

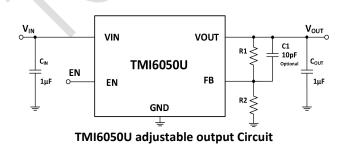
600mA, Fast Response LDO Regulators with Adjustable Output

FEATURES

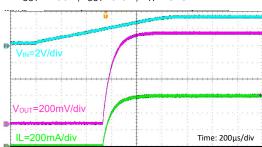
- 2.5V to 5.5V Input Voltage Range
- Up to 600mA output current (Typical) with V_{IN} - $V_{OUT} \le 1.8V@T_A = 25°C$
- 600mV @600mA Dropout Voltage
- **Excellent Transient Response**
- Stable with 1µF Ceramic Output Capacitor
- Low 95µA Quiescent Current
- Low Shutdown Current: <1µA
- Output Accuracy: ±2%
- Adjustable Output Voltage: 0.8V~5V
- Under Voltage Lockout Protection (UVLO)
- **Current Limit Protection**
- Thermal Shutdown
- Output Auto-Discharge in Shutdown
- . RoHS Compliant and 100% Lead (Fb)-Free Halogen-Free

APPLICATIONS

- Cellular Phones
- Bluetooth portable radios and Accessories
- **Battery-Powered Equipment**
- Laptop, Palmtops, Notebook Computer
- **PDAs**
- Digital still Camera and Video Recorders


GENERAL DESCRIPTION

The TMI6050U is a 600mA, low-dropout (LDO) linear regulator with fast transient response. It offers high output accuracy, low dropout voltage and low quiescent current as well as smooth start-up curve. This regulator is based on a CMOS process.


The TMI6050U is designed to work with low-ESR ceramic capacitors, reducing the amount of the PCB area necessary for power applications. Only a 1µF ceramic output capacitor can make the device stable over the whole load range current (0mA to 600mA).

The output voltage of TMI6050U can be set by an external resistor divider. When the FB pin is connected to an external resistor divider, its output can be adjusted from 0.8V to 5V. Other key features include over-current protection and thermal shutdown. The TMI6050U is packaged in SOT23-5 packages.

TYPICAL APPILCATION

Start-up waveform V_{OUT}=1.05V, I_{OUT}=0.5A, T_A=25°C

TMI and SUNTO are the brands of TOLLmicroelectronic.

TMÍ SUNTO

www.toll-semi.com

BLOCK DIAGRAM

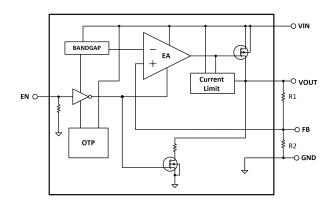


Figure 2. TMI6050U adjustable function block

ABSOLUTE MAXIMUM RATINGS

Description	Value	Unit
VIN, EN Input Voltage Range	-0.3~6	V
All other pins Voltage Range	-0.3 to (V _{IN} +0.3)	V
Junction Temperature	160	°C
Storage Temperature Range	-65~150	°C
Junction-to-ambient Thermal Resistance (Note1)	120	°C/W
Junction-to-ambient Thermal Resistance (Note2)	220	°C/W
Junction-to-case(top) Thermal Resistance (Note1)	62	°C/W
Lead Temperature Soldering, 10sec	260	°C

Note 1: Measured on 3cm x 5cm 2-layers FR-4 Board, 1oz copper.

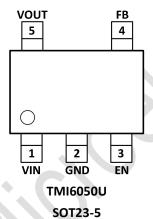
Note 2: Measured on 2cm x 2cm 2-layers small FR-4 Board, 1oz copper, no via holes on GND copper.

ESD RATINGS

Items	Description	Value	Unit
V _{ESD_HBM}	Human Body Model for all pins	±2000	٧
V _{ESD_CDM}	Charged Device Model for all pins	±2000	V

ESDA/JEDEC specification JS-002

RECOMMEND OPERATING CONDITIONS


Items	Description	Min	Max	Unit
Voltage Range	IN	2.5	5.5	V
T _J	Operation Junction Temperature	-40	125	°C

PIN FUNCTIONS

TMI6050U	Name	Function
1	VIN	Input Supply of the LDO.
2	GND	Signal Ground.
3	EN	Enable Pin. Connect this pin to ground or less than 0.4V to disable the device, connect EN to 1.05V or above to enable the device. This pin should not be floated.
4	NC/FB	Feedback Pin for adjustable output version. NC for fixed output version.
5	VOUT	Output of the LDO

PIN CONFIGURATION

Top Mark: TEAxxu (TEA: Device Code, xxu: Inside code)

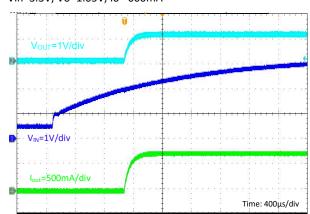
Part Number Package		Top Mark	Quantity/ Reel	
TMI6050U	SOT23-5	TEAxxu	3000	

TMI6050U devices are Pb-free and RoHS compliant.

