BMD65N360Z1

N-Channel Power MOSFET

650 V, 11 A, 360 mΩ

Description

BMD65N360Z1 is power MOSFET using bestirpower's advanced super junction technology that can realize very low on- resistance and gate charge. It will provide much high efficiency by using optimized charge coupling technology. These user friendly devices give an advantage of Low EMI to designers as well as low switching loss.

Features

BV _{DSS} @T _{J,max}	ΙD	R _{DS(on),max}	$Q_{g,typ}$
700V	11 A	360 mΩ	17.5 nC

- Extremely low losses due to very low FOM Rdson*Qg and Eoss.
- Very high commutation ruggedness.
- RoHS compliant

Applications

- PFC.
- · SPWM.
- · LCD TV.
- · Lighting.
- · UPS.

Absolute Maximum Ratings (T_C = 25 ℃ unless otherwise noted)

Symbol	Paramet	Value	Unit		
V_{DSS}	Drain to Source Voltage		650	V	
V_{GSS}	Gate to Source Voltage		±30	V	
		Continuous (T _C = 25°C)	11		
l _D	Drain Current ¹⁾	Continuous (T _C = 125°C)	6.6	Α	
I _{DM}	Drain Current ²⁾	33	Α		
P_D	Power Dissipation		134	W	
E _{AS}	Single Pulsed Avalanche Energy ³		135	mJ	
1. / 11	MOSFET dv/dt ruggedness		50	277	
av/at	dv/dt Diode Recovery dv/dt ruggedness ⁴		15	V/ns	
T _{STG}	Storage Temperature Range		-55 to 150	°C	
TJ	Maximum Operating Junction Temperature		150	°C	
TL	Maximum Lead Temperature for Soldering, 1/8" from Case for 10 Seconds		260	°C	

- 1) Limited by T_j max. Maximum duty cycle D=0.75.
- 2) Pulse width t_p limited by T_j,max.
- 3) V_{DD} =50V, I_{AS} =3A, L=50mH, R_G =25 Ω , Starting T_j =25 $^{\circ}$ C.
- 4) V_{DClink}=400V; V_{DS,peak}<V_{(BR)DSS}; identical low side and high side switch with identical R_G.

Thermal Characteristics

Symbol	Parameter	Value	Unit
R _{eJC}	Thermal Resistance, Junction to Case T _C = 25°C	0.93	9C AA1
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient T _C = 25°C	104.8	°C/W

 Q_{rr}

 I_{rm}

Reverse Recovery Charge

Reverse Recovery Current

Package Marking and Ordering Information

Part Number	Top Marking	Package	Packing Method	Reel Size	Tape Width	Quantity
BMD65N360Z1	BMD65N360Z1	D-Pak	Tape & Reel	330 mm	16 mm	2500 units

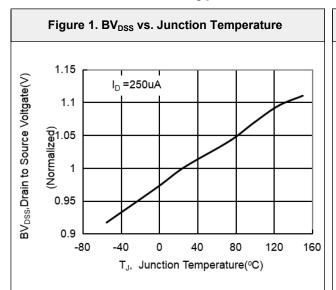
Electrical Characteristics (T_C = 25°C unless otherwise noted)

