

FEATURES

PRODUCT APPEARANCE

- > 5V power supply, half-duplex
- > 1/8 unit load, allow Up to 256 transceivers on the bus
- Driver short-circuit output protection
- > Overtemperature Protection
- ► Low Power Off Function
- > /RE, DE ports allow hot-swap inputs
- ➤ Receiver Open-Circuit Failure Protection
- > Strong Anti-Noise Ability
- > Integrated Transient Voltage Suppression Function
- Data transmission up to 1Mbps in an electric noise environment
- A, B port protection: HBM 16kV; contact discharge 16kV

Provide green and environmentally friendly lead-free package

DESCRIPTION

SIT3085E is a RS-485 transceiver with 5V power supply, half duplex, low power consumption, and fully meet the requirements of TIA / EIA-485 standard.

SIT3085E includes a driver and a receiver, both of which can be enabled and closed independently. When both are disabled, both the driver and the receiver output are high resistance state. SIT3085E has 1/8 load, which allows 256 SIT3085E transceivers to be connected to the same communication bus. It can realize error-free data transmission up to 1Mbps.

SIT3085E has a working voltage range of $4.5\sim5.5$ V, and has the functions of fail-safe, overtemperature protection, current-limiting protection, over-voltage protection and hot-swap input control functions. SIT3085E has excellent ESD release ability, HBM up to ±16 KV, contact discharge ±16 kV that meet IEC61000-4-2

PIN CONFIGURATION

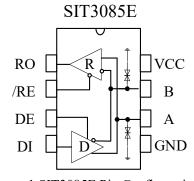


Figure 1 SIT3085E Pin Configuration

PIN DESCRIPTION

PIN	SYMBOL	DESCRIPTION
1	RO	Receiver Output. When /RE is low and if A - B≥-50mV, RO will be high; if A - B≤-200mV, RO will be low.
2	/RE	Receiver Output Enable. Drive /RE low to enable RO; RO is high impedance when /RE is high. Drive /RE high and DE low to enter low-power shutdown mode.
3	DE	Driver Output Enable. Drive DE high to enable driver outputs. These outputs are high impedance when DE is low. Drive /RE high and DE low to enter low-power shutdown mode.
4	DI	Driver Input. With DE high, a low on DI forces non-inverting output low and inverting output high. Similarly, a high on DI forces non-inverting output high and inverting output low.
5	GND	Ground.
6	A	non-inverting Receiver Input and non-inverting Driver Output.
7	В	Inverting Receiver Input and Inverting Driver Output
8	VCC	Positive Supply.

LIMITING VALUES

PARAMETER	SYMBOL	VALUE	UNIT
Supply Voltage	VCC	+7	V
Control Input Voltage	/RE, DE, DI	-0.3~VCC+0.3	V
Receiver Input Voltage	A, B	- 7∼+13	V
Receiver Output Voltage	RO	-0.3~VCC+0.3	V
Operating Temperature Ranges	T_{A}	-40~85	°C
Storage Temperature Range	$T_{ m stg}$	-60~150	°C
Lead Temperature		300	°C
Continuous Down Dissinction	SOP8	400	mW
Continuous Power Dissipation	DIP8	700	mW

The maximum limit parameters mean that exceeding these values may cause irreversible damage to the device. Under these conditions, it is not conducive to the normal operation of the device. The continuous operation of the device at the maximum allowable rating may affect the reliability of the device. The reference point for all voltages is ground.

DRIVER DC ELECTRICAL CHARACTERISTICS

PARAMETER	SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNIT
Differential Driver Output (no load)	V_{OD1}			5		V
Differential Driver	V	$\underline{\text{Fig 2}}, \text{RL} = 27 \Omega$	1.5		VCC	V
Output	$ m V_{OD2}$	$\underline{\text{Fig 2}}, \text{RL} = 50 \Omega$	2		VCC	ľ
Change in Magnitude of Output Voltage (NOTE1)	$\Delta { m V}_{ m OD}$	Figu 2, RL = 27 Ω			0.2	V
Common-Mode Output Voltage	V_{OC}	$\underline{\text{Fig 2}}, \text{RL} = 27 \Omega$			3	V
Change in Magnitude of Common-Mode Output Voltage (NOTE1)	$\Delta { m V}_{ m OC}$	$\underline{\text{Fig 2}}, \text{RL} = 27 \Omega$			0.2	V
Input High Voltage	$ m V_{IH}$	DE, DI, /RE	2.0			V
Input Low Voltage	$ m V_{IL}$	DE, DI, /RE			0.8	V
Logic Input Current	$I_{ m IN1}$	DE, DI, /RE	-2		2	μΑ
Output Short-circuit Current, Short-circuit to High	$ m I_{OSD1}$	short-circuit to 0V~12V	35		250	mA
Output Short-circuit Current, Short-circuit to Low	I _{OSD2}	short-circuit to -7V~0V	-250		-35	mA
Thermal-shutdown threshold temperature				150		°C
Thermal-shutdown hysteresis temperature				20		°C