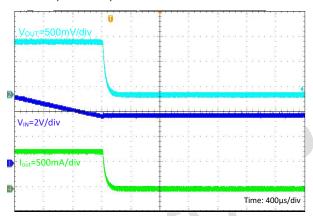
ELECTRICAL CHARACTERISTICS

 T_A =25°C, V_{IN} = V_{OUT} +1V, or V_{IN} =2.5V for V_{OUT} <1.5V unless otherwise specified.

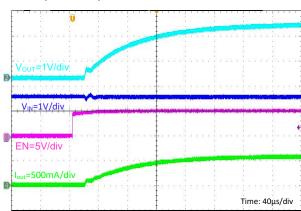
Symbol	Parameter	conditions	Min	Тур	Max	Unit
Input Vol	tage					
V _{IN}	Input Voltage Range		2.5		5.5	V
V _{UVLO}	UVLO rising threshold		1.9			V
V _{UVLO_HYS}	UVLO hysteresis			0.2		V
ΙQ	Quiescent Current	V _{EN} =2.5V, I _{OUT} =0mA		95	130	μΑ
I _{SHDN}	Shutdown Current	V _{EN} =0V		0.1	1	μΑ
PSRR	Power Supply Ripple Rejection	V _{IN} =Vnom+1V _{P-P} , f=1kHz, I _{LOAD} =10mA		60		dB
Enable						
V_{ENH}	Enable Rising Threshold	V _{IN} =5.0V, V _{OUT} =2.5V	0.7	0.9	1.1	V
		V _{IN} =3.3V, V _{OUT} =2.5V	0.5	0.8	1.0	V
V _{EN_HYS}	EN Hysteresis			0.08		V
I _{EN}	EN Input Current	V _{IN} =3.5V, V _{EN} =3.5V or 0V	-1	0	1	μΑ
T_{ST}	Start-up Time	V _{IN} =3.5V, V _{OUT} =2.5V	100	200	400	μs
Output Vo	oltage					
		V _{IN} =V _{OUT} +1V, I _{OUT} =10mA	-2		+2	%
V _{OUT}	Output Voltage Accuracy	$V_{IN}=V_{OUT}+1V$, $I_{OUT}=10$ mA, $T_A=-40$ °C to +85°C	-3		+3	%
V_{FB}	FB Pin Voltage		0.786	0.8	0.816	V
V_{LNR}	Output Line Regulation	V _{OUT} +0.5V <v<sub>IN<5.5V, I_{OUT}=10mA</v<sub>		0.01	0.1	%/V
V_{LDR}	Output Load Regulation	2mA <i<sub>OUT<600mA, V_{IN}=V_{NOM}+1.0V</i<sub>			12	mV
V_{DROP}	Dropout Voltage (Note 3)	I _{OUT} =600mA		600	700	mV
I _{OUTMAX}	Maximum Output Current	V _{IN} =V _{OUT} +1V	600			mA
Protection	n					
I _{limit}	Current Limit		650	800		mA
I _{short}	Output Short Current Limit	V _{FB} or V _{OUT} = 0V		450		mA
R _{AD}	Resistance of Auto-Discharge			130		Ω
T _{SD}	Thermal Shutdown Temperature	No Load, V _{IN} =V _{EN} =5V		160		°C
T _{SDHYS}	Thermal Shutdown Hysteresis	No Load, V _{IN} =V _{EN} =5V		20		°C


Note 3: Dropout is defined as V_{IN} - V_{OUT} when V_{OUT} is 2% below the value of V_{OUT} for V_{IN} = V_{OUT} +0.3 V_{IN} - V_{OUT}

