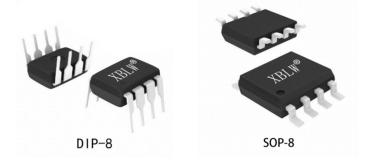


Product Specification

XBLW TLC555

General Purpose CMOS Timer



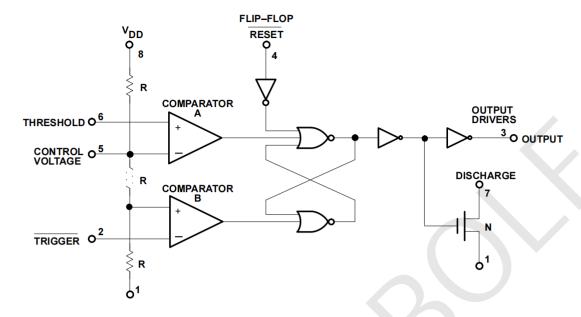
Descriptions

TLC555 is a general-purpose timer in the CMOS version. TLC555 can provide precise time delay and frequency generation, with very low power loss and power supply current spikes. When the chip is used as a trigger delay, the time delay is precisely controlled by a single external resistor and capacitor. In stable mode, the oscillation frequency and duty cycle are accurately set by two external resistors and one capacitor. It adopts DIP-8 and SOP-8 packaging.

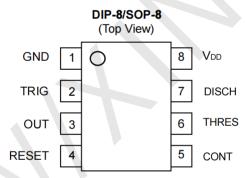
Feature

- ➤ Low supply current: 80uA (typical)
- > 500KHz Stable frequency
- Lowest Operating Voltage 4.5V
- Output fully compatible with CMOS, TTL, and MOS under 5V
- Low supply current spike during output conversion
- Very low trigger, threshold and reset currents: 20pA (Typical)
- > Operate in non-stable and mono-stable modes with adjustable duty cycle

Applications


- Active Filter
- Pulse generation
- Sequential timing
- > Time delay generation
- Pulse width modulation

Ordering Information


Product Model	Package Type	Marking	Packing	Packing Qty
XBLW TLC555DTR	SOP-8	TLC555	Tape	2500Pcs/Reel
XBLW TLC555N	DIP-8	TLC555N	Tube	2000Pcs/Box

Block Diagram

Pins Configurations

Pin Functions

F	Pin	Туре	Description	
NO.	Name.	Type	Description	
5	CONT	Input	Controls comparator thresholds. Outputs 2/3 VDD and allows bypass capacitor connection.	
7	DISCH	Output	Open collector output to discharge timing capacitor.	
1	GND	_	Ground.	
3	OUT	Output	High current timer output signal.	
4	RESET	Input	Active low reset input forces output and discharge low.	
6	THRES	Input	End of timing input. THRES > CONT sets output low and discharge low.	
2	TRIG	Input	Start of timing input. TRIG < 1/2 CONT sets output high and discharge open.	
8	VDD	_	Power-supply voltage.	

Truth Table

RESET	Vtrigger	Vthreshold	ОИТРИТ	DISCHARGE SWITCH
LOW			LOW	ON
HIGH	<1/3 V _{DD}		HIGH	OFF
HIGH	>1/3V _{DD}	>2/3V _{DD}	LOW	ON
HIGH	>1/3V _{DD}	<2/3 V _{DD}	Sust	ain

Absolute Maximum Ratings

Symbol	Parameter	Value	Unit
V_{DD}	Supply Voltage	18	V
VTRIG	Trigger Input Voltage	-0.3~(V _{DD} +0.3)	V
Vcv	Control Voltage	-0.3~(V _{DD} +0.3)	V
V тн	Threshold Input Voltage	-0.3~(V _{DD} +0.3)	V
Vrst	Reset Input Voltage	-0.3~(V _{DD} +0.3)	V
Іоит	Output Current	100	mA
Tw	Welding temperature (10s)	260	$^{\circ}$ C
Tj	Junction Temperature	150	$^{\circ}$ C
Tstg	Storage Temperature Range	-50~ 150	$^{\circ}$

Recommended Operating Conditions(Ta=25℃)

Symbol	Parameter	Value	Unit
V _{DD}	Supply Voltage	4.5 ~ 15	V
Vth, Vtrig, VCTRL, Vreset	Maximum Input Voltage	-0.3~V _{DD} +0.3	V
Toper	Operating Temperature	-20~85	$^{\circ}$

Electrical Characteristics (Note 1,2)

Ta=25°C, All switches are on, RESET connect to VDD.