(Unless otherwise stated, Temp= $T_{MIN}\sim T_{MAX}$, typically VCC=+5V, Temp=25°C).

NOTE1: ΔV_{OD} and ΔV_{OC} are the changes in V_{OD} and V_{OC} , respectively, when the DI input changes state.

RECEIVER DC ELECTRICAL CHARACTERISTICS

PARAMETER	SYMBOL	CONDITION	MIN.	ТҮР.	MAX.	UNIT
Input Current (A, B)	I_{IN2}	$DE = 0 V,$ $VCC=0 \text{ or } 5V$ $V_{IN} = 12 V$			125	μА
Input Current (A, B)	${ m I}_{ m IN2}$	$DE = 0 V,$ $VCC=0 \text{ or } 5V$ $V_{IN} = -7 V$	-100			μΑ
Positive Input Threshold Voltage	V_{IT^+}	-7V≤V _{CM} ≤12V			-50	mV
Reverse Input Threshold Voltage	V _{IT-}	-7V≤V _{CM} ≤12V	-200			mV
Input Hysteresis Voltage	V_{hys}	-7V≤V _{CM} ≤12V	10	30		mV
Receiver Output High Voltage	$ m V_{OH}$	$I_{OUT} = -4mA,$ $V_{ID} = +200 \text{ mV}$	VCC-1.5			V
Receiver Output Low Voltage	$ m V_{OL}$	$I_{OUT} = +4mA,$ $V_{ID} = -200 \text{ mV}$			0.4	V
Three-State Output Current at Receiver	I_{OZR}	0.4V <v<sub>0<2.4V</v<sub>			±1	μΑ
Receiver Input Resistance	R_{IN}	-7V≤V _{CM} ≤12V	96			kΩ
Receiver Short-Circuit Output Current	I_{OSR}	0 V≤V ₀ ≤VCC	±7		±95	mA

(Unless otherwise stated, Temp= $T_{MIN}\sim T_{MAX}$, typically VCC=+5V, Temp=25°C).

SUPPLY CURRENT

PARAMETER	SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNIT
	ī	/RE=0V 或 VCC		180	300	μΑ
Sumply Cumont	I_{CC1}	DE = 0 V		160		
Supply Current	I_{CC2}	/RE= VCC,		150	300	μΑ
		DE = VCC		150		
Classed avera Commant	T	/RE=VCC,		0.5	10	4
Shutdown Current	$I_{ m SHDN}$	DE=0V		0.5		μΑ

ESD PROTECTION

PARAMETER	SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNIT
A, B		НВМ		±16		kV
		contact discharge		±16		kV
Other ports		НВМ		± 6		kV

DRIVER SWITCHING CHARACTERISTICS

PARAMETER	SYMBOL	CONDITION	MIN.	ТҮР.	MAX.	UNIT
Driver propagation delay time, Low-to-High level	t _{DPLH}			100	150	ns
Driver propagation delay time, High-to-Low level	$t_{ m DPHL}$	$R_{DIFF} = 54\Omega,$ $C_{L1} = C_{L2} = 100 pF,$ $Fig 3 \& Fig 4$		100	150	ns
tDPLH- tDPHL	t _{SKEW1}	11g 5 & 11g 4			±10	ns
Rising time/Falling time	$t_{\mathrm{DR}},t_{\mathrm{DF}}$			190	250	ns
Driver Enable to Output High	t _{DZH}	$C_L = 100 pF$, S1 closed		70	160	ns
Driver Enable to Output Low	$t_{ m DZL}$	Fig 5 & Fig 6		70	160	ns
Driver Disable Time from Low	$t_{ m DLZ}$	$C_L = 15 pF,$ $S2 closed$		70	100	ns
Driver Disable Time from High	$t_{ m DHZ}$	Fig 5 & Fig 6		70	100	ns
In Shutdown mode, Enable to Output High	t _{DZH(SHDN)}	$C_L = 15 pF$, S2 closed Fig 5 & Fig 6		80	120	ns
In Shutdown mode, Enable to Output Low	t _{DZL(SHDN)}	$C_L = 15 pF$, S1 closed $\underline{\text{Fig 5}} \& \underline{\text{Fig 6}}$		80	120	ns