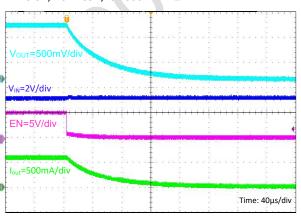
TYPICAL PERFORMANCE CHARACTERISTICS


VIN Start-up Curve

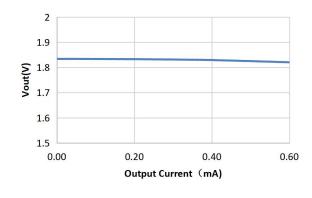
Vin=3.3V, Vo=1.05V, Io=600mA


VIN Power-off Curve

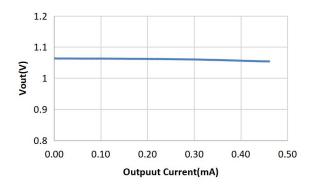
Vin=3.3V, Vo=1.05V, Io= 600mA


EN Start-up Curve

Vin=3.3V, Vo=1.05V, Io=600mA


EN Power-off Curve

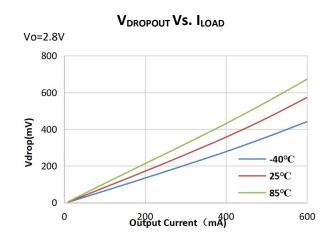
Vin=3.3V, Vo=1.05V, Io= 600mA

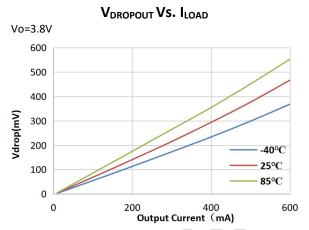

V_{OUT} Vs. _{IOUT}

Vin=3.3V, Vo=1.8V

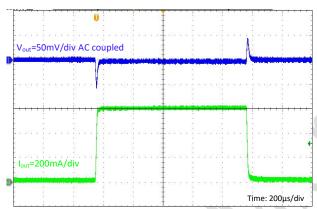
Vout Vs. 10UT

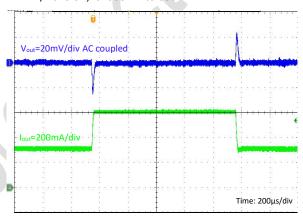
Vin=3.3V, Vo=1.05V




TMI and SUNTO are the brands of TOLL microelectronic .

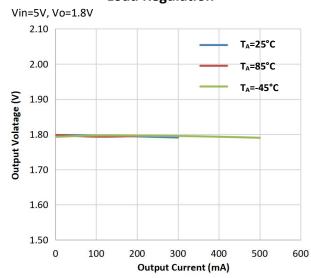
TMÍ SUNTO


TYPICAL PERFORMANCE CHARACTERISTICS


Load Transient

Vin=4V, Vo=3.3V, Io=10mA to 600mA

Load Transient


Vin=4V, Vo=3.3V, Io=300mA to 600mA

Load Regulation

Vin=3.3V, Vo=1.8V 2.10 T_A=25°C 2.00 TA=85°C T_A=-45°C (A) 1.90 1.80 1.70 1.60 1.50 100 200 300 400 500 600 Output Current (mA)

Load Regulation

Detailed Function Description

The TMI6050U is a high output current, low dropout linear regulator with fast transient response. It offers high output accuracy, low quiescent current and smooth start-up curve. It is designed to work with low-ESR ceramic capacitor, reducing the amount of the PCB area. Only a 1μ F effective capacitance ceramic output capacitor can make the device stable over the whole load range.

As shown in the function block diagram, the TMI6050U is composed of the bandgap reference voltage, the error amplifier, P-channel MOSFET pass transistor, external resistor divider and some additional protection circuits. The reference voltage, connected to the cathode terminal of the error amplifier, compares with the feedback voltage to regulate the output voltage to make it constant over the whole load current range. If the feedback voltage is lower than the reference voltage, the pass transistor gate is pulled lower to increase its conductivity. This allows more current to flow to the output and increase the output voltage. If the feedback voltage is higher than the reference voltage, the pass transistor gate is pulled higher to decrease its conductivity. This allows less current to flow to the output and decrease the output voltage. The feedback point is the output of the external resistor divider connected to the V_{OUT} pin.

Enable/Shutdown

The TMI6050U is disabled when the EN pin is connected to ground or the voltage less than 0.4V, and the quiescent current is less than 1μ A. Connect EN pin to 1.2V or higher voltage to enable the device. This pin cannot be floated.

Output Auto Discharge

When the regulator is disabled, an internal 130Ω resister is connected between VOUT and GND to discharge output capacitor C_{OUT} .