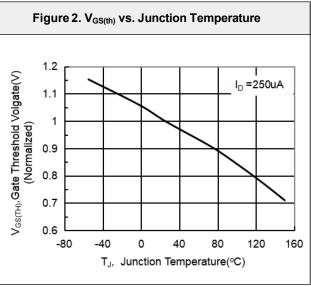
Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
Off Chara	cteristics					
BV _{DSS}	Drain to Source Breakdown Voltage	V _{GS} = 0 V, I _D = 250μA	650	-	-	V
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 650 V, V _{GS} = 0 V Tj=25°C	-	-	1	μΑ
I _{GSS}	Gate-Source Leakage Current	V _{GS} = ±30 V, V _{DS} = 0 V	-	-	±100	nA
On Chara	cteristics					
V _{GS(th)}	Gate Threshold Voltage	$V_{GS} = V_{DS}, I_D = 250 \mu A$	2.5	3.5	4.5	V
R _{DS(on)}	Static Drain to Source On Resistance	V _{GS} = 10 V, I _D = 3A Tj=25°C	-	290	360	mΩ
	Characteristics			E71		nF
Ciss	Input Capacitance	\ _0\/ \ \ _50\/ \$-1MU=	-	571	-	pF
Coss	Output Capacitance	$V_{\rm GS}$ =0V, $V_{\rm DS}$ =50V, f =1MHz	-	45	-	pF
Crss	Reverse Transfer Capacitance		-	5.46	-	pF
C _{o(tr)}	Time Related Output Capacitance	V _{DS} = 0 to 400 V, V _{GS} = 0 V	-	136	-	pF
C _{o(er)}	Energy Related Output Capacitance		-	26.8	-	pF
Q _g	Total Gate Charge	V _{GS} = 10V,	-	17.5	-	nC
Q _{gs}	Gate to Source Charge	V _{DD} =400V, I _D = 5.5A	-	4.6	-	nC
Q_{gd}	Gate to Drain "Miller" Charge		-	8.4	-	nC
Rg	Gate Resistance	V _{GS} = 0V, f = 1.0MHz	-	21	-	Ω
3witching	Characteristics					
t _{d(on)}	Turn-On Delay Time		-	26	-	ns
t r	Turn-On Rise Time	V _{DD} = 400V, I _D =5.5A,	-	44	-	ns
$t_{d(off)}$	Turn-Off Delay Time	$V_{GS} = 10V, R_G = 25\Omega$	-	65	-	ns
t _f	Turn-Off Fall Time		-	24	-	ns
Reverse D	liode Characteristics					
I _{SD}	Continuous Diode Forward Current	T _C =25°C	-	-	11	Α
V _{SD}	Diode Forward Voltage	V _{GS} = 0V, I _F = 11A,	-	0.846	-	V
t _{rr}	Reverse Recovery Time	V 400V L 7A	-	238	-	ns

