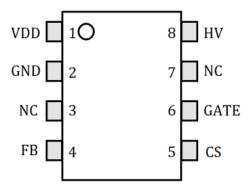


■ 产品描述

U321是一款高性能低成本 PWM 控制功率器,适用于离线式小功率降压型应用场合,外围电路简单、器件个数少。同时产品启动模块内置高耐压MOSFET 可提高系统浪涌耐受能力。

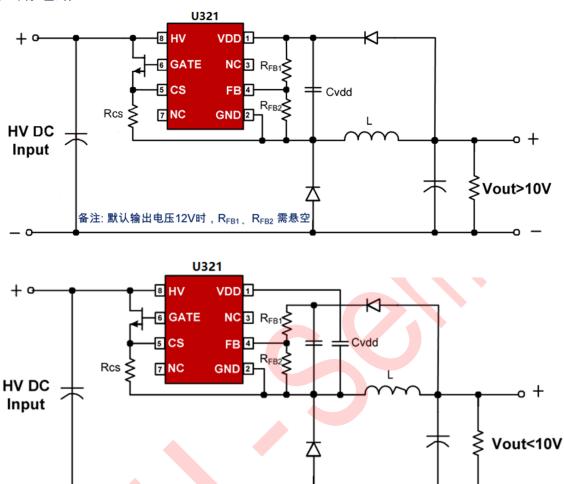
与传统的 PWM 控制器不同,U321内部无固定时钟驱动 MOSFET,系统开关频率随负载变化可实现自动调节。同时芯片采用了多模式 PWM 控制技术,有效简化了外围电路设计,提升线性调整率和负载调整率并消除系统工作中的可闻噪音。此外,芯片内部峰值电流检测阈值可跟随实际负载情况自动调节,可以有效降低空载情况下的待机功耗。


U321集成有完备的带自恢复功能的保护功能: VDD 欠压保护、逐周期电流限制、输出过压保护、 过热保护、过载保护和 VDD 过压保护等。

■ 典型应用

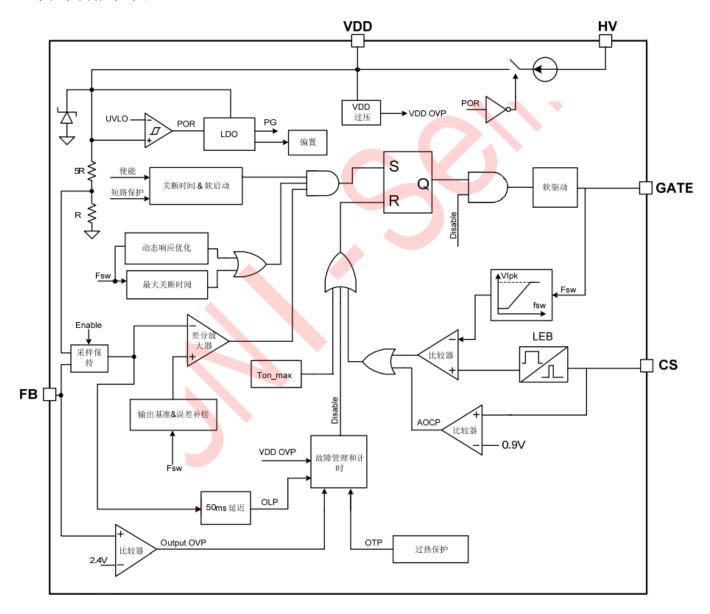
- 小家电电源
- 工业控制

■ 主要特点


- 集成 650V 高压启动电路
- 多模式控制、无异音工作
- 支持降压和升降压拓扑
- 默认 12V 输出(FB 脚悬空)
- 待机功耗低于 50mW
- 良好的线性调整率和负载调整率
- 集成软启动电路
- 内部保护功能:
 - ▶ 过载保护 (OLP)
 - ▶ 逐周期电流限制 (OCP)
 - ▶ 输出过压保护 (OVP)
 - ▶ VDD 过压、欠压和电压箝位保护
- 封装信息 SOP-8