Current Limit

The TMI6050U includes a current limit circuit to monitor the gate voltage of the pass transistor to limit the output current. When the output current is higher than the over-current limit, the circuit will clamp the gate voltage of the pass transistor to limit the output current. The typical output current limit is 800mA.

Adjustable Output Voltage

TMI6050U has a wide output voltage range. The output voltage is programmed by an external resistor divider as shown in Figure 1. The output can be calculated be by the following equation:

$$V_{OUT} = (1 + \frac{R_1}{R_2}) \times V_{REF}$$
 (Equation.1)

Where V_{REF} is the internal reference voltage, which is 0.8V in TMI6050U.

Short Circuit Protection

When V_{OUT} pin is short-circuit to GND, short circuit protection will be triggered and clamp the output current to approximately 450mA. This feature protects the regulator from over current condition and damage due to overheating.

TMÍ SUNTO

Thermal Shutdown

The TMI6050U monitors internal temperature. When the junction temperature exceeds 160°C, the over temperature protection (OTP) circuit turn off the pass transistor until the device is cooled down by 30°C. Then the pass transistor resumes. For continue operation, do not exceed absolute maximum junction temperature.

Application Information

External capacitor

The TMI6050U requires external capacitor for stability. It is specifically designed to work with low-ESR capacitors requiring minimum PCB area. Place the external capacitors as close as possible to the device.

Input capacitor

A 1 μ F or higher capacitance value ceramic capacitor is required between the VIN pin and the GND pin. Place it as close as possible to the device. There are no requirements for the ESR on the input capacitor, but the tolerance and temperature coefficient must be capacitance is 1 μ F over the whole operating temperature range. The ceramic capacitor with 1 μ F or larger rating capacitance, X5R or X7R type dielectrics and 0402 or larger size is recommended as input capacitor.

Output capacitor

An output capacitor (C_{OUT}) is needed to improve transient response and maintain stability. The TMI6050U is stable with very small ceramic output capacitors. A $1\mu F$ to $10\mu F$ capacitor is suitable for the most TMI6050U applications. X5R or X7R type dielectrics and 0402 or larger size is recommended as output capacitor

Feedforward capacitor

A feedforward capacitor (C_{FB}) paralleling with high side feedback resistor R1 could help to increase response performance and enhance stability.

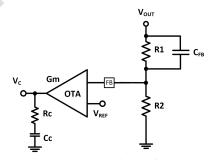


Figure 5. Application Circuits of Feedforward Capacitor CFB

As shown in above figure 5, the effect of feedback dividers and feedforward capacitor (C_{FB}) can be expressed:

$$\frac{\Delta v_{FB}}{\Delta v_{out}} = \left(\frac{R2}{R1 + R2}\right) \cdot \frac{1 + s \cdot R1 \cdot C_{FB}}{1 + s \cdot (R1//R2)C_{FB}} = \frac{V_{REF}}{V_{OUT}} \cdot \frac{1 + s \cdot R1 \cdot C_{FB}}{1 + s \cdot (R1//R2)C_{FB}}$$

If there is no C_{FB} , the Gain of divider is fixed as V_{REF}/V_{OUT} . C_{FB} introduces a pole and a zero, so the gain and phase of feedback network is changed in high frequency. The below figure 6 shows the loop bode plots of

www.toll-semi.com TMI SUNTO TMI and SUNTO are the brands of TOLL microelectronic.

TMI6050U 2.5V output with R1=5.1k Ω , R2=2.4k Ω , C_{FB} =2.2nF, C_{OUT}=1 μ F for example. With C_{FB} =2.2nF, the cross frequency of control loop increases from 30kHz to 200kHz, while the phase margins of control loop are almost same and the phase margins of two application condition are both larger than 90 deg.

The feedforward capacitor also has effect on output soft start up. During output voltage start up process, the voltage of C_{FB} is charging from 0V to V_{OUT} - V_{REF} . It is help to smooth the sloop rate of output voltage.

For most application, the recommended feedforward capacitance of is C_{FB} from 1nF to 4.7nF and the recommended divider resistance is $1k\Omega$ to $100k\Omega$ for appropriate additional compensation zero and pole.

