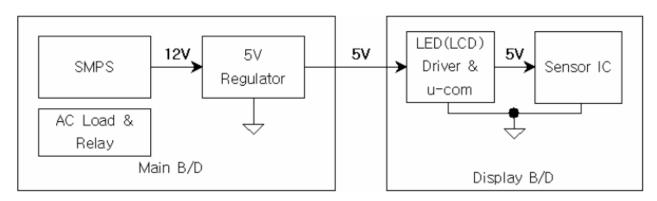
www. TDSEMIC. com

输出脚是开漏结构的,因为这个原因所以需要连接一个上拉电阻 R_{OUT} 到 VDD。最大陷电流为 4mA,因此 R_{OUT} 至少需要几 $K\Omega$ 以上的电阻,通常用 $10K\Omega$ 。正常情况下输出为高电平,CS 触发后变为低电平。

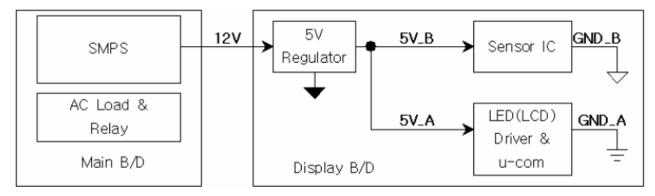

4. 内部复位操作

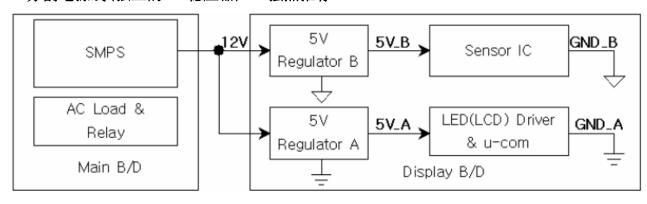
TS04-TD有稳定的内部复位电路提供复位脉冲数字模块, 启动或重新启动系统电源电压 应在 0.3V_{DD}以下。TS04-TD电源复位不需要外部元件, 这有利于简单的电路设计, 并实现低成本的应用。

推荐电路图

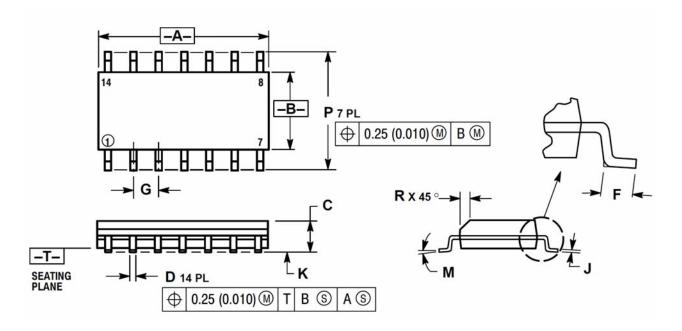

- 1、PCB 布局中, RB 不应该被放置在触摸位置, 不然 CB 可能被短接。RB 连线应尽可能短。
- 2、CS 连线也应尽可能短,线宽约为 0.25 毫米(或窄行)。
- 3、VDD 和 GND 之间的电容应该位于尽可能接近 TS04-TD的地方。
- 4、CS 模式布线应该由底部的金属形成(触摸板相反金属)。
- 5、PCB 空的空间, 必须敷 GND, 以加强接地模式, 以防止外部噪声干扰感应频率
- 6、当电源从 0V 上升到适当的 VDD 时, TS04-TD将复位。
- 7、VDD 的周期性电压纹波超过 50mV 和纹波频率低于 10KHz 能造成错误的灵敏度校准。为了防止这个问题的发生,触摸电路的电源(VDD、GND)线应该和其它线路分开。尤其是 LED 驱动电源线或数字开关电路的电源线,更应该和触摸电路分开。
- 8、建议在嘈杂的环境中较小的 RB
- 9、大约 200 Ω 电阻 (RS1~RS4) 和并联电容器 (CS1~CS4) 可能被插入用于改善外部噪声干扰。
- 10、并联电容值影响触摸灵敏度
- 11、LED_GND 和 GND 在系统和线上都应该是短路的, 建议从最低阻抗接地点分开, 以避免地线碰撞问题。

例子 - - 电源线分割方案 ----PCB 布局


A. 不分割电源线(坏的设计电源设计)


- 1、交流负载或继电器产生的噪音可能加载在 5V 电源线。
- 2、在主板和显示板之间的连线过长的情况下,可能需要一个大的电感。此外,LED(液晶显示驱动器) 在 VDD(5V)可产生的电压波动

B. 分割电源线(使用一个 5V 稳压器)--推荐



C. 分割电源线(独立的 5V 稳压器) -- 强烈推荐

封装 14SOP

标识	毫米		英寸		
	MIN	MAX	MIN	MAX	
A	8. 55	8. 75	0.337	0.344	
В	3.8	4	0. 15	0. 157	
С	1. 35	1. 75	0.054	0.068	
D	0. 35	0.49	0.014	0.019	
F	0.4	1. 25	0.016	0.049	
G	1. 27 BSC		0.05 BSC		
Ј	0. 19	0. 25	0.008	0.009	
K	0. 1	0. 25	0.004	0.009	
M	0°	7°	0°	7°	
Р	5.8	6. 2	0. 228	0. 244	
R	0. 25	0. 5	0.01	0.019	