■ 典型应用电路

■ 管脚功能描述


管脚	名称	1/0	描述	
1	VDD	Р	芯片供电管脚,同时作为输出电压反馈端 (FB 悬空时)。典型应用中 VDD 电容推荐采用 1uF 陶瓷电容	
2	GND	Р	芯片的参考地	
3,7	NC	-	非功能管脚,使用中悬空	
4	FB	I	反馈输入管脚,该引脚悬空时默认 12V 输出	
5	CS	0	峰值电流检测管脚	
6	GATE	0	功率 MOSFET 驱动输出管脚	
8	HV	Р	内部高压启动和供电管脚	

■ 订货信息

型号	描述		
U321	SOP-8 , 无卤、编带盘装 , 4000 颗/卷		

■ 内部功能框图

■ 极限参数(备注 1)

参数	数值	单位	
HV 管脚电压	-0.3 to 650	V	
VDD 供电电压	30	V	
VDD 箝位电流	10	mA	
FB , CS , GATE 管脚电压	-0.3 to 7	V	
封装热阻结到环境(SOP-8)	165	°C/W	
最高芯片工作结温	160	°C	
储藏温度	-65 to 150	°C	
管脚温度 (焊接 10 秒)	260	°C	
ESD 能力 (人体模型)	3	KV	
ESD 能力 (机器模型)	250	V	

■ 推荐工作条件(备注 2)

参数	数值	单位
工作环境温度	-40 to 85	°C
开关频率	40 to 60	kHz

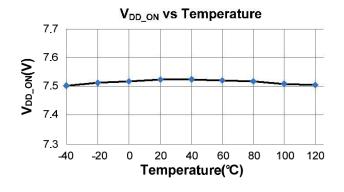
■ 电气参数 (无特殊注明,环境温度为 25 ℃)

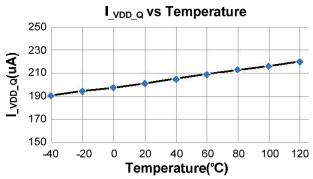
符号	参数	测试条件	最小	典型	最大	单位	
高压启动部分	高压启动部分 (HV 管脚)						
I _{HV}	HV 脚供电电流	HV=650V, VDD=0V	1	2		mA	
I _{HV_leakage}	HV 脚漏电电流	HV=650V, VDD=12V			10	uA	
供电部分(VDD	供电部分(VDD 管脚)						
V_{DD_ON}	VDD 开启电压			7.5		V	
V_{DD_OFF}	VDD 欠压保护电压			7.0		V	
V_{DD_Reg1}	VDD 调制电压	FB 悬空	11.8	12	12.2	V	
I _{VDD_st}	VDD 启动电流	无开关工作		100	300	uA	
I _{VDD_Op}	VDD 工作电流	Fsw=60kHz		800		uA	
I _{VDD_Q}	VDD 静态电流			200		uA	