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
		V _{DD} =5V TRI=RESET=THRE=0		40	60	
Supply Current	Icc	V _{DD} = 10V TRI=RESET=THRE=0		60	100	uA
		V _{DD} = 15V TRI=RESET=THRE=0		80 150		
		V _{DD} =5V	3.13	3.33	3.50	
Control Voltage	Vcon	V _{DD} = 10V	6.33	6.66	6.99	V
		V _{DD} = 15V	9.5	10	10.5	
Discharge Saturation Voltage	VDIS	V _{DD} =5V,Idis= 10mA		100	400	mV
Output Voltage		V _{DD} =5V , Io=3.2mA		0.4	0.4	V
(Low)	Vol	V _{DD} = 15V ,Io=3.2mA		0.1		
Output Voltage (High)	Vон	V _{DD} =5V ,Io=-2mA	4.0	4.5		
		V _{DD} = 15V , Io=-2mA	14.5	14.75		V
	VTRIG	V _{DD} =5V	1.55	1.66	1.75	V
Trigger Voltage		V _{DD} = 10V	3.15	3.33	3.50	V
		V _{DD} = 15V	4.75	5.00	5.25	V
Trigger Current	ITRIG	V _{DD} =5V			50	nA
Reset Voltage	V RST	V _{DD} =5V	0.4	0.7	1.2	V
Reset Current	Irst	V _{DD} =5V			50	nA
Threshold Current	ITHRESH	V _{DD} =5V			50	nA
Discharge Current	IDIS	V _{DD} = 12V			0.1	uA
Rise Time	t R	V_{DD} = 5V ,RL= 10M Ω ,CL= 10pF	35	40	75	ns
Fall Time	t⊧	V_{DD} = 5V ,RL= 10M Ω ,CL= 10pF	35	40	75	ns
Maximum Frequency	Fмах			500		Khz

Note 1: All voltages are measured relative to the ground pin unless otherwise specified.

Note 2: The absolute maximum rating refers to the possibility of chip damage beyond the working limit. The operating rating indicates that the equipment is operable but does not guarantee special performance limits. Test conditions for electrical characteristics This ensures specific performance indicators under the DC and AC gas specifications. This assumes that the chip is within the operating rating range. Specifications do not guarantee unconstrained parameters, however typical values are a good indication of chip performance.

Application Information

In this mode of operation, the timer is used as a trigger (Figure 1). The external capacitor is initially discharged through the internal circuit.

When a negative trigger pulse of less than 1/3VS is added to the trigger terminal, the trigger sets the capacitor to release the short-circuit current and drives the output as High level.

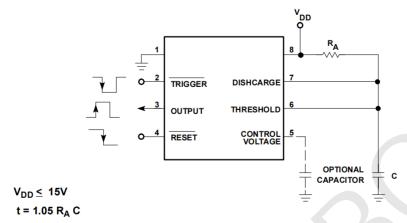


Figure 1: Monostable

Stable Operation

The circuit is connected in Figure 2 (the triggered and the threshold terminals are connected together), which will trigger itself and release the operation as a multi-vibrator. The external capacitor is charged by RA+ RB and discharged by RB. Thus the duty cycle can be set precisely by the ratio of these two resistors.

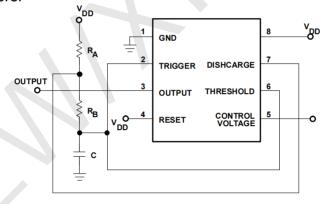
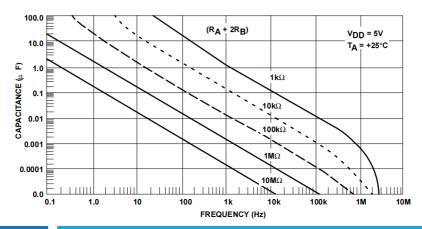
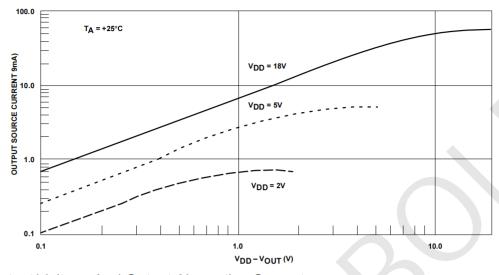
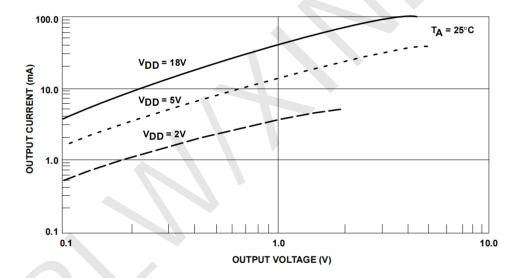



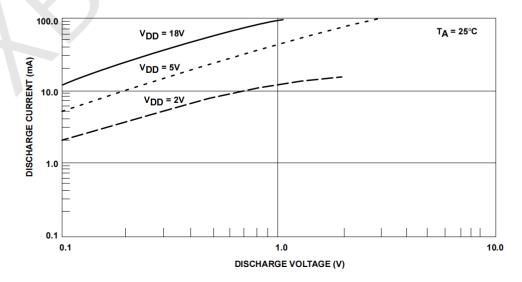
Figure 2: Stable (Variable Duty Cycle Oscillator)

