

CMC693PR144-L 芯片 数据手册

宁波中控微电子有限公司

声明

- 严禁转载本手册的部分或全部内容。
- 在不经预告和联系的情况下,本手册的内容有可能发生变更,请谅解。
- 本手册所记载的内容,不排除有误记或遗漏的可能性。如对本手册内容有疑问, 请与我公司联系。

目录

1	简介	 1
	1.1 概述	1
	1.2 典型特性	1
	1.3 芯片结构图	1
2	管脚信息	2
	2.1 管脚分布	
	2.2 管脚总表	3
3	功能描述	
J	3.1 系统时钟	
	3.2 工作模式	
	3.3 芯片复位	
	3.4 看门狗 WDT	
	3.5 片内 FLASH	
	3.6 通用定时器	
	3. 7 ITAG	
	3.8 通用输入输出 GPIO	
	3.9 脉冲输入输出 PIPO	
	3.10 通信接口	
	3. 10. 1 UART 串行通信	
	3. 10. 2 I2C 通信	. 11
	3.10.3 SPI 通信	
	3. 10. 4 CAN 通信	
	3.10.5 以太网通信 MAC	
	3.11 逻辑控制	
4	电气特性	
	4.1 引脚电气特性	
	4.2 供电电路	
	4.3 复位电路	
	4.4 晶振电路	.14
5	物理尺寸	16
6	资料版本说明	.17

1 简介

1.1 概述

CMC693PR144-L 是将组态处理、程序存储、信号输入输出、控制算法、通讯接口等全部集成在一个芯片中的产品,实现的主要功能可以简述为:片内逻辑控制,程序处理及调度管理,数字量信号处理,多种数据接口通信。使用芯片的组态软件进行逻辑控制程序的编程,将编写的程序下载到芯片的片内存储器中。根据用户的程序,对输入的各种信号(包括从通信接口传入的信号)进行处理运算,并进行相应的信号输出。

逻辑控制主要包括对上层用户编写并经过编译的逻辑控制程序(如梯形图、IL、ST等)进行执行处理。数字量处理主要包括开关信号、频率信号处理,脉冲信号输入输出,PWM输出,正交编码器输入等。

芯片集成了 Flash、SRAM、通用定时器、PLL 等功能,以及以太网 MAC、UART、CAN、SPI、I2C 等多种通信接口。

1.2 典型特性

芯片典型特性信息见下表 1-1 典型特性:

参数项		特性值		
CPU 主频	10~400Mhz(典型值 200Mhz)			
数据位宽	32bit			
片内 SRAM	256 KBytes			
片内 Flash	2MBytes			
定时器	4 个			
	UART	2		
	CAN	2		
通信接口	SPI	2(1主1从)		
	I2C	1		
	以太网 (MAC)	2		
GPIO □	84 个 (可复用)	84个(可复用)		
I/O 口输出高电平驱动能力	9.8~35mA/3.3V			
工作电压	IO 供电电压	3.3V (±10%)		
工作电压	内核供电电压	1.2V (±10%)		
工作温度	-40~85℃			
外部时钟信号输入	有源晶振,2~15MHz			
片内系统时钟	可通过 PLL 配置			
封装形式	LQFP 144			
芯片尺寸	20×20×1.4mm			

表 1-1 典型特性

1.3 芯片结构图

芯片由内部总线和功能模块组成。内部总线包括片内高速总线和片内低速总线,功能模块包括公共资源、控制运算、通信接口和数字量处理几大部分,其中公共资源包括中断控制、外部中断、定时器、实时钟、看门狗、DMA 控制器等,控制运算包括系统管理、逻

辑控制,数字量处理包括脉冲输入输出和通用 IO 等,通信接口包括 SPI、I2C、CAN、UART、以太网 MAC 等,各功能模块根据各自的性能和带宽需求,分别挂接在相应的总线上。芯片系统结构如图 1-1 所示。

