1.2-MSPS/240-KSPS, ULTRA LOW POWER, 10-BIT, MINIATURE ANALOG-TO-DIGITAL CONVERTER WITH SERIAL INTERFACE

FEATURES

- Low power (XC7867 typical):0.42mW (3.3V, 240KSPS)0.12mW (1.8V, 240KSPS)
- Specified for V_{DD} of 1.5V to 4.5V
- ➤ High throughput:
 - -1.2 MSPS for 10-Bit V_{DD}≥ 3 V
 - -240 KSPS for 10-Bit $V_{DD} \ge 1.5 \text{ V}$
- Automatic power-down
- \rightarrow \pm 0.5LSB INL, \pm 0.5LSB DNL
- No pipeline delays
- > SPI Compatible serial interface
- Second-Source for ADS7867
- 6-Pin SOT-23 Package

APPLICATIONS

- Battery-powered systems
- Medical instruments
- > Remote data acquisition
- Isolated data acquisition
- Automatic test equipment

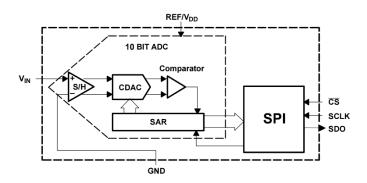


Figure 1. Functional Block Diagram

DESCRIPTION

The XC7867 is a 10-bit ADC (Analog-to-Digital Converter) chip that features ultra-low power, small size, unipolar, and single-ended input. The product operates from a single 1.5V - 4.5V power supply. Adopting advanced technology and design, it has a wide voltage working range: when powered by a single 1.5V - 3V power supply, the sampling rate can reach up to 240-KSPS; When powered by a single 3V - 4.5V power supply, the sampling rate can reach up to 1.2-MSPS.The XC7867 is available in a 6-pin SOT-23 package and has an operating temperature range of -40°C to 85°C.

The XC7867 is second-source for the ADS7867 and consumes only one third dynamic power of their counterpart.

SPECIFICATIONS

At-40°C to 85°C, fsample = 240 KSPS and fsclk = 3.4 MHz if 1.5 V \leq Vdd \leq 3.0 V; fsample = 1200 KSPS and fsclk = 16.6 MHz if 3.0 V \leq Vdd \leq 4.5 V. (unless otherwise noted)

DADAMETED	TEGT COMPLTIONS	XC7866 XC7867 XC7868	LINUTO								
PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
SYSTEM PERFORMANCE											
Resolution			12			10			8		Bits
No missing codes		12			10			8			Bits
Integral linearity		-1.5		1.5	-0.5		0.5	-0.5		0.5	LSB
Differential linearity		-1.5		1.5	-0.5		0.5	-0.5		0.5	LSB
fsample Throughput rate	fsclk = 3.4 MHz, 1.5 V ≤ VDD ≤ 3.0 V			200			240			280	KSPS
ISAMPLE THIOUGHPUT FALE	fsclk = 16.6 MHz, 3.0 V ≤ Vdd ≤ 4.5 V			1000			1200			1400	KSPS
SNR	$f_{IN} = 30 \text{ kHz}, 1.5 \text{ V} \le \text{V}_{DD} < 4.5 \text{ V}$		71.2	5		61.5			49.5		dB
THD	$fin = 30 \; kHz, \; 1.5 \; V \leq Vdd < 4.5 \; V$		-84			-73			-70		dB

XC7867

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNITS
		fsample = 240 KSPS, fsclk = 3.4 MHz, Vdd = 3.3 V		125	180	
		fsample = 240 KSPS, fsclk = 3.4 MHz, Vdd = 2.5 V		105	125	μΑ
		fsample = 240 KSPS, fsclk = 3.4 MHz, Vdd = 1.8 V		67	100	
		fsample = 100 KSPS, fsclk = 3.4 MHz, Vdd = 3.3 V		65	78	
		fsample = 100 KSPS, fsclk = 3.4 MHz, Vdd = 2.5 V		42	48	μΑ
IDD Supply current, Digi	ital inputs =	fsample = 100 KSPS, fsclk = 3.4 MHz, Vdd = 1.8 V		34	41	
normal operation 0	V or V _{DD}	fsample = 120 KSPS, fsclk = 1.7 MHz, Vdd = 3.3 V		110	132	
		fsample = 120 KSPS, fsclk = 1.7 MHz, Vdd = 2.5 V		69	77	μΑ
		fsample = 120 KSPS, fsclk = 1.7 MHz, Vdd = 1.8 V		57	65	
		fsample = 50 KSPS, fsclk = 1.7 MHz, Vdd = 3.3 V		48	59	μΑ
		fsample = 50 KSPS, fsclk = 1.7 MHz, Vdd = 2.5 V		28	31	
		fsample = 50 KSPS, fsclk = 1.7 MHz, Vdd = 1.8 V		23	28	
POWER DISSIPATION, XC7	7867		<u> </u>			
		fsample = 240 KSPS, fsclk = 3.4 MHz, Vdd = 3.3 V		0.42	0.60	mW
Normal operation		fsample = 240 KSPS, fsclk = 3.4 MHz, Vdd = 1.8 V		0.12	0.18	mW
		fsample = 120 KSPS, fsclk = 1.7 MHz, Vdd = 1.8 V			0.11	mW

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

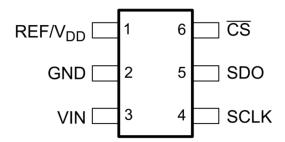


Figure 2. Pin Configuration

TERMINAL		DESCRIPTION					
NAME	NO.	DESCRIPTION					
REF/V _{DD}	1	External reference input and power supply.					
GND	2	Analog Ground. All analog input signals should be referred to this GND voltage.					
VIN	3	Analog Input. Single-ended analog input channel. The input range is 0 V to V_{DD} .					
SCLK	4	Serial clock input. This clock is used for clocking data out, and it is the source of conversion clock.					
SDO	5	This is the serial data output of the conversion result. The serial stream comes with MSB first.					
CS	6	Chip Select. Active low logic input. This input provides the dual function of initiating conversions on the					
C2 0	0	devices and frames the serial data transfer.					

