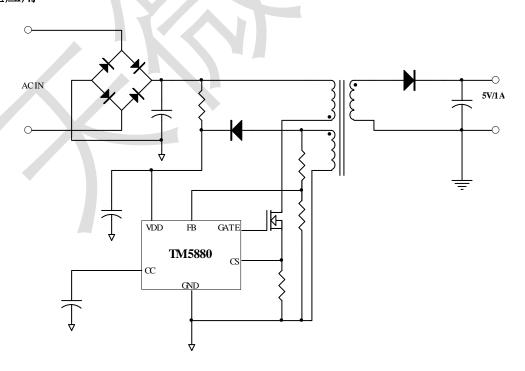
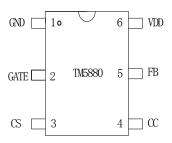


## 1. 特性描述


TM5880是一款高性能,准谐振(QR)模式的高精度原边反馈控制(PSR)CC/CV控制器。该系列驱动外部功率管,非常适合低成本小功率充电器、适配器和LED照明领域。TM5880采用准谐振控制,大大提升了PSR系统的效率、降低EMI,能够满足六级能效的要求。无需Y电容的5W(5V/1A)充电器设计,该IC在输出恒压模式下内置了线缆电压补偿功能。

TM5880集成了诸多保护功能,包括: VDD欠压保护(UVLO), VDD过压保护,软启动,逐周期电流限制,所有管脚浮空保护,GATE输出电压钳位保护,VDD电压钳位保护。本产品性能优良,质量可靠。


## 2. 功能特点

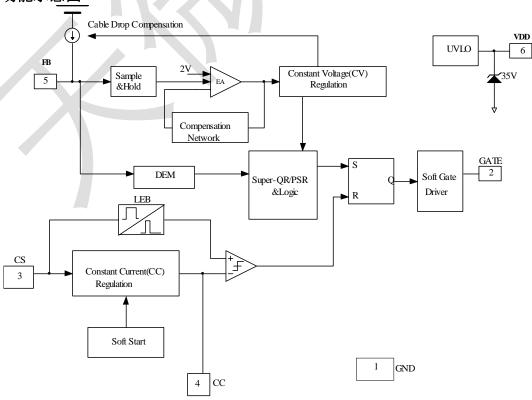
- ▶ 效率满足六级能效要求
- ▶ 原边反馈 (PSR) 准谐振 (QR) 控制技术实现高效率和良好的EMI性能
- ➤ 无需Y电容的5W(5V/1A)充电器设计
- ▶ 待机功耗小于70mW
- ▶ ±5%恒压恒流精度
- ▶ 内置线压降补偿
- ▶ 逐周期电流限制
- ▶ 内置前沿消隐
- ▶ 所有管脚浮空保护
- ▶ 内置软启动
- ▶ 输出过压保护
- ▶ VDD欠压保护(UVLO)、过压保护及钳位
- ▶ 封装形式: S0T23-6

## 3. 典型应用



#### 4. 管脚排列




## 5. 管脚功能

| 引脚名称 | S0T23-6<br>引脚序号 | 功能说明          |  |  |
|------|-----------------|---------------|--|--|
| GND  | 1               | 芯片地           |  |  |
| GATE | 2               | 外置功率MOSFET驱动端 |  |  |
| CS   | 3               | 变压器原边电流采样端    |  |  |
| CC   | 4               | 外接电容,用于恒流调节   |  |  |
| FB   | 5               | 输出电压反馈输入端     |  |  |
| VDD  | 6               | 芯片供电          |  |  |



\*备注:集成电路是静电敏感器件,在干燥季节或者干燥环境使用容易产生大量静电,静电放电可能会损坏集成电路,天微电子建议采取一切适当的集成电路预防处理措施,不正当的操作焊接,可能会造成 ESD 损坏或者性能下降,芯片无法正常工作。