Typical Performance


1、Ra、Rb、C and Frequency

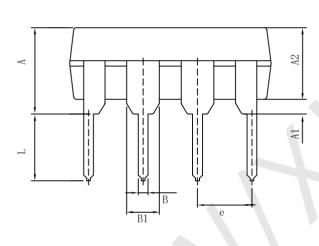


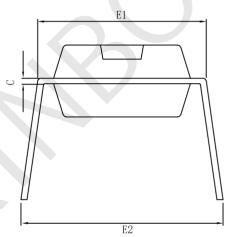
Typical Performance

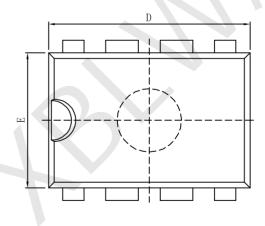

2. High Output Voltage Drop And Output Source Current

3 Low Output Voltage And Output Absorption Current

4 、 Discharge Low Output Voltage And Discharge Absorption Current

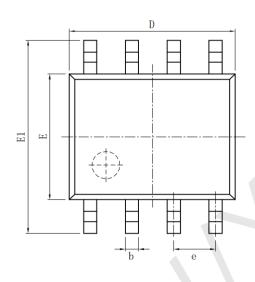


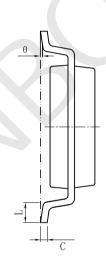


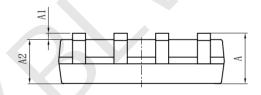

Package Information

• DIP-8

Size	Dimensions In Millimeters		Size	Dimensions In Inches		
Symbol Symbol	Min(mm)	Max (mm)	Symbol Symbol	Min(in)	Max(in)	
A	3.710	4. 310	A	0.146	0. 170	
A1	0.510		A1	0.020		
A2	3, 200	3.600	A2	0.126	0.142	
В	0.380	0.570	В	0.015	0. 022	
B1	1. 52	24 (BSC)	B1	0. 060 (BSC)		
С	0. 204	0.360	С	0.008	0.014	
D	9.000	9.400	D	0.354	0.370	
Е	6. 200	6.600	Е	0. 244	0. 260	
E1	7. 320	7. 920	E1	0.288	0. 312	
е	2. 54	40 (BSC)	e	0.	100 (BSC)	
L	3.000	3.600	L	0.118	0.142	
E2	8.400	9.000	E2	0.331	0. 354	
				E1		







• SOP-8

Size	Dimensions In Millimeters		Size	Dimensions In Inches		
Symbol	Min(mm)	Max(mm)	Symbol	Min(in)	Max(in)	
A	1.350	1.750	A	0.053	0.069	
A1	0. 100	0. 250	A1	0.004	0.010	
A2	1.350	1.550	A2	0.053	0.061	
b	0.330	0. 510	b	0.013	0.020	
С	0.170	0. 250	С	0.006	0.010	
D	4.700	5. 100	D	0. 185	0. 200	
E	3.800	4.000	Е	0.150	0. 157	
E1	5.800	6. 200	E1	0. 228	0. 224	
е	1. 270 (BSC)		е	0.0	50 (BSC)	
L	0.400	1.270	L	0.016	0.050	
θ	0°	8°	θ	0°	8°	

Statement:

- XBLW reserves the right to modify the product manual without prior notice! Before placing an order, customers need to confirm whether the obtained information is the latest version and verify the completeness of the relevant information.
- Any semi-guide product is subject to failure or malfunction under specified conditions. It is the buyer's responsibility to comply with safety standards when using XBLW products for system design and whole machine manufacturing. And take the appropriate safety measures to avoid the potential in the risk of loss of personal injury or loss of property situation!
- XBLW products have not been licensed for life support, military, and aerospace applications, and therefore XBLW is not responsible for any consequences arising from the use of this product in these areas.
- If any or all XBLW products (including technical data, services) described or contained in this document are subject to any applicable local export control laws and regulations, they may not be exported without an export license from the relevant authorities in accordance with such laws.
- The specifications of any and all XBLW products described or contained in this document specify the performance, characteristics, and functionality of said products in their standalone state, but do not guarantee the performance, characteristics, and functionality of said products installed in Customer's products or equipment. In order to verify symptoms and conditions that cannot be evaluated in a standalone device, the Customer should ultimately evaluate and test the device installed in the Customer's product device.
- XBLW documentation is only allowed to be copied without any alteration of the content and with the relevant authorization. XBLW assumes no responsibility or liability for altered documents.
- XBLW is committed to becoming the preferred semiconductor brand for customers, and XBLW will strive to provide customers with better performance and better quality products.