

1. 概述和特点

TP301X、TP302X、TP305X、TP307X系列器件是由一个GaAs红外发光二极管和一个单晶硅芯片的随 机相位光电双向晶闸管组成的光电耦合器。

峰值击穿电压:

TP301X: 250V;

TP302X: 400V;

TP305X: 600V;

TP307X: 800V;

输入-输出隔离电压 V_{ISO} =5000 Vrms

工作温度: -55℃~110℃

符合加强绝缘标准

符合安规标准: UL1577,

VDE DIN EN60747-5-5 (VDE 0884-5), CQC

应用:

- 开关电源,智能电表
- 工业控制,测量仪器
- 办公设备,比如复印机
- 家用电器,比如空调、风扇、热水器等

2. 封装和原理图

SMD6

6 5 4

原理图

序号	引脚定义
1	阳极
2	阴极
3	NC
4	终端
5	NC
6	终端

3. 绝缘和安规信息

DIP6

项目	符号	数值	单位	备注		
爬电距离	L	>7.0	mm	从输入端到输出端,沿本体最短距离路径		
电气间隙	L	>7.0	mm	从输入端到输出端,通过空气的最短距离		
绝缘距离	DTI	>0.4	mm	发射器和探测器之间的绝缘厚度		
峰值隔离电压	V_{IORM}	1500	V_{peak}	DIN/EN/IEC EN 60747-5-5		
瞬态隔离电压	V _{IOM}	7000	V_{peak}	DIN/EN/IEC EN 60747-5-5		
隔离电压	$V_{\rm ISO}$	>5000	Vrms	60 秒		

4. 极限参数(Ta=25°C)

参数名称		符号	额定值	单位	
	正向电流		I_{F}	60	mA
反向电压		V_R	6	V	
发射端 功耗			P_{D}	100	mW
	额定值降低因子(在 Ta=85℃ 以上)		P_{DD}	3.8	mW/C
		TP301X		250	
	<u> </u>	TP302X	17	400	7.7
	断态输出端电压	TP305X	$V_{ m DRM}$	600	V
接收端		TP307X		800	
1女収納	峰值重复浪涌电流(pw	=100μs,120pps)	I_{TSM}	1	A
	开启态电流(均方根位	直)	$I_{T(RMS)}$	100	mA
	功耗		D	300	mW
额定值降低因子(在 Ta = 85℃ 以		Ta=85℃以上)	$P_{\rm C}$	7.4	mW/C
总功耗			P _{tot}	330	mW
工作温度			T_{opr}	-55~110	°C
贮存温度		$T_{ m stg}$	-55~125	°C	
焊接温度			T_{sol}	260	$^{\circ}\!\mathrm{C}$

注: 在相对湿度 40%~60%下的进行交流电测试,此时 1、2 和 3 脚短接,4、5 和 6 脚短接

5. 电参数(Ta=25°C)

	·· ,					1	1	
参数名称		符号	符号 测试条件		典型值	最大值	单 位	
42- 自4-5-5	正向电压	E向电压		I _F =20mA	-	1.23	1.5	V
发射端	反向电流		I_R	V _R =6V	-	-	10	uA
	断态峰值电流		I_{DRM}	V_{DRM} =Rated V_{DRM} I_F = 0mA	-	-	100	nA
+÷ 1/4 ->14	通态峰值电压	Ž.	V_{TM}	I_{TM} =100mA peak I_{F} = Rated I_{FT}	-	-	2.5	V
接收端 断态电压临 界上升率	断态电压临	TP301X TP302X	dv/dt -	V_{PEAK} =Rated V_{DRM} I_F =0	-	100	-	3 77/
	界上升率	TP305X TP307X		V _{PEAK} =400V, I _F =0	1000 -	-	- V/μs	
		TP3020	I_{FT}	主端电压=3V	-	-	30	
传输特性 LED 电流	LED #h#	TP3011	$ m I_{FT}$	主端电压=3V	-	-	15	mA
	LED 触发 电流	TP3021						
	七 <i>小</i> 儿	TP3051						
		TP3071						

维持电流		I_{H}	-	-	250	-	uA
TP30	TP3073						
	TP3053	I _{FT}	主端电压=3V	-	-	5	
	TP3023						
	TP3013		主端电压=3V	-	-	10	
	TP3072						
	TP3052	I_{FT}					
	TP3022	т					
	TP3012						