## 6. 芯片功能示意图





#### 7. 工作条件

## 7.1. 极限工作条件

| 参数名称         | 极限值     | 单 位                   |
|--------------|---------|-----------------------|
| 芯片电源电压       | 35      | V                     |
| 芯片VDD钳位电流    | 10      | mA                    |
| GATE电压       | 20      | V                     |
| CC, CS电压范围   | -0.3∼7  | V                     |
| FB电压范围       | -0.7∼7  | V                     |
| 封装热阻(SOT-26) | 250     | °C/W                  |
| 储存温度范围       | -65~150 | $^{\circ}$            |
| 最高结温         | 150     | $^{\circ}$            |
| 工作温度范围       | -40~150 | $^{\circ}$ $^{\circ}$ |
| 焊接温度(焊锡,10秒) | 260     | $^{\circ}$            |
| ESD人体模型      | 3       | KV                    |
| ESD机器模型      | 250     | V                     |

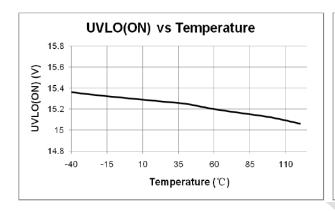
- (1) 芯片长时间工作在上述极限参数条件下,可能造成器件可靠性降低或永久性损坏,天微电子不建议实际使用时任何一项参数达到或超过这些极限值。
- (2) 所有电压值均相对于系统地测试

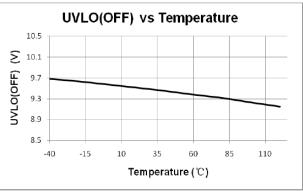
## 7.2. 推荐工作条件

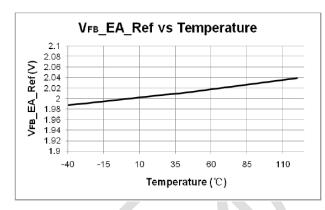
| *************************************** |     |     |               |
|-----------------------------------------|-----|-----|---------------|
| 参数名称                                    | 最小值 | 最大值 | 单 位           |
| 芯片电源电压VDD                               | 10  | 30  | V             |
| 工作环境温度                                  | -40 | 85  | ${\mathbb C}$ |
| 最大开关频率                                  |     | 120 | KHz           |

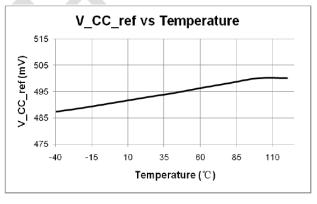
## 8. 芯片参数

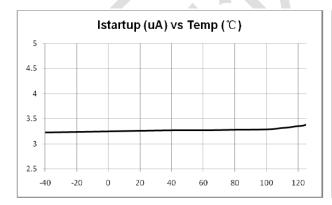
| TM5880       |              |                               |       |       |      | ** 12- |  |
|--------------|--------------|-------------------------------|-------|-------|------|--------|--|
| 参数名称         | 参数符号         | 测试条件                          | 最小值   | 典型值   | 最大值  | 単位     |  |
|              | 芯片           | †电源部分(VDD 管脚)                 |       |       |      |        |  |
| 启动电流         | I_Startup    | VDD=UVLO(ON)-1V<br>测试 VDD 端电流 |       | 2     | 20   | uA     |  |
| 工作电流         | I_VDD_Op     | VFB=1V, CL=0. 5nF<br>VDD=20V  |       | 1     | 1.5  | mA     |  |
| VDD欠压保护      | UVLO (OFF)   | VDD 电压下降                      | 8.5   | 9.5   | 10.5 | V      |  |
| VDD启动电压      | UVLO(ON)     | VDD 电压上升                      | 14    | 15. 5 | 16.5 | V      |  |
| VDD过压保护      | VDD_OVP      |                               | 31    | 33    | 35   | V      |  |
| VDD钳位电压      | VDD_Clamp    | I (VDD) =7mA                  | 33    | 35    | 37   | V      |  |
|              | 反            | 馈输入部分(FB管脚)                   |       |       |      |        |  |
| 反馈参考电压       | VFB_EA_Ref   |                               | 1. 98 | 2.0   | 2.02 | V      |  |
| 输出过压保护阈值电压   | VFB_OVP      |                               |       | 2.4   |      | V      |  |
| 输出短路阈值       | VFB_Short    |                               |       | 0.65  |      | V      |  |
| 输出短路钳位频率     | FClamp_Short |                               |       | 40    |      | KHz    |  |
| 退磁比较器阈值      | VFB_DEM      |                               |       | 75    |      | mV     |  |
| 最小关断时间       | Tmin_OFF     |                               |       | 2     |      | uSec   |  |
| 最大关断时间       | Tmax_OFF     |                               |       | 3     |      | mSec   |  |
| 最大线缆补偿电流     | ICable_max   |                               |       | 40    |      | uА     |  |
| 电流检测部分(CS管脚) |              |                               |       |       |      |        |  |
| CS前沿消隐时间     | T-blanking   |                               |       | 500   |      | nSec   |  |
| 芯片关断延迟       | TD_OC        | CL=1nF at GATE                |       | 100   |      | nSec   |  |
|              | 恒流控制部分(CC管脚) |                               |       |       |      |        |  |
| 内部CC基准电压     | V_CC_ref     |                               | 490   | 500   | 510  | mV     |  |