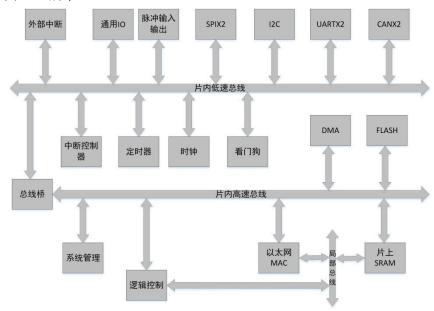


图 1-1 芯片系统结构图

2 管脚信息

2.1 管脚分布

芯片共有 144 个管脚, 1 号管脚位于芯片下方最左侧,管脚按逆时针方向依次排序。管脚分布详见下图 2-1。

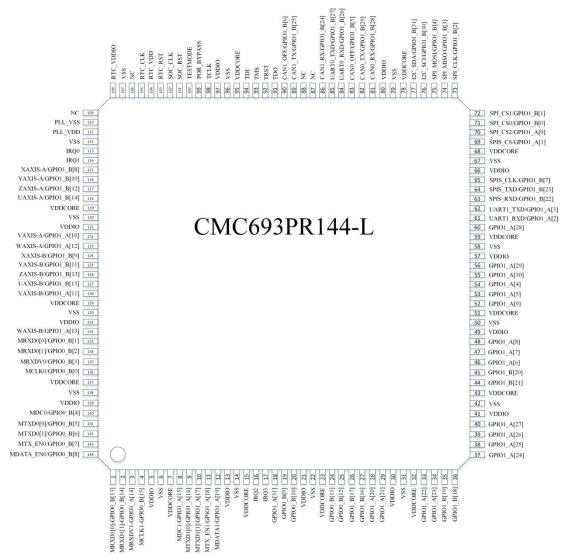


图 2-1 芯片管脚分布图

2.2 管脚总表

衣 2-1 心力官脚总衣						
管脚号	类型	管脚名称	默认复用功能			
1	I/O	GPIO0_B[13] / MRXD1[0]	MAC1数据接收0			
2	I/O	GPIO0_B[14] / MRXD1[1]	MAC1数据接收1			
3	I/O	GPIO1_A[14] / MRXDV1	MAC1数据接收使能			
4	I/O	GPIO0_B[15] / MCLK1	MAC1 RMII 时钟输入			
5	VCC0	VDDIO	IO 电源 ^[2]			
6	GND	VSS	地[3]			
7	VCC1	VDDCORE	内核电源[1]			
8	I/O	GPIO1_A[15] / MDC1	MAC1数据管理时钟			
9	I/O	GPIO1_A[16] / MTXD1[0]	MAC1数据发送0			
10	I/O	GPIO1_A[17] / MTXD1[1]	MAC1数据发送1			
11	I/O	GPIO1_A[18] / MTXEN1	MAC1数据发送使能			

表 2-1 芯片管脚总表

管脚号	类型	管脚名称	默认复用功能
12	I/O	GPIO1_A[19] / MDATA1	MAC1管理数据
13	VCC0	VDDIO	IO 电源
14	GND	VSS	地
15	VCC1	VDDCORE	内核电源
16	I/O	GPIO0_A[2] / IRQ2	外部中断2
17	I/O	GPIO0_A[3] / IRQ3	外部中断3
18	I/O	GPIO1_A[31]	GPIO
19	I/O	GPIO0_B[9]	GPIO
20	I/O	GPIO0_B[10]	GPIO
21	VCC0	VDDIO	IO 电源
22	GND	VSS	地
23	VCC1	VDDCORE	内核电源
24	I/O	GPIO0_B[11]	GPIO
25 26	I/O I/O	GPIO0_B[12]	GPIO GPIO
27	I/O	GPIO1_B[17] GPIO1_B[16]	GPIO
28	I/O	GPIO1_A[20]	GPIO
29	I/O	GPIO1_A[21]	GPIO
30	VCC0	VDDIO	IO 电源
31	GND	VSS	地
32	VCC1	VDDCORE	内核电源
33	I/O	GPIO1_A[22]	GPIO
34	I/O	GPIO1_A[23]	GPIO
35	I/O	GPIO1_B[19]	GPIO
36	I/O	GPIO1_B[18]	GPIO
37	I/O	GPIO1_A[24]	GPIO
38	I/O	GPIO1_A[25]	GPIO
39	I/O	GPIO1_A[26]	GPIO
40	I/O	GPIO1_A[27]	GPIO
41	VCC0	VDDIO	IO 电源
42	GND	VSS	地
43	VCC1 I/O	VDDCORE	内核电源 GPIO
45	I/O	GPIO1_B[21]	GPIO
46	I/O	GPIO1_B[20] GPIO1_A[6]	GPIO
47	I/O	GPIO1_A[0] GPIO1 A[7]	GPIO
48	I/O	GPIO1_A[8]	GPIO
49	VCC0	VDDIO	IO 电源
50	GND	VSS	地
51	VCC1	VDDCORE	内核电源
52	I/O	GPIO1_A[9]	GPIO
53	I/O	GPIO1_A[5]	GPIO
54	I/O	GPIO1_A[4]	GPIO
55	I/O	GPIO1_A[30]	GPIO
56	I/O	GPIO1_A[29]	GPIO
57	VCC0	VDDIO	IO 电源

