MSKSEMI 美森科

ESD

TVS

TSS

MOV

GDT

PIFD

RC4580IDR-MS

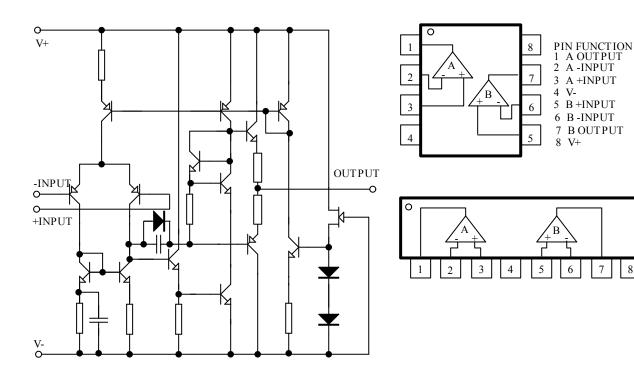
Product specification

General Description

RC4580IDR-MS is the dual operational amplifier specially designed for improving the tone control, which is most suitable for the audio application. Featuring noiseless, higher gain bandwidth, high output current and low distortion ratio, and it is suitable not only for acoustic electronic part of audio pre - amp and active filter, but also for the industrial measurement tools . It is also suitable for the head phone amp at higher output current . And further more , it can be for the handy type set operational amplifier of general purpose in application of low voltage single supply type which is properly biased of the input low voltage source.

Features

- Operating Voltage (2V ~ 18 V)
- Low Input Noise Voltage (0.8 Vrms Typ.)
- Wide Gain Bandwidth Product (1 5mhz Typ.)
- Low Distortion (0.0005%Typ.)
- Slew Rate (5 V/s Typ.)
- Package Outline
- Bipolar Technology


PackageInformation

Part NO.	Package Description		PackageMarking	PackageOption	
RC45801 DR-MS	SOP-8		MSKSEMI RC4850IDR MS ***	2500	

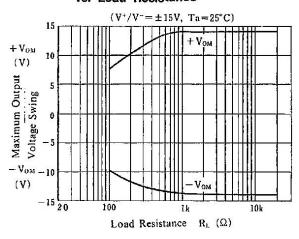
Notes: xxx represents the internal production number of the factory.

EquivalentCircui PinConfiguration

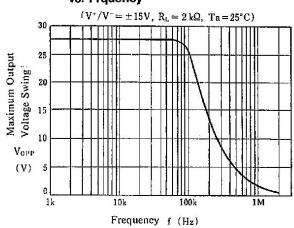
AbsoluteMaximumRatings(Ta=25°C)

Characteristic	Symbol	Value	Unit
Supply Voltage	V+/V-	±18	V
Input Voltage	Vic	±18	V
Differential Input Voltage	VID	±36	V
Output Current	Ic	±50	m A
Operating Temperature Range	Tamb	-40~85	°C
Storage Temperature Range	Tstg	-65~125	°C

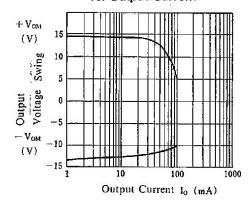
ElectricalCharacteristics

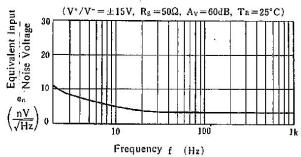

(Unlessotherwisespecified:Ta=25°C,V+/V-=±15V)

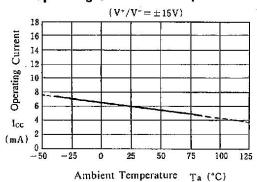
Parameter	Symbol	Testcondition	Min	Тур	Max	Unit
Input Offset Voltage	Vio	$Rs \leq 10k\Omega$	-	0.3	3	mV
Input Offset Current	Ію		-	5	200	nA
Input Bias Current	Ів		-	100	500	nA
Input Resistance	Rin		-	0.5	-	ΜΩ
Large Signal Voltage Gain	Av	$R_L \ge 2k\Omega$, $V_0 = \pm 10V$	90	110	-	dВ
Output Voltage Swing	Vом	$R_{\rm L} \ge 2k\Omega$	±12	±13.5	-	V
Input Common Mode Voltage Range	VICM		±12	±13.5	-	V
Common Mode Rejection Ratio	CMR	$Rs \le 10k\Omega$	80	110	-	dB
Supply Voltage Rejection Ratio	SVR	$Rs \leq 10k\Omega$	80	110	-	dВ
Operating Current	Icc		-	6	9	mA
Slew Rate	SR	$R_{\rm L} \ge 2k\Omega$	-	5	-	V/µs
Gain Bandwidth Product	GB	f=10kHz	-	15	-	MHz
Total Harmonic Distortion	THD	$Av=20dB$, $Vo=5V$, $f=1kHz$, $RL=2k\Omega$	-	0.0005	-	%
Input Noise Voltage1	Vni	RIAA Rs=2.2kΩ, 30kHzLPF	-	0.8	-	μVrms
Input Noise Voltage2	en	f=1kHz	-	5	-	nV/Hz