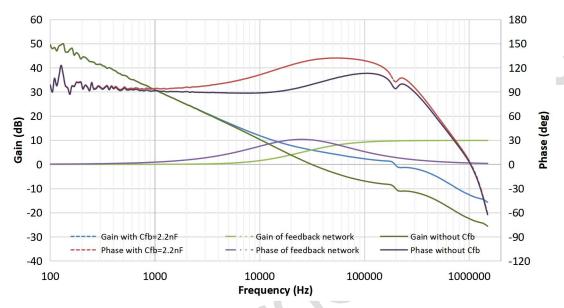


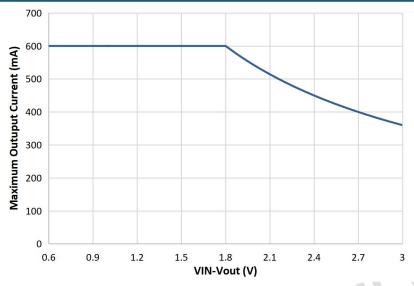
Figure 6. Loop Bode Plots of TMI6050U Adjustable Version with 2.5V Output

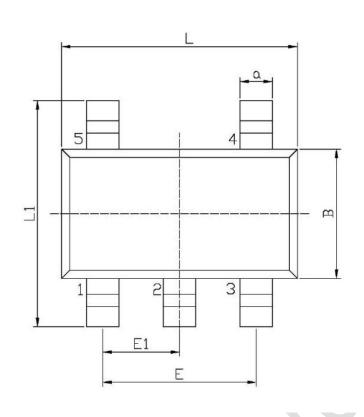
Maximum Output Current

The maximum output current of TMI6050U depends on the application conditions. LDO power dissipation PD equals to voltage drop between V_{IN} and V_{OUT} multiplying by output current. The maximum power dissipation of TMI6050U depends maximum operation junction temperature, ambient temperature and thermal resistance θ_{JA} as shown in below equation:

$$P_{D} = \frac{T_{J_MAX} - T_{A}}{\theta_{JA}}$$

Where T_{J_MAX} is 160°C and θ_{JA} is 120°C/W measured on DEMO board with 3cm x 5cm 2-layer PCB, so the maximum power dissipation at T_A =25°C is about 1080mW. The curve of maximum output current with voltage drop between VIN and VOUT is shown in below figure.




Figure 7. curve of maximum output current vs. V_{IN}-V_{OUT}

With ambient temperature rising, the maximum output current and maximum power dissipation drops down.

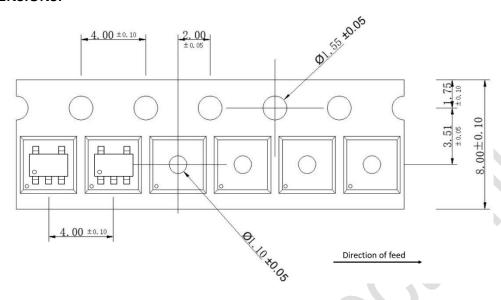
PACKAGE INFORMATION

SOT23-5

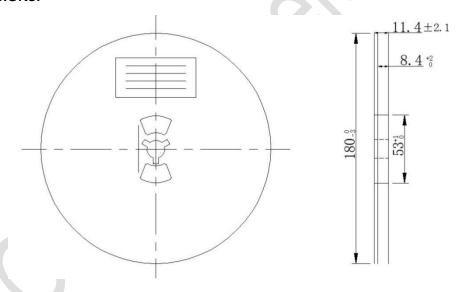
Unit: mm

Symbol	Dimensions In Millimeters			Symphol	Dimensions In Millimeters		
	Min	Тур	Max	Symbol	Min	Тур	Max
L	2.82	2.92	3.02	E1	0.85	0.95	1.05
В	1.50	1.60	1.70	а	0.35	0.425	0.50
С	0.90	1.10	1.30	С	0.10	0.15	0.20
L1	2.60	2.80	3.00	b	0.35	0.45	0.55
E	1.80	1.90	2.00	F	0	0.075	0.15

Note:


- 1) All dimensions are in millimeters.
- 2) Package length does not include mold flash, protrusion or gate burr.
- 3) Package width does not include inter lead flash or protrusion.
- 4) Lead popularity (bottom of leads after forming) shall be 0.10 millimeters max.
- 5) Pin 1 is lower left pin when reading top mark from left to right.

TMÍ SUNTO



TAPE AND REEL INFORMATION

TAPE DIMENSIONS:

REEL DIMENSIONS:

Note:

- 1) All Dimensions are in Millimeter
- 2) Quantity of Units per Reel is 3000
- 3) MSL level is level 3.