

WS8000 M6 模组串口透传规格书

模组特点:

● 性价比高的蓝牙模组: BLE5.0

● 最大发射功率 : 10dbm

● 手机控制最远距离 : >140 米

● 超小模组和芯片封装: 17 X 12 X 1.0 mm

● 模组开发 : 可二次开发、可定制开发

● 串口默认波特率 : 115200bps

● 功耗 : 休眠功耗 1uA

● 手机兼容性 : 手机兼容性测试列表(>1000部)

1 蓝牙服务

1.1 Device Information 服务

UUID: 180A

Characterastic	UUID	示例值	
Manufacturer Name String	2A29	Excelsecu	
Serial Number String	2A25	com3	
Firmware Revision String	2A26	1009	
Software Revision String	2A28	00191202012018042701	开机后 COS 用 HCI_CMD_SET_SOFTWARE_REV 设 置版本号,芯片保存到此

1.2 透传服务

UUID: 0000FFC0-0000-1000-8000-00805f9b34fb

Characterastic	方向	UUID	属性	功能
TX	手 机	FFC1	READ, WRITE,	在配对模式下, 访问该特征值需要授权(配对),
	->WS8000		WRITE_NO_RSP	如果没配对过会触发配对
TX_CTRL	手 机	FFC2	READ, WRITE,	在配对模式下, 读该 handle 返回 4 字节:
	->WS8000		WRITE_NO_RSP	第一字节 01 表示有链路秘钥,其他为无;
				第二字节01表示已连接未配对,04表示已配对;
				第三字节 00 表示未重新触发配对, 04 表示已触
				发 重新配对。
				第四字节不用, 取值 0x00.
				在芯片中处理的控制指令:
				0x05 时,主动发起配对请求
				0x09 时,表示软件版本的判断
				0x06 时,表示更新连接参数
				其他控制指令, 直接透传给 COS。
RX	WS8000	FFC3	NOTIFY(Justwork)	透传通道
	->手机		NOTIFY, WRITE(No	
			Pairing)	
RX_CTRL	WS8000	FFC4	NOTIFY	控制通道,往手机回控制命令的响应
	 ->手机			
	1 1/1/1			

2 模组使用流程

- **2.1** 主控芯片发送给蓝牙芯片的消息被称之为 CMD(命令), 蓝牙芯片发送给主控芯片的消息被称之为 EVENT (事件)。
- 2.2 芯片使用操作流程为:
 - 1. 蓝牙 芯片上电。
 - 2. 关闭广播、配置蓝牙芯片相关参数, 即通过 CMD 指令设置蓝牙地址, 广播, 软件版本等。
 - 3. 重新开启广播进入正式使用流程。蓝牙名称默认为: ble 透传。
- 2.3 芯片串口参数说明:

波特率: 115200

数据位: 8

奇偶校验: 无

停止位: 1

数据流控: 无

3 基本指令格式

CMD 和 EVENT 具有相同的包格式

Byte0	Byte1	Byte2	Byte3~ Byte(length+3)
Packet Type	Opcode	Length	Payload
包类型	操作码	内容长度	内容

HCI 包结构如上表所示,

- Packet Type: 包类型, 0x01 表示CMD, 0x02 表示Event;
- Opcode: 操作码,指示不同 CMD 和Event 指令
- Length: 内容长度。Payload: 包内容。

3.1 支持的指令(CMD)

CMD 是 MCU 发送给蓝牙模块的指令,用于配置蓝牙模块、控制蓝牙连接和发送数据等。模块接收到每个 CMD 后都会回复一个与之对应的 EVENT 作为回应(通常为HCI EVENT CMD RESPONSE)。此机制应作为软件流控机制处理。即,MCU 发送 CMD 后应

等待一个与之对应的 EVENT, 收到此 EVENT 后再发送新 CMD。

所有 CMD 汇总如下:

CMD 命令名称	Opcode 操作码	描述
HCI_CMD_SET_BLE_ADDR	0x01	设置 BLE 地址
HCI_CMD_SET_VISIBILITY	0x02	开关广播
HCI_CMD_SET_BLE_NAME	0x04	设置 BLE 名称
HCI_CMD_SEND_BLE_DATA	0x09	发送 BLE 数据
HCI_CMD_SET_UART_BAUD	0x0F	设置 UART 波特率
HCI_CMD_VERSION_REQUEST	0x10	查询模块固件版本
HCI_CMD_BLE_DISCONNECT	0x12	断开 BLE 连接
HCI_CMD_SET_ADV_DATA	0x2A	设置 ADV 数据
HCI_CMD_SET_scan_resp_DATA	0x9A	设置 SCAN RESP 数据
HCI_CMD_SET_ADV_POWER_LEVEL	0x42	设置发射功率
HCI_CMD_SET_SOFTVERSION	0x52	设置软件版本

3.2 HCI CMD SET BLE ADDR

HCI_CMD_SET_BLE_ADDR 用于设置 BLE 设备地址,操作码 0x01。模块收到此命令后会回复 HCI_EVENT_CMD_COMPLETE,回复内容长度为 0x00。命令格式如下:

描述	位置	取值
CMD	Byte0	0x01
Opcode	Byte1	0x01
Length	Byte2	0x06
Payload	Byte3~Byte8	BLE 设备地址(小端格式)

3. 3 HCI_CMD_SET_VISIBILITY

HCI_CMD_SET_VISIBILITY 用于设置蓝牙的可发现和广播状态,操作码 0x02。Payload 中Bit0 表示BT3.0 可发现(可以被搜索),Bit1 表示BT3.0 可连接(可以被连接),没有特殊需求时这两位开关应设为同样值,即取为 00B 或11B。Bit2 表示BLE可发现,BLE 在可发现状态下可以被搜索和连接,同时会发送 ADV 广播包。模块收到此命令后会回复 HCI_EVENT_CMD_COMPLETE,回复内容长度为 0x00。

命令格式如下:

位置	取值
Byte0	0x01
Byte1	0x02
Byte2	0x01
Byte3	01: 开广播
	01: 开广播 00: 关闭广播
	Byte0 Byte1 Byte2

3.4 HCI_CMD_SET_BLE_NAME

HCI_CMD_SET_BLE_NAME 用于设置 BLE 的蓝牙设备名称,操作码为 0x04。命令长度根据蓝牙设备名称长度而定,最大长度为 24byte。蓝牙设备名称是以 ASCII 编码的字符串。模块收到此命令后会回复 HCI_EVENT_CMD_COMPLETE,回复内容长度为 0x00。

命令格式如下:

描述	位置	取值
CMD	Byte0	0x01
Opcode	Byte1	0x04
Length	Byte2	0x01~0x18
Payload	Byte3 ~Byte (Length+3)	蓝牙设备名称

3.5 HCI_CMD_SEND_BLE_DATA

HCI_CMD_SEND_BLE_DATA 用于发送 BLE 数据 (GATT 协议),操作码为 0x09。 模块收到此命令后会回复 HCI_EVENT_CMD_COMPLETE,回复内容长度为 0x00。命令格式如下:

描述	位置	取值
CMD	Byte0	0x01
Opcode	Byte1	0x09
Length	Byte2	0x01~0xFF
Payload	Byte3~Byte4	Attribute Handle,如下 FFC1 通道对应 C1 FF FFC2 通道对应 C2 FF FFC3 通道对应 C3 FF FFC4 通道对应 C4 FF
Payload	Byte5 ~Byte (Length+3)	BLE 数据(GATT 协议)

3. 6 HCI_CMD_BLE_DISCONNECT

HCI_CMD_BT_DISCONNECT 用于断开 BLE 连接,操作码为 0x12。 模块收到此命令后会回复 HCI_EVENT_CMD_COMPLETE,回复内容长度为 0x00。

命令格式如下:

描述	位置	取值
CMD	Byte0	0x01
Opcode	Byte1	0x12
Length	Byte2	0x00

3. 7 HCI_CMD_SET_ADV_DATA

HCI_CMD_SET_ADV_DATA 用于设置 BLE ADV DATA。当 ADV Data 长度大于 31 字节时,模块会将超 出部分(按照 ADV Data 格式)放置在 Scan Resp Data 中。模块收到此命令后会回复 HCI_EVENT_CMD_COMPLETE,回复内容长度为 0x00。

命令格式如下:

描述	位置	取值
CMD	Byte0	0x01
Opcode	Byte1	0x2A
Length	Byte2	0x01~0x3E
Payload	Byte3~ Byte(Length-3)	ADV Data

3.8 HCI_CMD_LE_SET_PAIRING

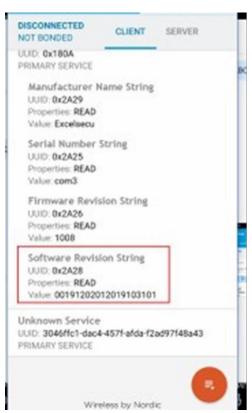
HCI_CMD_LE_SET_PAIRING 设置 BLE 配对模式,模式说明如下表。 模块收到此命令后会回复 HCI_EVENT_CMD_COMPLETE, 回复内容长度为 0x00。

命令格式如下:

描述	位置	取值
CMD	Byte0	0x01
Opcode	Byte1	0x33
Length	Byte2	0x01
Payload	Byte3	0x00 LE_PAIRING_NONE:不加密
		0x01 LE_PAIRING_JUSTWORK:加密,用
		户不需 要操作,NO MITM。
		默认: 0x01 加密

3. 9 YCCHIP_CMD_SET_POWER_LEVEL

设置发射功率。模块收到此命令后会回复 HCI_EVENT_CMD_COMPLETE, 回复内容长度为命令 0x00。


格式如下:

Byte0 Byte1 Byte2 Byte3	0x01 0x42 0x01 00: -13.5 dBm
Byte2	0x01 00: -13.5 dBm
<u> </u>	00: -13.5 dBm
Byte3	
	01. 10 5 JD
	01: -19.5 dBm
	02: -7.5 dBm
	03: -3.5dBm
	04: 0dBm
	05: 2 dBm
	06: 4.5 dBm
	07: 7dBm
	08: 8.5dBm
	09: 9.5dBm

3. 10 YCCHIP_CMD_SET_SOFTVERSION

设置软件版本号,由 Cos 指定蓝牙连接后的 Software Revision String

模块收到此命令后会回复 HCI_EVENT_CMD_COMPLETE, 回复内容长度为 0x00。 命令格式如下:

Shenzhen Qianhai WiseSun Intelligence Technology Co. Ltd.

描述	位置	取值
CMD	Byte0	0x01
Opcode	Byte1	0x52
Length	Byte2	0x0A
Payload	Byte3~Byte12	版本数据

3.11 HCI_CMD_VERSION_REQUEST

 $HCI_CMD_VERSION_REQUEST$ 用于查询模块固件版本,操作码为 0x10。 模块收到此命令后回复 $HCI_EVENT_CMD_COMPLETE$,回复内容长度为 0x02,回复内容为固件版本号: $1^{\circ}65535$ 。

命令格式如下:

描述	位置	取值
CMD	Byte0	0x01
Opcode	Byte1	0x10
Length	Byte2	0x00

4 支持的指令(EVENT)

模块发送给 MCU 的包称为 EVENT (事件),模块通过发送 EVENT 来完成通知蓝牙状态变化、上报数据等操作。

所有 EVENT 汇总如下:

EVENT 事件名称	Opcode 操作码	描述
HCI_EVENT_BLE_CONNECTED	0x02	BLE 连接建立
HCI_EVENT_BLE_DISCONNECTED	0x05	BLE 连接断开
HCI_EVENT_CMD_COMPLETE	0x06	命令已完成
HCI_EVENT_BLE_DATA_RECEIVED	0x08	接收到 BLE 数据
HCI_EVENT_UART_EXCEPTION	0x0F	HCI 包格式错误