6. 特性曲线

图 1 LED 正向电压 vs 正向电流 Fig.1 LED forward voltage vs Forward current

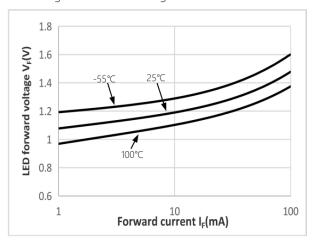


图 2 通态特性图 Fig.2 On-state characteristic diagram

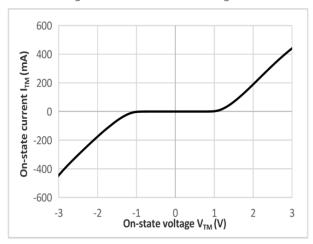


图 3 触发电流 vs 环境温度 Fig.3 Trigger current vs Ambient temperature

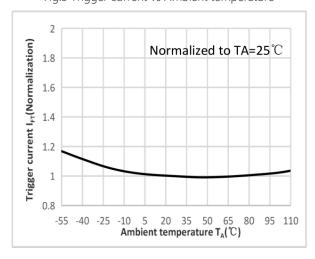


图 4 触发电流 vs LED 脉冲宽度 Fig.4 Trigger current vs LED pulse width

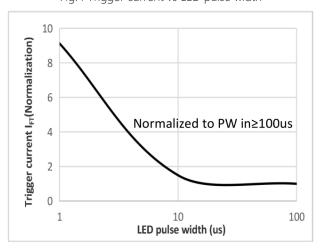


图 5 维持电流 vs 环境温度

Fig.5 Maintenance current vs Ambient temperature

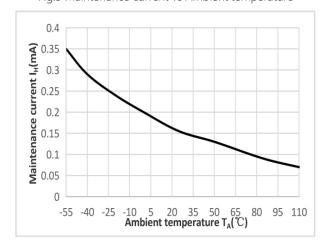


图 6 泄漏电流 vs 环境温度

Fig.6 Leakage current vs Ambient temperature

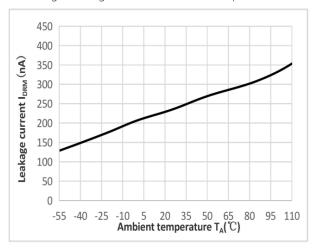
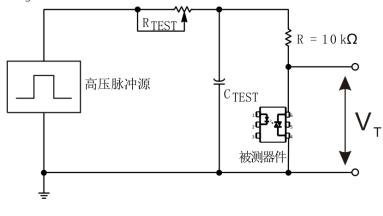
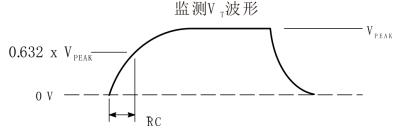
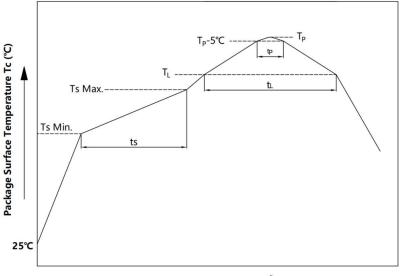




Fig.7 静态 dv/dt 测试电路和波形 Static dv/dt test circuit and waveform

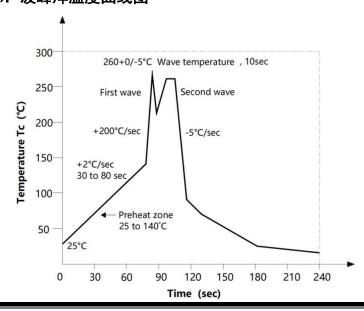
通过 RC 电路施加于被测器件的输出端的高电压脉冲设置到所需的 V_{PEAK} 值上。LED 电流无需加上。波形 V_T 使用 X100 探头监测。通过 调节 R_{TEST} 值,dv/dt(斜度)增加,直到被测器件观察到被触发(波形崩溃)。dv/dt 然后下降,直到被测器件停止被触发。此时,记录 τ_{RC} 值并可计算 dv/dt 了。


$$dv/\mathrm{d}t = \frac{0.632 \times V_{PEAK}}{\tau_{RC}}$$

例如,TP305X 系列的电压峰值 = 400V。 dv/dt 值的计算方式如

$$dv/dt = \frac{0.632 \times 400}{\tau_{BC}} = \frac{252.8}{\tau_{BC}}$$

7. 回流焊温度曲线图

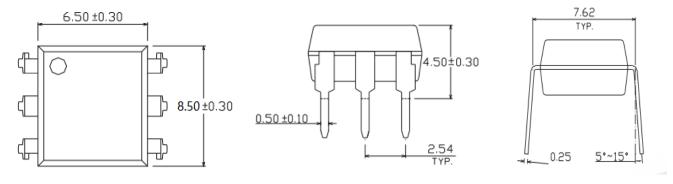


Time (s)

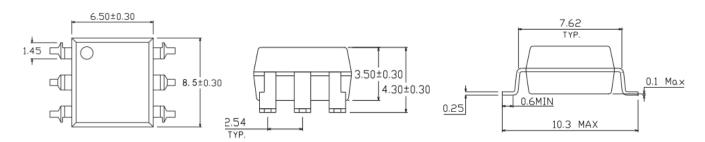
项目	符号	最小值	最大值	单位
预热温度	Ts	150	200	°C
预热时间	ts	60	120	S
升温速率	-	-	3	°C/s
液相线温度	$T_{ m L}$	21	°C	
时间高于	t_{u}	60	150	S
峰值温度	$T_{ m P}$	-	260	°C
Tc 在(TP-5)和 T _P 之间的时间	$t_{\rm p}$	-	30	S
降温速率	-	-	6	°C/s

注: 建议在所示的温度和时间条件下进行回流焊,最多不能超过三次;

8. 波峰焊温度曲线图



手工烙铁焊接


- A. 手工烙铁焊仅用于产品返修或样品测试;
- B. 手工烙铁焊要求: 温度 360℃±5℃, 时间≤3s

9. 外形尺寸(单位: mm)

DIP6:

SMD6:

10. 包装

- ◆ 管条包装:
- 1. 每管数量: 50 只
- 2. 每盒数量: 40 管
- 3. 每箱数量: 10 盒, 20000 只
- ◆ SMD6 编带包装:
- 1. 每卷数量: 1000 只。
- 2. 每盒数量: 2卷
- 3. 每箱数量: 8 盒, 16000 只