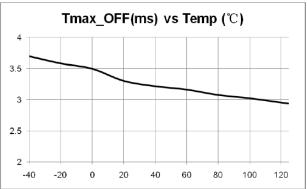




# 准谐振 PSR CC/CV 控制器


## TM5880


| 栅极驱动输出(GATE管脚) |          |                 |      |     |   |      |
|----------------|----------|-----------------|------|-----|---|------|
| 输出低电平          | VOL      | Io=20mA (sink)  |      |     | 1 | V    |
| 输出高电平          | VOH      | Io=20mA(source) | 7. 5 |     |   | V    |
| 输出钳位电压         | VG_Clamp | VDD=24V         |      | 16  |   | V    |
| 输出上升时间         | T_r      | CL=0. 5nF       |      | 700 |   | nSec |
| 输出下降时间         | T_f      | CL=0. 5nF       |      | 35  |   | nSec |


## 9. 典型温度特性曲线














## 10. 功能说明

TM5880是一款高性能、多模式控制、准谐振(QR)模式的高精度原边反馈控制(PSR)CC/CV控制器,可实现小于±5%的恒压恒流精度。非常适用于小功率充电器、适配器和LED照明场合。在恒压模式下内置了线电压补偿功能。采用准谐振控制,实现高效率和良好的EMI性能,满足六级能效标准要求。

#### 10.1. 启动电流与启动控制

TM5880 的启动电流非常低(典型值 2uA),所以 VDD 端电容电压可以很快充至开启电压。启动电路中可以使用一个大阻值的电阻,在满足启动要求的同时,减小工作时的损耗。

#### 10.2. 工作电流

TM5880 的工作电流低至 1mA (典型值),所以 VDD 启动电容可以取更小值,同时可以提高系统转换效率。

#### 10.3. 原边准谐振控制

TM5880采用原边反馈(PSR)准谐振(QR)控制技术实现高效率、降低EMI。芯片在恒压和恒流模式工作时,极大的提高了系统效率和良好的EMI性能。该IC系统效率能达到六级能效要求。

#### 10.4. 恒流控制

TM5880 具有精确的恒流/恒压控制能力,通过内部电流反馈控制回路能够精准地控制输出电流。工作在恒流模式下:

$$I_{CC}(mA) = \frac{N}{2} \times \frac{500 \text{ (mV)}}{R_{cs} (\Omega)}$$

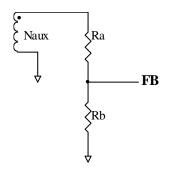
其中: Icc 为系统输出端的输出电流。

Rcs 为 CS 与 GND 之间的电阻。

N为变压器初级和次级线圈的匝数比。

#### 10.5. 精准的 CC/CV 性能

TM5880 具有精确的恒流/恒压控制能力,能实现±5%的恒压恒流精度。


#### 10.6. 输出线压降补偿

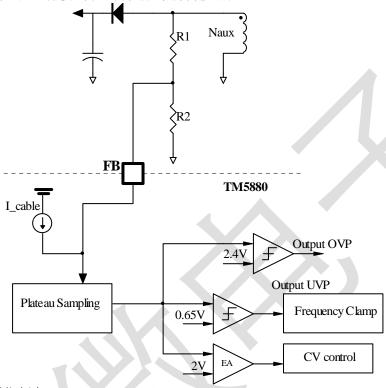
常规芯片在恒压模式下,通过改变功率管导通时间来调节反馈电压,其不包括在电线上的压降。这样导致了由于采用不同规格不同长度的电线,会产生不同的输出电压。TM5880内建了线缆压降补偿电路,以此取得更好的负载调整率。