管脚号	类型	管脚名称	默认复用功能
58	GND	VSS	地
59	VCC1	VDDCORE	内核电源
60	I/O	GPIO1_A[28]	GPIO
61	I/O	GPIO1_A[2] / UART1_ RXD	UARTI数据输入
62	I/O	GPIO1_A[3] / UART1_ TXD	UARTI数据输出
63	I/O	GPIO1_B[22] / SPIS_RXD	SPI 从接口数据输入
64	I/O	GPIO1_B[23] / SPIS_TXD	SPI 从接口数据输出
65	I/O	GPIO1_B[7] / SPIS_SCLK	SPI 从接口串行时钟
66	VCC0	VDDIO	IO 电源
67	GND	VSS	地
68	VCC1	VDDCORE	内核电源
69	I/O	GPIO1_A[1] / SPIS_CS	SPI 从接口串行时钟
70	I/O	GPIO1_A[0] / SPI_ CS2	SPI 主接口芯片选择2
71	I/O	GPIO1_B[0] / SPI_ CS0	SPI 主接口芯片选择0
72	I/O	GPIO1_B[1] / SPI_ CS1	SPI 主接口芯片选择1
73	I/O	GPIO1_B[2] / SPI_ SCLK	SPI 主接口串行时钟
74	I/O	GPIO1_B[3] / SPI_ MISO	SPI 主接口数据输入
75	I/O	GPIO1_B[4] / SPI_ MOSI	SPI 主接口数据输出
76	I/O	GPIO1_B[30] / I2C_SCL	I2C 时钟线
77	I/O	GPIO1_B[31] / I2C_SDA	I2C 数据线
78	VCC1	VDDCORE	内核电源
79	GND	VSS	地
80	VCC0	VDDIO	IO 电源
81	I/O	GPIO1_B[28] / CAN0_RX	CAN0数据输入
82	I/O	GPIO1_B[29] / CAN0_TX	CAN0数据输出
83	I/O	GPIO1_B[5] / CAN0_OFF	CAN0节点退出总线状态
84	I/O	GPIO1_B[26] / UART0_RXD	UART0数据输入
85	I/O	GPIO1_B[27] / UART0_TXD	UART0数据输出
86	I/O	GPIO1_B[24] / CAN1_RX	CAN1数据输入
87	NC	/	/
88	NC	/	/
89	I/O	GPIO1_B[25] / CAN1_TX	CAN1数据输出
90	I/O	GPIO1_B[6] / CAN1_OFF	CAN1节点退出总线状态
91	0	TDO	JTAG 数据输出
92	I	TRST	JTAG 复位信号
93	I	TMS	JTAG 测试模式选择
94	I	TDI	JTAG 数据输入
95	VCC1	VDDCORE	内核电源
96	GND	VSS	地
97	VCC0	VDDIO	IO电源
98	I	TCLK	JTAG 时钟 复位屏蔽,需1K 下拉接地
99	I	POR_BYPASS	
100	I	TESTMODE SOC BET D	需1K 下拉接地 芯片复位
101	I	SOC_RST_B	
102	I	OSCCLK	芯片时钟输入