TIMING DIAGRAM

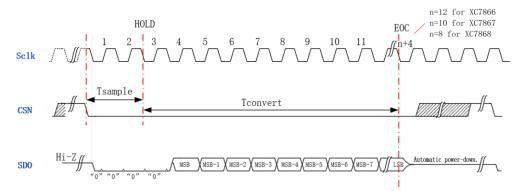
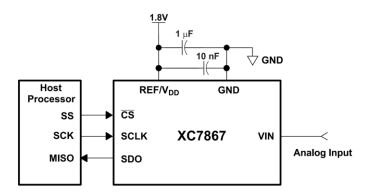


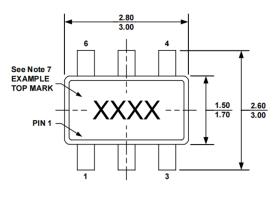
Figure 3. Timing Diagram

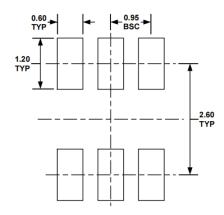
On the $\overline{\text{CS}}$ falling edge, the part begins to power up and the track-and-hold, which was in hold while the part was in power-down, goes into track mode. The conversion is also initiated at this point. On the third SCLK falling edge after the $\overline{\text{CS}}$ falling edge, the track and-hold returns to hold mode. Although $\overline{\text{CS}}$ can idle high or low between conversions, bringing $\overline{\text{CS}}$ high once the conversion is complete is recommended to save power. At 14 falling edges of the SCLK, the SDO enters three-state and the conversion cycle ends.

TYPICAL CONNECTION

For a typical connection circuit for the XC7867 see Figure 4. The 1.8 V supply should come from a stable power supply such as an LDO. A 1- μ F and a 10-nF decoupling capacitor are required between the V_{DD} and GND pins of the converter. This capacitor should be placed as close as possible to the pins of the device. Designers should strive to minimize the routing length of the traces that connect the terminals of the capacitor to the pins of the converter.

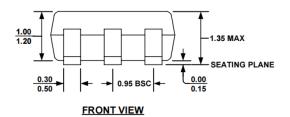


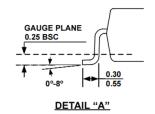

Figure 4. Typical Circuit Configuration


CONVERSION RESULTS

DESCRIPTION	ANALOG INPUT VOLTAGE	DIGITAL OUTPUT STRAIGHT BINARY			
DESCRIPTION	ANALOG INPUT VOLTAGE	BINARY CODE	HEX CODE		
XC7867 (10bit)	·				
Least Significant Bit (LSB)	V _{DD} /1024				
Full Scale	V _{DD} – 1LSB	11 1111 1111	3FF		
Mid Scale	V _{DD} /2	10 0000 0000	200		
Mid Scale – 1LSB	V _{DD} /2 – 1LSB	01 1111 1111	1FF		
Zero	0V	00 0000 0000	000		

The MSB of the converted result follows 4 leading zeros. When supplies are first applied to the devices, a dummy conversion should be performed to ensure that the parts are in power-down mode, the track-and-hold is in hold mode, and SDO is in three-state. Once a data transfer is complete (SDO has returned to three-state), another conversion can be initiated after the quiet time, has elapsed, by bringing \overline{CS} low again.


OUTLINE DIMENTIONS


TOP VIEW

RECOMMENDED LAND PATTERN

SIDE VIEW

NOTE:

- 1) ALL DIMENSIONS ARE IN MILLIMETERS. 2) PACKAGE LENGTH DOES NOT INCLUDE MOLD FLASH, PROTRUSION OR GATE BURR.
- 3) PACKAGE WIDTH DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION.
- 4) LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.10 MILLIMETERS MAX.
- 5) DRAWING CONFORMS TO JEDEC MO-178, VARIATION AB. 6) DRAWING IS NOT TO SCALE.
- 7) PIN 1 IS LOWER LEFT PIN WHEN READING TOP MARK FROM LEFT TO RIGHT, (SEE EXAMPLE TOP MARK)

NOTES

- 1. Unpacked ICs, tube-mounted ICs, etc. must be stored in a drying cabinet, and the humidity in the drying cabinet < 20% R.H.
- 2. After access, the components are stored in an electrostatic packaging protective bag.
- 3. Anti-static damage: the device is an electrostatic sensitive device, and sufficient anti-static measures should be taken during transmission, assembly and testing.
- 4. The user should conduct a visual inspection before use, and the bottom, side and surrounding of the circuit can be welded only if it is bright. If oxidation occurs, the circuit can be processed by means of oxidation, and the circuit must be soldered within 12 hours after processing.