TM5880 具有线缆补偿功能,可补偿输出电压在电线上的压降。通过内置电流流入电阻分压器在 FB 脚位产生补偿电压。随着转换器负载从空载增大至峰值功率点(恒压与恒流之间的切换点),将通过增大反馈引脚参考电压对输出线缆上的压降进行补偿。控制器根据状态调节器的输出来决定输出负载以及相应补偿的程度。最大补偿比例可由下式得出

$$\frac{\triangle V}{V_{\text{out}}} = \frac{I_{\text{comp}} \times (R_{\text{a}}//R_{\text{b}}) \times 10^{-6}}{2} \times 100\%$$

其中,△V 是补偿电压,Vout 是输出电压,Ra和Rb为FB 脚相连的分压电阻。



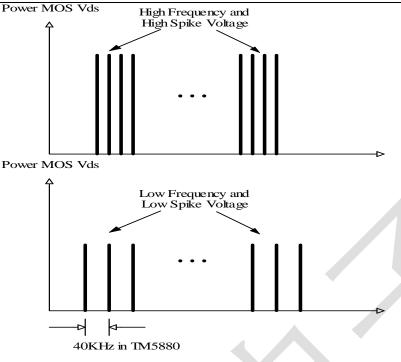



#### 10.7. 电流检测和前沿消隐(LEB)

TM5880 提供了逐周期电流限制,功率管电流由连接在 CS 脚上的取样电阻检测。在功率开关导通时,采样电阻上会出现开启尖峰,为避免由开启尖峰所引起的误操作,在 CS 脚上设置有 500nS 的前沿消隐时间,因此 CS 脚的外部无需 RC 滤波网络。

#### 10.8. 输出过压保护与欠压保护

如下图, TM5880 输出过压保护模式, 过压保护的阈值为 2.4V。当输入 FB 电压小于 0.65V, IC 将会进入欠压保护模式, 在这种模式下, 开关频率将会被钳位。

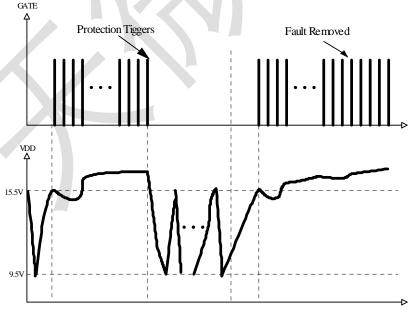



#### 10.8. 输出短路钳位频率

在 TM5880 工作时,当 FB 电压小于 0.65V,芯片将会进入欠压保护模式,此时开关频率被固定在 40KHz (典型值)。这种保护功能将被应用于 LED 保护电路中。当输出被短路时,钳位频率能降低功率管 Vds 尖峰电压,同时提高了系统的可靠性,如下图。

在 TM5880 工作时,当输出短路发生时,芯片将被固定在 40KHz 的开关频率,在这种情况下,功率 管的 Vds 尖峰电压将被大大抑制。

7




#### 10.9. 控制保护

TM5880 集成了完善的保护功能,包括 VDD 欠压保护(UVLO), VDD 过压保护,软启动,逐周期电流限制,所有管脚浮空保护,VDD 电压钳位保护。

#### 10.10 自恢复保护模式

如下图,当故障被检测到,开关将会停止工作,将会引起 VDD 电压下降,当 VDD 电压降至欠压保护点 9.5V 的时候,保护模式将会被重新设置,工作电流将会强制被拉升至启动电流值,VDD 电压上升。然而,如果故障仍然存在,系统将会重复执行上述过程,如果故障消除,系统将会恢复到正常工作模式。用这种方式系统能够控制开关使能与不使能的工作状态,直到故障被消除为止。



#### 10.11. 栅极驱动器

TM5880 的 GATE 脚位用于驱动外部功率功率 MOSFET 管,GATE 驱动端采用软驱动设计,软驱动方式改善了系统的 EMI 性能,实现了效率、可靠性和 EMI 的平衡。驱动输出端内置齐纳二极管钳位在 16V,以避免 MOSFET 管栅端出现过压信号而损坏。