管脚号	类型	管脚名称	默认复用功能
103	I	RTCRST	RTC 复位,本芯片暂不支持,NC 即可
104	VCC1	RTC_VDDCORE	RTC 内核电源[1]
105	I	RTCCLK	RTC 时钟输入,本芯片暂不支持,NC 即可
106	NC	/	/
107	GND	VSS	RTC 电源地 ^[3]
108	VCC0	RTC_VDDIO	RTC_IO 电源 ^[2]
109	NC	/	/
110	GND	PLL_VSSIO	PLL 电源地 ^[3]
111	VCC0	PLL_VDDCORE	PLL 内核电源[1]
112	GND	VSS	地
113	I/O	GPIO0_A[0] / IRQ0	外部中断0
114	I/O	GPIO0_A[1] / IRQ1	外部中断1
115	I/O	GPIO1_B[8] / a-X-AXIS	X轴A路脉冲输入或X轴PWMA输出
116	I/O	GPIO1_B[10] / a-Y-AXIS	Y轴A路脉冲输入或Y轴PWMA输出
117	I/O	GPIO1_B[12] / a-Z-AXIS	Z轴A路脉冲输入或Z轴PWMA输出
118	I/O	GPIO1_B[14] / a-U-AXIS	U轴A路脉冲输入或U轴PWMA输出
119	VCC1	VDDCORE	内核电源
120	GND	VSS	地
121	VCC0	VDDIO	IO 电源
122	I/O	GPIO1_A[10] / a-V-AXIS	V轴A路脉冲输入或V轴PWMA输出
123	I/O	GPIO1_A[12] / a-W-AXIS	W轴A路脉冲输入或W轴PWMA输出
124	I/O	GPIO1_B[9] / b-X-AXIS	X轴B路脉冲输入或X轴PWMB输出
125	I/O	GPIO1_B[11] / b-Y-AXIS	Y轴B路脉冲输入或Y轴PWMB输出
126	I/O	GPIO1_B[13] / b-Z-AXIS	Z轴B路脉冲输入或Z轴PWMB输出
127	I/O	GPIO1_B[15] / b-U-AXIS	U轴B路脉冲输入或U轴PWMB输出
128	I/O	GPIO1_A[11] / b-V-AXIS	V轴B路脉冲输入或V轴PWMB输出
129	VCC1	VDDCORE	内核电源
130	GND	VSS	地
131	VCC0	VDDIO	IO 电源
132	I/O	GPIO1_A[13] / b-W-AXIS	W轴B路脉冲输入或W轴PWMB输出
133	I/O	GPIO0_B[1] / MRXD0[0]	MAC0数据接收0
134	I/O	GPIO0_B[2] / MRXD0[1]	MAC0数据接收1
135	I/O	GPIO0_B[3] / MRXDV0	MAC0数据接收使能
136	I/O	GPIO0_B[0] / MCLK0	MAC0 RMII 时钟输入
137	VCC1	VDDCORE	内核电源
138	GND	VSS	地
139	VCC0	VDDIO	IO 电源
140	I/O	GPIO0_B[4] / MDC0	MAC0数据管理时钟
141	I/O	GPIO0_B[5] / MTXD0[0]	MAC0数据发送0
142	I/O	GPIO0_B[6] / MTXD0[1]	MAC0数据发送1
143	I/O	GPIO0_B[7] / MTXEN0	MAC0数据发送使能
144	I/O	GPIO0_B[8] / MDATA0	MAC0管理数据

注释:【1】RTC 内核电源、PLL 内核电源和芯片内核电源可共用一个 VDDCORE。

【2】RTC_IO 电源和芯片 IO 电源可共用一个 VDDIO。

【3】RTC 电源地、PLL 电源地、内核电源地和 IO 电源地可共用一个 VSS。

3 功能描述

3.1 系统时钟

芯片具有一个外部高速时钟(2~15MHz)输入接口,推荐典型值为10MHz,需使用有源晶振。

芯片内的 PLL 模块可将系统输入时钟进行倍频。PLL 上电后默认为 bypass 模式,即外部时钟直接输入模式。上电后,PLL 复位时间至少需要 5us,稳定时间需要 100us。系统时钟输入管脚如下表 3-1 所示:

- 1 31-50-1 1 Hay 4 H W.L.				
管脚名称	类型	说明		
OSCCLK	I	OSC 时钟输入,范围为2~15MHz,经 PLL 倍频后系		
		统时钟频率为10~400MHz		

表 3-1 系统时钟输入管脚

3.2 工作模式

芯片有4种工作模式,分别为运行模式、等待模式、休眠模式和停止模式。

运行模式,即系统复位之后进入的默认模式。当所有的外设都开启时,系统的功耗达到最高。如果此时有外设处于空闲状态,可以通过软件关闭该外设的时钟信号,从而节省一部分功耗。

等待模式,即芯片的小部分外设停止工作;休眠模式,即芯片的大部分外设停止工作。 系统的唤醒方式有多种可选,如复位、外部中断和内部唤醒计数器等。

停止模式,即几乎所有的模块都进入了睡眠,只有一些用于唤醒功能的模块还处于工作状态。该模式下的系统功耗最低。系统可以通过复位、外部中断或者内部唤醒计数器这些方式之一从停止模式中恢复。

4种模式下,芯片的各内部模块的时钟状态详见下表 3-2:

模块名称	运行模式	等待模式	休眠模式	停止模式
管理单元	√	×	×	×
总线/时钟/复位管理	√	√	√	×
FLASH 控制器/SRAM 控制器	√	✓	√	×
中断控制	√	√	√	×
逻辑控制	M1	M1	M1	×
以太网 MAC0/MAC1	M1	M1	M1	×
DMA 控制器	M1	M1	M1	×
CAN0/CAN1	M1	M1	M1	×
脉冲输入输出 PIPO	M1	M1	M1	×
I2C	M1	M1	M1	×
SPI	M1	M1	M1	×
UART0/UART1	M1	M1	M1	×

表 3-2 各模式下的模块状态

模块名称	运行模式	等待模式	休眠模式	停止模式
EINT/GPIO	M1	M2	M2	M2
定时器	M1	M1	M1	×
看门狗	M1	M1	M1	×

注释: ✓:正常操作

× : 没有时钟驱动

M1: 可自由配置成有时钟/没有时钟

M2: 总线内部时钟关闭, 但是外部时钟仍工作

3.3 芯片复位

系统支持 5 种复位方式,分别为上电复位、软件复位、看门狗复位、外部复位和 JTAG 复位。复位管理特性详见下表 3-3:

 参数
 描述

 复位信号时间
 至少保持 60us

 上电复位
 系统级复位

 看门狗复位
 系统级复位

 外部复位
 模块级复位

 软件复位
 模块级复位

 测试模式复位
 JTAG 复位

表 3-3 复位管理特性

3.4 看门狗 WDT

看门狗从设定好的初始值开始,在每个工作时钟的上升沿进行减 1 操作,在计数值递减为 0 的时候产生一个复位中断信号。看门狗需要周期性的进行喂狗操作,如果在设定时间内没有喂狗,看门狗会因为超时而产生复位信号,该复位信号为系统复位信号。看门狗特性详见下表 3-4:

参数	描述		
工作时钟	片内低速总线时钟		
计数宽度	32bits		
超时中断	可配置为一次超时后直接复位系统或两次超时后复 位系统		
中断清除方式	2种,读清中断寄存器或重启计数器		

表 3-4 看门狗特性

3.5 片内 FLASH

芯片片内自带 2M 容量的 FLASH, FLASH 特性详见下表 3-5:

表 3-5 片内 FLASH 特性

参数	描述
总容量	2M bytes
扇区数量	128 个
扇区分页	16 页
扇区大小	4K bytes,可进行半页和扇区
	擦除和编程操作

每页大小	256 bytes
数据输入位宽	8 bits
数据输出位宽	8/16/32 bits
页模式时间	擦除时间 3ms,编程时间 2ms
扇区模式时间	擦除时间 3.3ms,编程时间
	2.3ms
标准静态电流	2uA
读频率	16MHz
擦除次数	大于 100,000 次
数据存储时间	大于 20 年

3.6 通用定时器

芯片共有 4 个完全相同的,但分别独立编程的定时器。定时器在设定了预定值后,开始进行自减操作,直到减至 0,则停止减数操作并发出中断信号。定时器特性详见下表 3-6:

参数	描述		
独立的可编程定时器	4 个		
计数宽度	32bits		
时钟信号	4个,各定时器间相互独立		
读写寄存器	4组,各定时器间相互独立		
定时器触发输出	可配置,装载计数值时一次,触发时一次		

表 3-6 通用定时器特性

3. 7 JTAG

芯片的 JTAG 功能专门用于芯片的 JTAG 测试工作,有专用的 JTAG 管脚,详见下表 3-7: 表 3-7 JTAG 管脚

管脚名称	属性	管脚号	说明
TCLK	I	98	JTAG 时钟
TDI	I	94	JTAG 数据输入
TMS	I	93	JTAG 测试模式选择
TRST	I	92	JTAG 复位信号
TDO	О	91	JTAG 数据输出

3.8 通用输入输出 GPIO

芯片的通用输入输出端口 GPIO,采用 CMOS 三态输入/输出设计,上电默认状态为浮空输入状态,用户可以根据需求配置成输入、输出 (0/1)或者高阻状态。芯片共有 84 个 GPIO口,部分 GPIO 口具有默认复用功能,可参考表 2-1。GPIO 特性详见下表 3-8:

表 3-8 通用输入输出特性

参数	描述
端口状态	可配置为输入/输出/高阻
数据寄存器	每个端口可独立配置
数据方向寄存器	每个端口可独立配置
外部中断源输入	可配置成高电平有效、低电平有效、上升沿
	触发和下降沿触发 4 种中断方式。