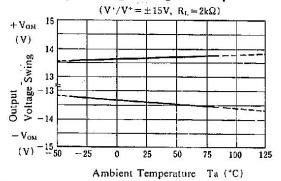


CharacteristicCurves

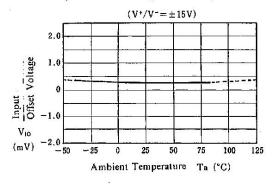

Maximum Output Voltage Swing vs. Load Resistance


Maximum Output Voltage Swing vs. Frquency

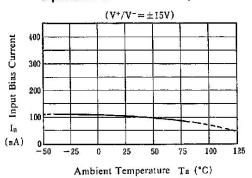

Output Voltage Swing vs. Output Current

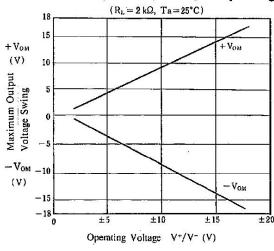

Equivalent Input Noise Voltage vs. Frequency

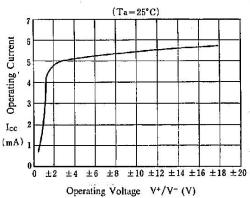
Operating Current vs. Temperature

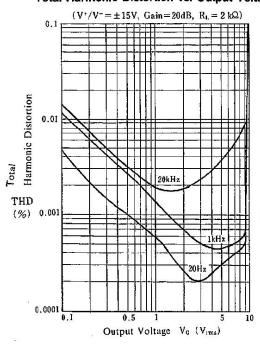


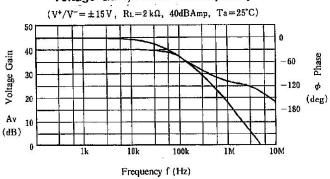
Output Voltage Swing vs. Temperature



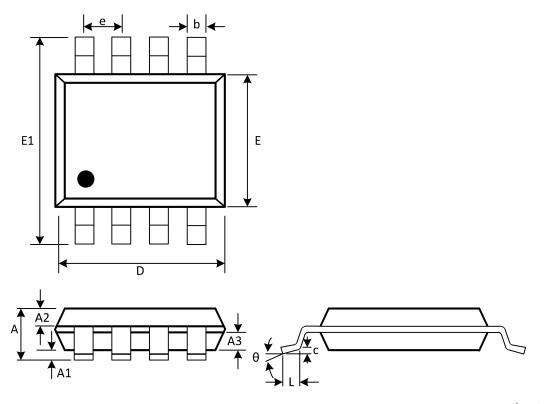

Input Offset Voltage vs. Temperature


Input Bias Current vs. Temperature


Maximum Output Voltage Swing vs. Operating Voltage


Operating Current vs. Operating Voltage

Total Harmonic Distortion vs. Output Voltage



Voltage Gain, Phase vs. Frequency

SOP-8

(Unit: mm)

Symbol	Min	Max	
А	1.300	1.600	
A1	0.050	0.200	
A2	0.550	0.650	
A3	0.550	0.650	
b	0.356	0.456	
С	0.203	0.233	
D	4.800	5.000	
е	1.270(BSC)		
E	3.800	4.000	
E1	5.800	6.200	
L	0.400	0.800	
θ	0°	8°	

Attention

- Any and all MSKSEMI Semiconductor products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your MSKSEMI Semiconductor representative nearest you before using any MSKSEMI Semiconductor products described or contained herein in such applications.
- MSKSEMI Semiconductor assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all MSKSEMI Semiconductor products described or contained herein.
- Specifications of any and all MSKSEMI Semiconductor products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer'sproducts or equipment.
- MSKSEMI Semiconductor. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with someprobability. It is possiblethat these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits anderror prevention circuitsfor safedesign, redundant design, and structural design.
- In the event that any or all MSKSEMI Semiconductor products (including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from theauthorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of MSKSEMI Semiconductor.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. MSKSEMI Semiconductor believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. Whendesigning equipment, referto the "Delivery Specification" for the MSKSEMI Semiconductor productthat you intend to use.