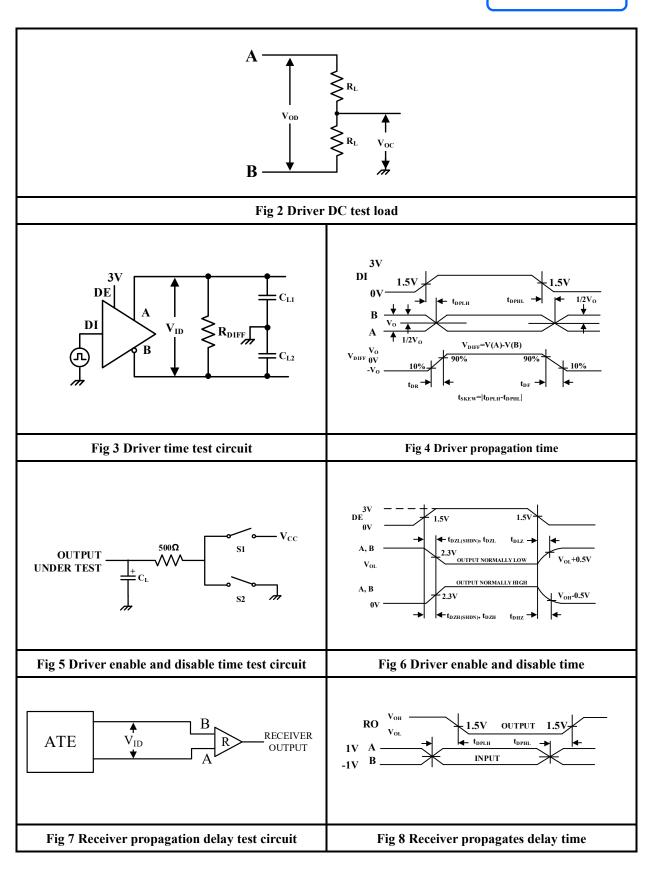
RECEIVER SWITCHING CHARACTERISTICS

PARAMETER	SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNIT
Receiver input to output propagation delay time from Low to High	t _{RPLH}	<u>Fig 7</u> & <u>Fig 8</u> VID≥2.0V;		50	80	ns
Receiver propagation delay time from High to Low	t _{RPHL}	Rising and falling edge time VID≤15ns		50	80	ns
$ t_{RPLH} - t_{RPHL} $	$t_{\rm SKEW2}$			5	15	ns
Receiver Enable to Output Low	t _{RZL}	C _L =100pF, S1 closed Fig 9 & Fig 10		25	40	ns
Receiver Enable to Output high	t _{RZH}	C _L =100pF, S2 closed Fig 9 & Fig 10		25	40	ns
Receiver Disable Time from Low	t_{RLZ}	C _L =100pF S1 closed Fig 9 & Fig 10		25	50	ns
Receiver Disable Time from high	t _{RHZ}	C _L =100pF S2 closed Fig 9 & Fig 10		25	50	ns
In Shutdown Mode, Enable to Output High	t _{RZH(SHDN)}	C _L =100pF S2 closed <u>Fig 9</u> & <u>Fig 10</u>			1000	ns
In Shutdown Mode, Enable to Output Low	t _{RZL(SHDN)}	C _L =100pF S1 closed <u>Fig 9</u> & <u>Fig 10</u>			1000	ns
Time to Shutdown	t_{SHDN}	NOTE2	50	200	600	ns

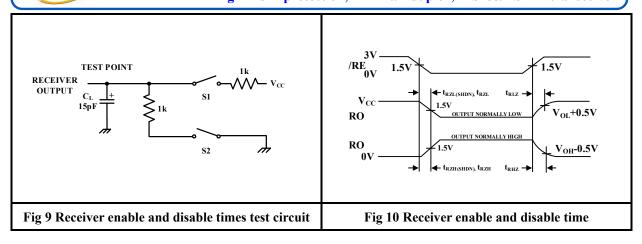
NOTE2: If the enable inputs are RE=high and DE=low for less than 50ns, the device is guaranteed not to enter shutdown. If the enable inputs are in this state for at least 300ns, the device is guaranteed to have entered shutdown.