3.9 脉冲输入输出 PIPO

芯片的脉冲输入输出功能复用了部分 GPIO 管脚,芯片可通过该功能来测量输入脉冲信号的长度、频率和个数,或者产生输出波形 (PWM,嵌入死区时间的互补 PWM)。管脚详情见下表 3-9:

管脚名称	类型	管脚号	说明
a-X-AXIS	I/O	115	X轴A路脉冲输入口或X轴PWMA输出口
b-X-AXIS	I/O	124	X轴B路脉冲输入口或X轴PWMB输出口
a-Y-AXIS	I/O	116	Y轴A路脉冲输入口或Y轴PWMA输出口
b-Y-AXIS	I/O	125	Y轴B路脉冲输入口或Y轴PWMB输出口
a-Z-AXIS	I/O	117	Z轴A路脉冲输入口或Z轴PWMA输出口
b-Z-AXIS	I/O	126	Z轴B路脉冲输入口或Z轴PWMB输出口
a-U-AXIS	I/O	118	U轴A路脉冲输入口或U轴PWMA输出口
b-U-AXIS	I/O	127	U轴B路脉冲输入口或U轴PWMB输出口
a-V-AXIS	I/O	122	V轴A路脉冲输入口或V轴PWMA输出口
b-V-AXIS	I/O	128	V轴B路脉冲输入口或V轴PWMB输出口
a-W-AXIS	I/O	123	W轴A路脉冲输入口或W轴PWMA输出口
b-W-AXIS	I/O	132	W轴B路脉冲输入口或W轴PWMB输出口

表 3-9 脉冲输入输出管脚

PIPO 功能主要由 4 个 16 位自动装载高级计数器构成。计数器主要特性详见下表 3-10: 表 3-10 脉冲输入输出/计数器特性

参数	描述
向上自动装载计数器宽度	32bits
向下自动装载计数器宽度	32bits
向上/向下自动装载计数器宽度	32bits
可编程预分频器宽度	32bits, 计数器时钟频率的分频系数为 1~
	65535 之间的任意数
更新计数值	允许
工作模式	基本定时模式
	输入捕获(测量输入信号的脉冲宽度)
	输入测量(测量输入信号的脉冲个数)
	PWM 生成(边缘或中间对齐模式)
	单脉冲模式输出
	正交编码器接口模式

3.10 通信接口

3.10.1 UART 串行通信

芯片带有 2 个串口, UARTO 和 UART1, 对应管脚描述详见下表 3-11:

表 3-11 串口通信管脚

管脚名称	类型	管脚号	说明
UART0_RXD	I	84	UART0输入
UART0_TXD	О	85	UART0输出
UART1_RXD	I	61	UART1输入
UART1_TXD	О	62	UART1输出

串口通信支持 16C550 工业标准,可支持最快通信速率为 384Kbps,推荐的典型波特率可选择 9600bps、19200bps、38400bps 或 115200bps。通信特性见下表 3-12:

表 3-12 串行通信特性

参数	描述
波特率	可编程,波特率 = 串行时钟频
	率 / (16* 分频系数)
全双工	支持
DMA 握手接口	有

3.10.2 I2C 通信

芯片有 1 路硬件 I2C 接口,管脚描述见下表 3-13:

表 3-13 I2C 管脚

管脚名称	类型	管脚号	说明
I2C_SCL	I/O	76	I2C 时钟线
I2C_SDA	I/O	77	I2C 数据线

I2C 通信支持标准的 I2C 总线接口协议,接口支持主机模式和从机模式,典型通信速度为 100Kbps 或 400Kbps, 通信特性详见下表 3-14:

表 3-14 I2C 通信特性

参数	描述
主机模式	支持
从机模式	支持
串行接口	2线
通信速度	100 Kbps (标准模式) 和 400 Kbps (快速模式)
时钟同步	支持
多主模式	支持
DMA 握手接口	有

3.10.3 SPI 通信

芯片有两路 SPI 通信接口,管脚描述详见下表 3-15:

表 3-15 SPI 通信管脚

管脚名称	类型	管脚号	说明
SPI_CS0	О	71	SPI 主接口芯片选择0, 低电平有效
SPI_ CS1	О	72	SPI 主接口芯片选择1, 低电平有效
SPI_CS2	О	70	SPI 主接口芯片选择2, 低电平有效
SPI_ SCLK	О	73	SPI 主接口串行时钟
SPI_MISO	I	74	SPI 主接口数据输入
SPI_ MOSI	О	75	SPI 主接口数据输出
SPIS_RXD	I	63	SPI 从接口数据输入
SPIS_TXD	О	64	SPI 从接口数据输出
SPIS_SCLK	I	65	SPI 从接口串行时钟
SPIS_CS	О	69	SPI 从接口芯片选择,低电平有效