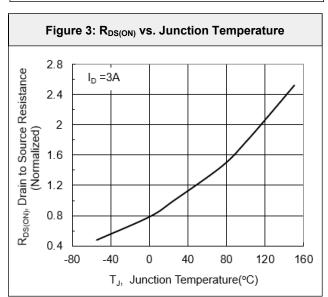
 V_R =400V, I_F =7A

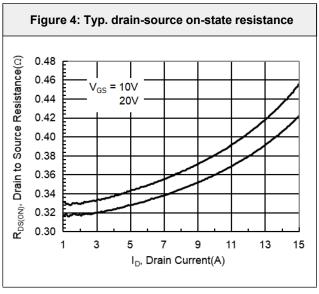
 $di_F/dt = 100A/\mu s$

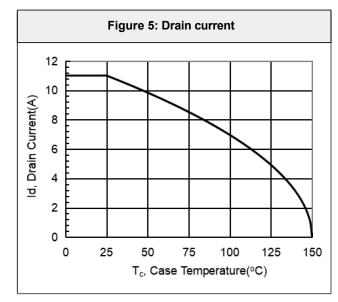
2310

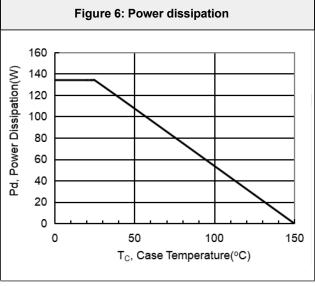

21.7

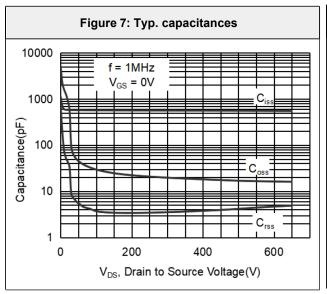

nC

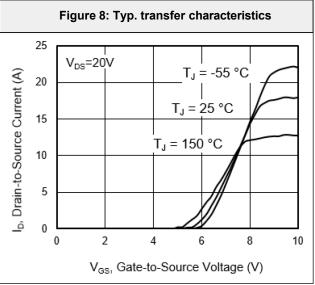

Α

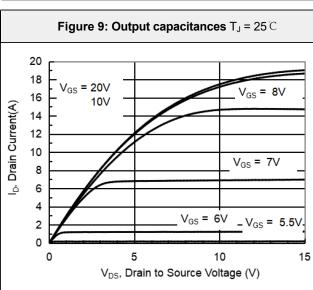


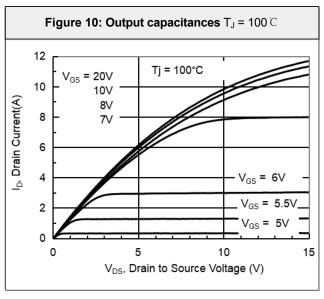

Typical Performance Characteristics

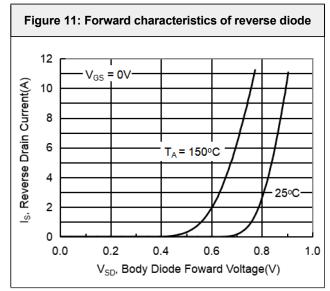


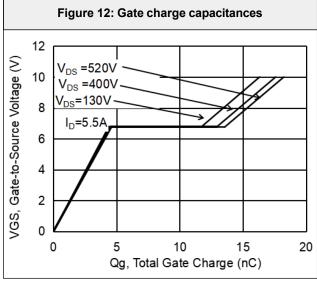


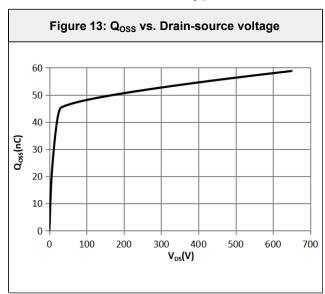


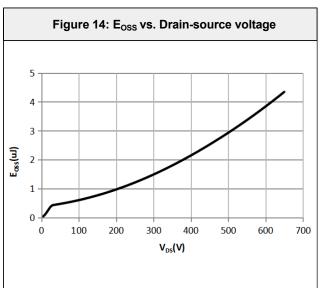


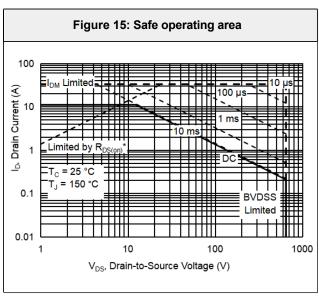


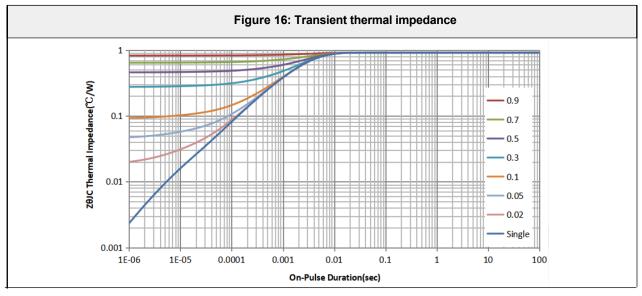

Typical Performance Characteristics



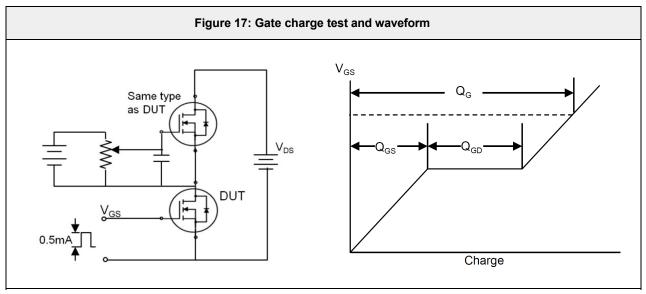


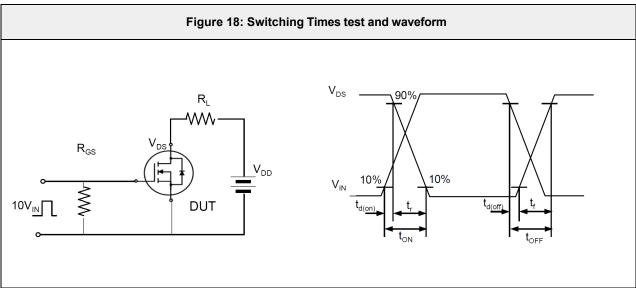


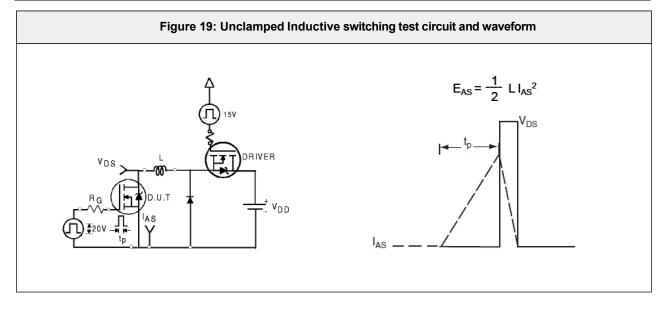




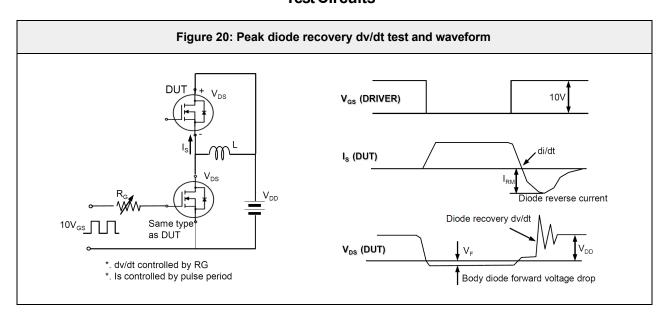
Typical Performance Characteristics

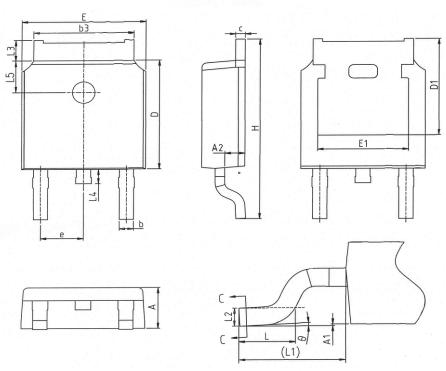






Test Circuits




Test Circuits

Package Outlines

D-Pak

COMMON DIMENSIONS

SYMBOL	mm			
SIMBUL	MIN	NOM	MAX	
A	2. 20	2.30	2.38	
A1	0.00	-	0.12	
A2	0.97	1.07	1. 17	
b	0.68	0.78	0. 90	
b3	5. 20	5. 33	5. 46	
С	0.43	0.53	0.61	
D	5. 98	6. 10	6. 22	
D1	5. 30REF			
E	6. 40	6. 60	6. 73	
E1	4.63	-	-	
е	2. 286BSC			
Н	9.40	10.10	10.50	
L	1.38	1.50	1.75	
L1	2. 90REF			
L2	0. 51BSC			
L3	0.88	-	1. 28	
L4	0.50	-	1.00	
L5	1.65	1.80	1.95	
θ	0°	-	8°	

^{*} Dimensions in millimeters

Disclaimer

Bestirpower reserve the right to make changes, corrections, enhancements, modifications, and improvements to Bestirpower products and/or to this document at any time without notice.

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. Bestirpower does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Products or technical information described in this document.

This document is the property of Bestirpower Co,. LTD., and not allowed to copy or transformed to other format if not under the authority approval.

© 2023 Bestirpower – All rightsreserved