FUNCTION TABLE

Driver Function


CONT	ROL	INPUT	NPUT OUT		
/RE	DE	DI	A	В	
X	1	1	Н	L	
X	1	0	L	Н	
0	0	X	Z	Z	
1	0	X	Z(shutdown)		
X=irrelevant; Z=high impedance.					

Receiver Function


CONTROL		INPUT	OUTPUT		
/RE	DE	A-B	RO		
0	X	≥-50mV	Н		
0	X	≤-200mV	L		
0	X	Open/short circuit	Н		
1	X	X	Z		
X=irrelevant; Z=high impedance.					

TEST CIRCUIT

High ESD protection, 1M half-duplex, RS485/RS422 transceiver

ADDITIONAL DESCRIPTION

1 Sketch

SIT3085E is a half-duplex high-speed transceiver for RS-485/RS-422 communication, containing a driver and receiver. It supports fail-safe, overvoltage protection, overcurrent protection, overtemperature protection functions, and allows /RE, DE port hot-swap input. The SIT3085E achieves error-free data transmission up to 1Mbps.

2 Fail-safe

SIT3085E ensures that the receiver output logic is high, when the receiver input is short-circuited or open-circuited, or all drivers attached to the terminal matching transmission line are disabled (idle). This is achieved by setting the receiver input thresholds to -50mV and -200mV, respectively. If the differential receiver input voltage $V_{(A-B)} \ge -50$ mV, RO is logic high level; If $V_{(A-B)} \le -200$ mV, RO is the logic low level. When all transmitters attached to the terminal matching bus are disabled, the receiver differential input voltage will be pulled to 0V through the terminal resistor. Depending on the receiver threshold, a logic high level with a minimum noise tolerance of 50mV can be achieved. -50mV to -200mV threshold voltage is in accordance with the EIA/TIA-485 standard of ± 200 mV.

3 Allowing up to 256 transceivers on the bus

The input impedance of the standard RS485 receiver is $12k\Omega$ (1 unit load), and the standard driver can drive up to 32 unit loads. The receiver of SIT3085E transceiver has 1/8 unit load input impedance (96k Ω), which allows up to 256 transceivers to be connected on the same communication bus in parallel. These devices can be combined arbitrarily or with other RS485 transceivers. Any combination of these devices and/or other RS-485 transceivers with a total of 32 unit loads or less can be connected to the line.

4 Driver output protection

Two mechanisms are used to avoid excessive output current and power consumption caused by fault or bus collision. First, over-current protection, throughout the common-mode voltage range (reference typical operating characteristics) provides a quick short-circuit protection. Second, the thermal shutdown circuit forces the driver output into a high impedance state when the die temperature exceeds 150°C.

5 Typical applications

5.1 Bus Networking: SIT3085E RS485 transceiver is designed for bidirectional data communication on multi-point bus transmission line. Fig 11 shows a typical network application circuit. These devices can also be used as linear repeaters with cables longer than 4000 feet. In order to reduce reflection, terminal matching should be carried out at both ends of the transmission line with its characteristic impedance, and the length of branch lines outside the main line should be as short as possible.

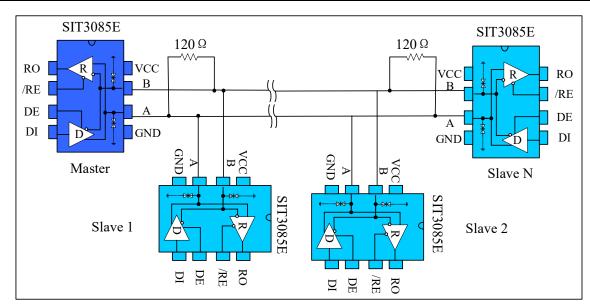


Fig 11 Bus type RS485 half-duplex communication network

5.2 Hand in hand Networking: also known as daisy chain topology, is the standard and specification of RS485 bus wiring, and is the RS485 bus topology recommended by TIA and other organizations. The wiring mode is that the main control equipment and a plurality of slave control equipment form a hand-held connection mode, as shown in Fig 12, and the hand-held mode is no branches. This wiring mode has the advantages of small signal reflection and high communication success rate.