SPI 通信遵循串行外设接口规范。芯片的两路通信接口,一路支持主机模式,具有三个片选信号,最高传输速率为 12.5Mbps。另一路接口支持从机模式,具有一个片选信号,最高传输速率为 12.5Mbps。通信特性详见下表 3-16:

表 3-16 SPI 通信特性

参数	描述
内部接收 FIFO	宽度为 16, 深度为 34
内部发送 FIFO	宽度为 16, 深度为 34
主机模式	支持
从机模式	支持
片选线	主机模式 3 路, 从机模式 1 路
DMA 握手接口	有

3.10.4 CAN 通信

芯片有 2 路 CAN 通信接口,管脚描述详见下表 3-17:

表 3-17 CAN 管脚

管脚名称	类型	管脚号	说明
CANO_TX	0	82	CANO 输出
CANO_RX	I	81	CANO 输入
CANO_OFF	0	83	节点退出总线状态
CAN1_TX	0	89	CAN1 输出
CAN1_RX	I	86	CAN1 输入
CAN1_OFF	0	90	节点退出总线状态

CAN 通信遵循 ISO11898 规范,支持 CAN2. OB 通信协议的标准帧和数据帧传输,最高传输速率为 1Mbps,通信特性详见下表 3-18:

表 3-18 CAN 通信特性

参数	描述
规范	ISO11898
通信协议	CAN2.0B
数据链路层传输位速率	10Kbps/20Kbps/50Kbps/125Kbps/250Kbps/500K
	bps/800Kbps/1Mbps
应用层协议传输速率	多种速率,最大 1Mbps
FIFO 模块	64Bytes

3.10.5 以太网通信 MAC

芯片具有两个以太网 MAC 通信接口,MACO 和 MAC1,管脚遵从 IEEE 802.3-2008 标准,最高传输速率为 100 Mbps。管脚描述详见下表 3-19:

表 3-19 MACO 管脚

管脚名称	类型	管脚号	说明
MRXD0[0]	I	133	MAC0数据接收
MRXD0[1]	I	134	MAC0数据接收
MRXDV0	I	135	MAC0数据接收使能
MCLK0	I	136	MAC0 RMII 时钟输入,50M
MDC0	О	140	MAC0数据管理时钟,1.0~2.5MHz
MTXD0[0]	О	141	MAC0数据发送

管脚名称	类型	管脚号	说明
MTXD0[1]	О	142	MAC0数据发送
MTXEN0	О	143	MAC0数据发送使能
MDATA0	IO	144	MAC0管理数据
MRXD1[0]	I	1	MAC1数据接收
MRXD1[1]	I	2	MAC1数据接收
MRXDV1	I	3	MAC1数据接收使能
MCLK1	I	4	MAC1 RMII 时钟输入,50M
MDC1	О	8	MAC1数据管理时钟, 1.0~2.5MHz
MTXD1[0]	О	9	MAC1数据发送
MTXD1[1]	О	10	MAC1数据发送
MTXEN1	О	11	MAC1数据发送使能
MDATA1	IO	12	MAC1管理数据

3.11 逻辑控制

逻辑控制主要实现对基于 IEC61131-3 的逻辑控制任务的调度和逻辑控制程序(如 LD、IL、ST 等)的执行处理。逻辑控制特性详见下表 3-20:

农 5 20 及科证的存在			
参数	描述		
指令执行速度	0.8us (35M 主频)		
数据类型	布尔型,整型,单精度浮点型		
数据宽度	1/8/16/32bits		
内部指令缓存	1KBytes		
支持语言	LD 梯形图, IL 语言, ST 语言, FBD 功能块图, SFC		
	顺序功能图		
实时监控	状态值,错误类型		

表 3-20 逻辑控制特性

4 电气特性

4.1 引脚电气特性

芯片的管脚典型特性如下表 4-1 所示:

表 4-1 芯片管脚电气特性 (-40~85℃)