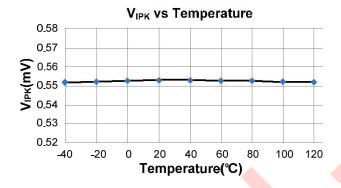
U321

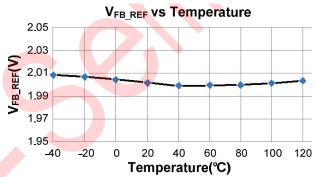
高性能、低成本离线式 PWM 控制器

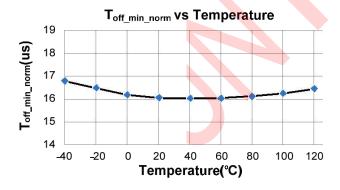
	1	1			1	1		
V_{DD_OVP}	VDD 过压保护阈值			28		V		
V_{DD_Clamp}	VDD 钳位电压	I _{VDD} =10mA		30		V		
反馈部分 (FB	反馈部分 (FB 管脚)							
V _{FB_REF}	内部差分放大器输入端基准		1.97	2.0	2.03	V		
V _{FB_OVP}	输出过压保护(OVP)检测 阈值			2.4		V		
V _{FB_OLP}	输出过载保护(OLP)检测阈 值			1.87		V		
T _{D_OLP}	过载保护延迟时间			50		ms		
电流检测输入部	部分 (CS 管脚)							
T _{LEB}	前沿消隐			350		ns		
T _{D_OCP}	过流比较器延时			100		ns		
V _{IPK}	峰值电流阈值		0.50	0.55	0.60	V		
V _{AOCP}	异常过流保护检测阈值			0.9		V		
计时部分								
T _{OFF_min_norm}	典型最短关断时间		14.5	16	17.5	us		
T _{OFF_max_norm}	典型最长关断时间			1.4		ms		
T _{OFF_max_FDR}	动态响应模式下最长关断时间			420		us		
T _{ON_max}	最长导通时间			12		us		
T _{ss}	内部软启动时间			3		ms		
T _{Auto_Recovery}	自动恢复延迟时间			500		ms		
过热保护								
T _{SD}	过热保护阈值	(备注 3)		150		°C		
1	1	1						


备注 1:超出列表中"极限参数"可能会对器件造成永久性损坏。极限参数为应力额定值。在超出推荐的工作条件和应力的情况下,器件可能无法正常工作,所以不推荐让器件工作在这些条件下。过度暴露在高于推荐的最大工作条件下,可能会影响器件的可靠性。


备注 2: 在超出以上参数的条件下,无法保障芯片的正常运行。


备注3:参数取决于实际设计,在批量生产时进行功能性测试




■ 参数特性曲线

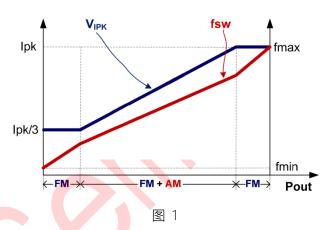
■ 功能描述

U321 系列是一款集成高压启动和供电功能的多模式 PWM 控制器。该系列产品支持离线式非隔离降压和 升降压型拓扑电路,适用于小家电电源和线性电源替 代等场所。同时,U321 具有输出精度高和外围成本低的特点。

● 超低静态工作电流

U321 的静态工作电流典型值为 200uA。如此低 的工作电流降低了对于 VDD 电容大小的要求,同 时也可以提高系统效率。

● 高压启动电路和超低待机功耗 (<50mW)


U321 内置有一个 650V 高压启动单元。在开机过 程中该启动单元开始工作,从 HV 端取电并通过高压电流源对 VDD 电容进行充电,如"功能模块"中所述。当 VDD 电压上升至 V_{DD_ON}(典型 7.5V)时, 芯片开始工作且芯片工作电流增加至约 0.8mA。在稳态工作时,芯片通过反馈二极管由输出进行供电, 同时借助高压启动电路,系统待机功耗可以低至 50mW 以下。

● 逐周期峰值电流限制和前沿消隐

U321 内置的峰值电流检测阈值具有随系统工作频率变化而变化的特点,并通过 CS 管脚实现对电感峰值电流的调制。当 CS 管脚采样到的电压超过该阈值时,功率 MOSFET 立即关断直至下一开关周期开始。同时芯片内置有前沿消隐电路(消隐时间约300ns),消隐期间内部的逐周期峰值电流比较器将被屏蔽而不能关闭 MOSFET。