4. 1 HCI_EVENT_BLE_CONNECTED

HCI_EVENT_BLE_CONNECTED 表示 BLE 连接已经建立。操作码为 0x02。 事件格式如下:

描述	位置	取值
EVENT	Byte0	0x02
Opcode	Byte1	0x02
Length	Byte2	0x00

4. 2 HCI_EVENT_BLE_DISCONNECTED

HCI_EVENT_BLE_DISCONNECTED 表示 BLE 连接已经断开。操作码为 0x05。事件格式如下:

描述	位置	取值
EVENT	Byte0	0x02
Opcode	Byte1	0x05
Length	Byte2	0x00

4. 3 HCI_EVENT_CMD_COMPLETE

模块完成每一条命令后都会回复事件 HCI_EVENT_CMD_COMPLETE, 操作码为 0x06。此事件的 Byte3 是命令操作码, 用来指示完成了什么命令; Byte4 是命令完成状态, 用来指示命令是否成功完成; 从 Byte5 开始是长度可变的回复内容, 回复内容格式参见对应的命令描述。

事件格式如下:

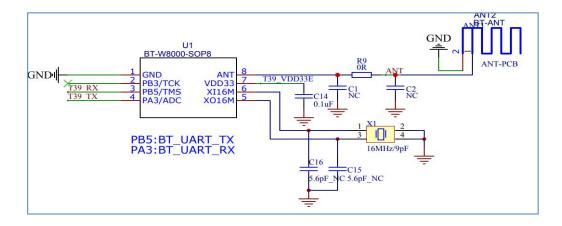
描述	位置 取值		
EVENT	Byte0	0x02	
Opcode	Byte1	0x06	
Length	Byte2	Response Content length + 2	
Payload	Byte3	完成命令操作码 CMD	
Payload	Byte4	命令完成状态:	
		0x00 成功	
		0x01 失败	
Payload	Byte5~Byte (Length +3)	回复内容,因命令不同而有差异。	

4.4 HCI_EVENT_BLE_DATA_RECEIVED

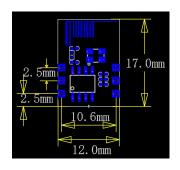
模块接收到 BLE 数据(GATT 协议)后会通过此事件发送给 MCU,操作码 0x08。 事件格式如下:

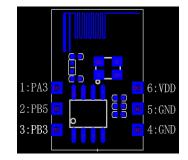
描述	位置	取值	
EVENT	Byte0	0x02	
Opcode	Byte1	0x08	
Length	Byte2	0x01~0xFF	
Payload	Byte3~Byte4	Attribute Handle,如下: FFC1 通道对应 C1 FF FFC2 通道对应 C2 FF FFC3 通道对应 C3 FF FFC4 通道对应 C4 FF	
Payload	Byte5~Byte (Length+3)	BLE 数据	

4. 5 HCI_EVENT_UART_EXCEPTION


模块收到无法处理的指令时会发送 HCI_EVENT_UART_EXCEPTION。通常由主机发送 HCI 包格式错误引起,发出此 EVENT 后模块会丢掉此数据包。 事件格式如下:

描述	位置	取值	
EVENT	Byte0	0x02	
Opcode	Byte1	0x0F	
Length	Byte2	0x00	




5 模组硬件说明

5.1 模组原理图

5.2 模组封装尺寸图

尺寸: 17mm X 12mm X 1.0 mm

5.3 模组引脚说明

模组序号	芯片引脚	使用说明	备注
1	PA3	模组透传接收脚,RXD	
2	PB5	模组透传发送脚,TXD	
3	PB3	模组使能脚,高电平使能	
4	GND	模组的地引脚	
5	GND	模组的地引脚	
6	VDD	模组的供电脚, 3.3V 供电	