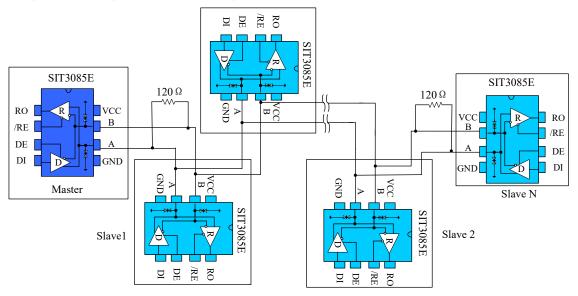
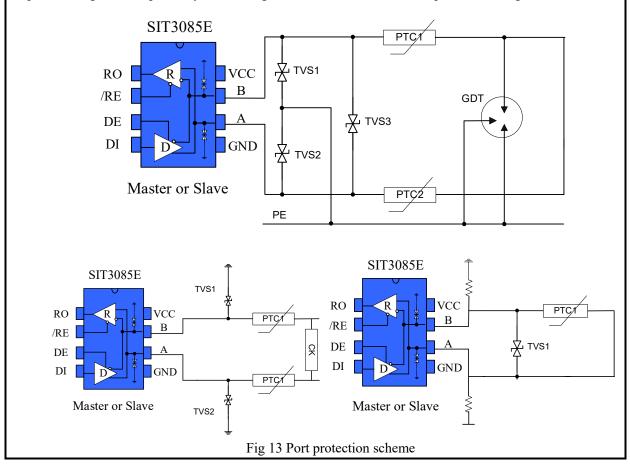
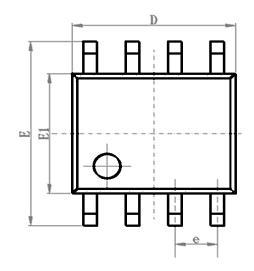
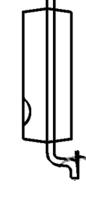



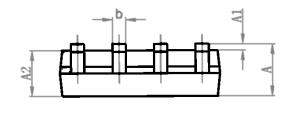
Fig12 Hand in hand RS485 half-duplex communication network

5.3 Bus port protection: in severe environment, RS485 communication port is usually provided with electrostatic protection, lightning surge protection and other additional protection, and even the plan to prevent 380V market electricity access is needed to avoid the damage of intelligent instrument and industrial control host. Fig 13 shows three common RS485 bus port protection schemes. The first is the scheme of three-level protection by connecting TVS devices in parallel with A,B port to the protective

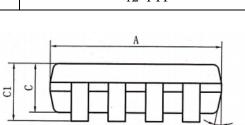
ground, TVS devices in parallel with A,B port, thermistor in series with A,B port, gas discharge tube in parallel to the protective ground; the second is the scheme of three-level protection by connecting TVS in parallel with A,B port to the ground, thermistor in series with A,B port, and varistor in parallel with A,B port; the third is the scheme of three-level protection by connecting AB with pull-up or pull-down resistor to power and ground respectively, connecting TVS between A & B, A or B port connecting thermistor.

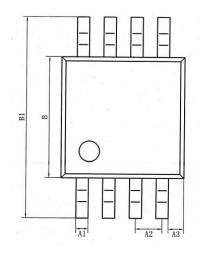


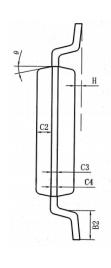

SOP8 DIMENSIONS


PACKAGE SIZE

SYMBOL	MIN./mm	TYP./mm	MAX./mm
A	1.50	1.60	1.70
A1	0.1	0.15	0.2
A2	1.35	1.45	1.55
b	0.355	0.400	0.455
D	4.800	4.900	5.000
Е	3.780	3.880	3.980
E1	5.800	6.000	6.200
e		1.27BSC	
L	0.40	0.60	0.80
С	0.153	0.203	0.253
θ	-2°	-4°	-6°