● 多模式 PWM 控制

为满足系统平均效率和空载待机方面的严格要求, U321 采用了调幅控制(AM)和调频控制(FM)相结合的工作模式,如图 1 所示。 满载情况下系统工作于调频模式 (FM); 重载至轻载阶段,系统 同时工作于调频和调幅 模式 (FM+AM)中,以达到良好的调整率和较高的系统效率;当工作于空载附近时,系统将重新进入调频模式以降低待机损耗。通过这种方式,可以将系统 待机功耗降至 50mW以下。

• 软启动

U321 内集成有 4ms (典型值)的软启动电路,在芯片启动过程中系统开关频率逐渐增加,而且每次系统的重新启动都会伴随着一次软启动过程。

● 输出过压保护(OVP)

当在连续的 3 个工作周期里 U321 检测到 FB 脚电压高于 2.4V 以上时,芯片将进入输出电压过压保护(OVP),随后系统将进入自动重启模式。

● 过载保护(OLP)/短路保护(SLP)

当过流或短路情况发生时,输出电压和反馈电压将降低且低于输出过载保护阈值 V_{FB_OLP}。如果在 48ms(典型值)的时间内该状态持续存在,则芯片将停止开关动作并进入自动重启模式(如下描述)。

● 异常过流保护(AOCP)

在某些情况下(如重载或者输出短路等),系统的电感电流峰值将上升过于剧烈。为避免电感峰值电流过大对系统元器件造成损坏,芯片内部设计有异常过流检测模块(AOCP,典型阈值为0.9V)。当CS电压高于该阈值时,内部功率MOSFET即刻关断并保持关断状态持续48us。

● 过热保护(OTP)

U321内部集成的过热保护电路会检测芯片的内部结温,当芯片结温超过150 °C (典型值)时,系统进入到自动重启模式。

• 优化的动态响应

U321集成有快速动态影响功能,可降低负载切换时的输出电压跌落。

消除可闻噪音

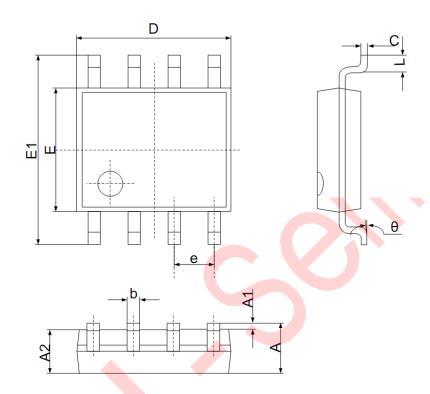
U321 通过采用频率调制和 CS 峰值电压调制调相结合的多模式控制方式,可实现在全负载范围内有效消除可闻噪音。

● VDD 过压保护(OVP)和 VDD 电压箝位

当 VDD 电压高于 V_{DD_OVP} (典型值 28V)时,芯片将停止工作。随后 VDD 电压下降至 V_{DD_OFF} (典型值 7V)并进入重启模式。此外,芯片内部集成有 30V 稳压管,避免 VDD 脚电压过高而损坏。

● 自动重启保护

芯片触发保护后功率 MOSFET 将关断,同时系统进入自动重启模式,芯片内部的计时器开始工作。当计时器计时超过 500ms 时,芯片将重置并重新开机。开机后若再次触发保护,则系统将再次进入自动重启模式。


• 软驱动电路

U321 内置有软驱动电路优化了系统 EMI 性能。

■ 封装尺寸

SOP-8

符号	尺寸 (毫米)	尺寸(英寸)		
	最小	最大	最小	最大	
Α	1.350	1.750	0.053	0.069	
A1	0.100	0.250	0.002	0.010	
A2	1.350	1.550	0.049	0.065	
b	0.330	0.510	0.012	0.020	
С	0.170	0.250	0.006	0.010	
D	4.700	5.100	0.185	0.203	
е	1.270(中/	心到中心)	0.050(中心到中心)		
E1	5.800	6.200	0.228	0.244	
E	3.800	4.000	0.15	0.157	
L	0.400	1.270	0.016	0.050	
θ	0°	8°	0°	8°	