参数项	描述	参数值(参考地 VSS)		VSS)
		最小值	典型值	最大值
VDDIO	I/O 供电	2.97V	3.3V	3.63V
VDDCORE	内核供电	1.08V	1.2V	1.32V
Vih	输入高电平	2.0V		VDDIO+0.3V
Vil	输入低电平	-0.3V		0.8V
Voh	输出高电平	2.4V		
VoL	输出低电平			0.4V
Ioh	高电平输出电流@Voh=2.4V	9.8mA		35.1mA
IoL	低电平输出电流	8.4mA		16.3mA
IL	输入漏电流			±1uA
Ioz	三态输出漏电流			±1uA

4.2 供电电路

芯片需采用 1.2V 和 3.3V 两种外部电源供电。VDDCORE 采用 1.2V 电源为芯片的内核供电; VDDIO 采用 3.3V 电源为芯片的 I/O 供电。推荐每个电源引脚旁至少放置一颗 100nF 退偶电容,并在电路板上将此电容尽量靠近引脚放置。如下图 4-1 中图 a 部分所示为 VDDIO电源,图 b 部分所示为 VDDCORE 部分电源。

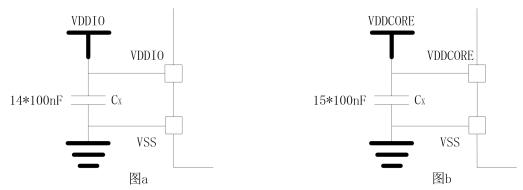


图 4-1 引脚电源

4.3 复位电路

芯片复位功能低电平有效,可采用典型的 RC 复位电路,推荐的典型值为 10K 电阻搭配 1uF 电容,保证复位时间不少于 10mS,可根据实际外围电路适当延长复位时间,也可以根据实际需要选择其他复位电路。RTC 复位电路也可参考此电路设计。典型 RC 复位电路如下图所示:

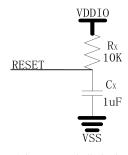


图 4-2 RC 复位电路

4.4 晶振电路

芯片的系统时钟可选择 $2\sim15 MHz$,典型推荐值为 10 MHz,需使用有源晶振。典型推荐电路如下图所示。其中 CL 推荐典型值 15 pF,用户需根据实际使用的晶振参数做相应调整,时钟信号线上可选择串接 $50\sim300 \Omega$ 左右阻值的电阻,能够有效抑制时钟信号的过冲现象,此电阻值需用户根据实际的时钟信号做适当的调整。在电路板上需将 CL 电容尽量靠近晶振的引脚放置。

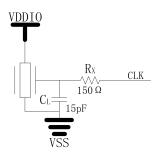


图 4-3 晶振电路

5 物理尺寸

芯片采用 LQFP (Low-profile Quad Flat Package) 薄型四方扁平式封装,本体尺寸为 20×20×1.4mm,管脚间距为 0.5mm,其它参数详见下图 5-1。

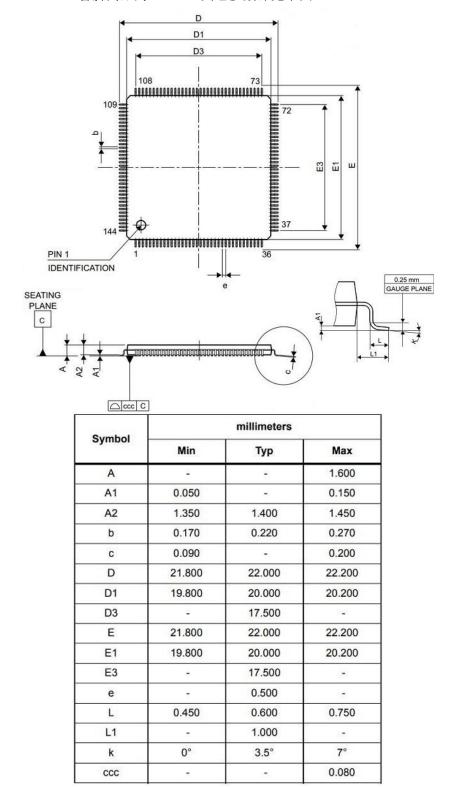


图 5-1 物理尺寸图

6 资料版本说明

表 6-1 版本升级更改一览表

版本号	起草人	发布日期	更新点
V1.0	Lizongchun	2022-02-23	第一版

宁波中控微电子有眼公司

NINGBO SUPCON MICROELECTRONICS CO., LTD.

浙江省宁波市海曙区丽园北路 1350 号众创空间 2 号楼 5 楼

WEB:www.nz-ic.com

ZIP:315000

TEL: 0574-87288895

Email:support@nz-ic.com

微信公众号:中控微电子