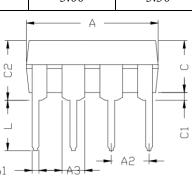


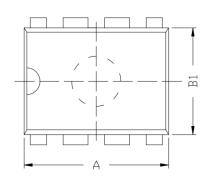


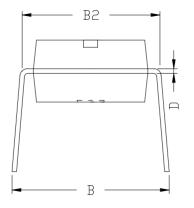

MSOP8/8µMAX/VSSOP8 DIMENSIONS

PACKAGE SIZE

	TACKAGE SIZE						
SYMBOL	MIN./mm	TYP./mm	MAX./mm				
A	2.90	3.0	3.10				
A1	0.28		0.35				
A2		0.65TYP					
A3		0.375TYP					
В	2.90	3.0	3.10				
B1	4.70		5.10				
B2	0.45		0.75				
С	0.75		0.95				
C1			1.10				
C2		0.328 TYP					
С3	0.152						
C4	0.15		0.23				
Н	0.00		0.09				
θ		12°TYP					

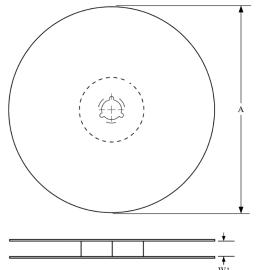


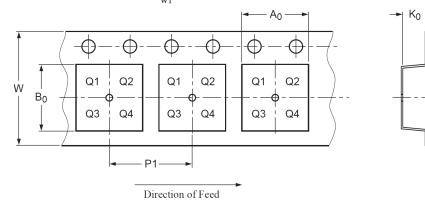



DIP8 DIMENSIONS

PACKAGE SIZE

SYMBOL	MIN./mm TYP./mm		MAX./mm
A	9.00	9.20	9.40
A1	0.33 0.45		0.51
A2		2.54TYP	
A3		1.525TYP	
В	8.40	8.70	9.10
B1	6.20 6.40		6.60
B2	7.32 7.62		7.92
С	3.20 3.40		3.60
C1	0.50	0.60	0.80
C2	3.71 4.00		4.31
D	0.20 0.28		0.36
L	3.00	3.30	3.60



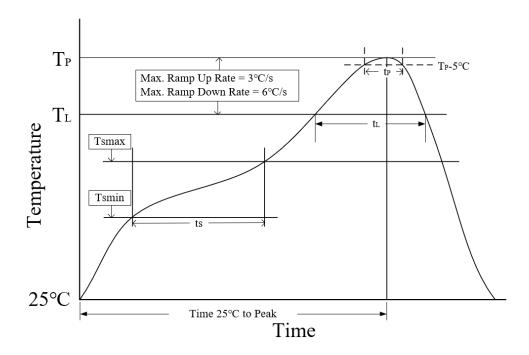


TAPE AND REEL INFORMATION

A0	Dimension designed to accommodate the
	component width
DO	Dimension designed to accommodate the
В0	component length
K0	Dimension designed to accommodate the
	component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

PIN1 is in quadrant 1

Package Type	Reel Diameter A (mm)	Tape width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)
SOP8	330	12.5±0.20	6.50±0.1	5.30±0.10	2.05±0.1	8.00±0.1	12.00±0.1
MSOP8	330	12.5±0.20	5.33±0.10	3.40±0.10	1.53±0.10	8.00±0.10	$12.00^{+0.30}_{-0.10}$


ORDERING INFORMATION

TYPE NUMBER	PACKAGE	PACKING
SIT3085EESA	SOP8	Tape and reel
SIT3085EEPA	DIP8	Tube
SIT3085EDGK	MSOP8/VSSOP8/8μMAX	Tape and reel

Tapered package is 2500 pcs/reel. DIP8 is packed with 50 pieces/tube in tubed packaging.

REFLOW SOLDERING

Parameter	Lead-free soldering conditions	
Ave ramp up rate $(T_L \text{ to } T_P)$	3°C/second max	
Preheat time ts	60-120 seconds	
$(T_{smin}=150^{\circ}\text{C to }T_{smax}=200^{\circ}\text{C})$		
Melting time $t_L(T_L=217^{\circ}C)$	60-150 seconds	
Peak temp T _P	260-265°C	
5°C below peak temperature t _P	30 seconds	
Ave cooling rate (T _P to T _L)	6°C/second max	
Normal temperature 25°C to peak temperature	8 minutes max	
T _P time		

Important statement

SIT reserves the right to change the above-mentioned information without prior notice.

REVISION HISTORY

Version number	Data sheet status	Revision date
V1.0	Initial version.	January 2023