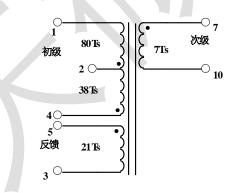
## 11. 应用实例

## 11.1. 平板电脑充电器

输入电压: 90-240V 50/60Hz

输出: 5V 2A 待机功耗小于70mW PCB尺寸: 45×31.5mm

原理图:




## 11.2 BOM 清单

| 序号 | 名称     | 规格               | 数量 | 位号      |
|----|--------|------------------|----|---------|
|    | PCB 贴片 |                  |    |         |
| 1  | 贴片电容   | 102/1KV 1206 10% | 1  | C5      |
| 2  | 贴片电容   | 475/25V 1206 10% | 1  | C4      |
| 3  | 贴片电容   | 102/50V 0805 10% | 2  | C2/C6   |
| 4  | 贴片电阻   | 200K 1206 5%     | 1  | R7      |
| 5  | 贴片电阻   | 3.9R 1206 1%     | 1  | R8      |
| 6  | 贴片电阻   | 3.3R 1206 1%     | 1  | R4      |
| 7  | 贴片电阻   | 2M 0805 5%       | 2  | R10/R11 |
| 8  | 贴片电阻   | 24K 0805 1%      | 1  | R2      |
| 9  | 贴片电阻   | 3.9K 0805 1%     | 1  | R1      |
| 10 | 贴片电阻   | 1.2K 0805 5%     | 1  | R12     |
| 11 | 贴片电阻   | 1K 0805 5%       | 1  | R5      |
| 12 | 贴片电阻   | 100R 0805 5%     | 1  | R13     |
| 13 | 贴片电阻   | 2.4R 0805 5%     | 1  | R6      |
| 14 | 贴片电阻   | 47R 0805 5%      | 1  | R3      |
| 15 | 贴片电阻   | 100R 0805 5%     | 1  | R9      |
| 16 | 整流桥    | ABS 600V 1A      | 1  | BD1     |

| 17 | 贴片整流二极管 | FR107 SOD-123  | 1  | D1   |
|----|---------|----------------|----|------|
|    |         | 1000V 0.5A     |    |      |
| 18 | 贴片整流二极管 | IN4007 SOD-123 | 1  | D2   |
|    |         | 1000V 0.5A     |    |      |
| 19 | 贴片肖特基   | P10V45 10A/45V | 1  | L3   |
|    |         | T0-227A PFC    |    |      |
| 20 | 贴片磁珠    | 102 阻抗 1K 1206 | 1  | L3   |
|    |         | I=500mA        |    |      |
| 21 | 贴片 IC   | TM5880 SOT23-6 | 1  | U1   |
| 22 | Y电容     | 471 400V       | 1  | CY1  |
|    |         | Pin=10mm       |    |      |
| 23 | 电解电容    | 6.8uF/400V     | 1  | C1   |
|    |         | 8*12mm         |    |      |
| 24 | 电解电容    | 12uF/400V      | 1  | C3   |
|    |         | 8*20mm         |    |      |
| 25 | 固态电容    | 330uF/6.3V     | 1  | C8   |
|    |         | 5*7mm          |    |      |
| 26 | 固态电容    | 820uF/6.3V     | 1  | C7   |
|    |         | 6.3*11mm       |    |      |
| 27 | MOS 管   | CS4N60 4A/600V | 1  | Q1   |
|    |         | T0-251 华晶      |    | · ·  |
| 28 | 保险丝     | 1A/250V        | 11 | F1   |
|    |         | T3.6*10mm 陶瓷管  |    |      |
| 29 | 色环电感    | 1mH 0510 1W    | 1  | L1   |
| 30 | USB 母座  | 大 4PIN         | 1  | USB1 |
| 31 | 变压器     | EPC17 6+4 卧式   | 1  | T1   |
|    |         | L=1.5mH        |    |      |
| 32 | PCB 板   | FR-4 45*31.5mm | 1  |      |
|    |         | T=0.8mm        |    |      |
|    |         |                |    |      |
|    |         |                |    |      |

## 11.3 变压器结构图



## 电性规格:

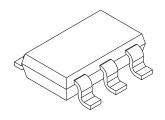
电感量 4-1=1.5mH±8% @1KHz 0.25V 漏感<120uH @10KHz 0.25V 耐压测试=3KV 5mA 1Min

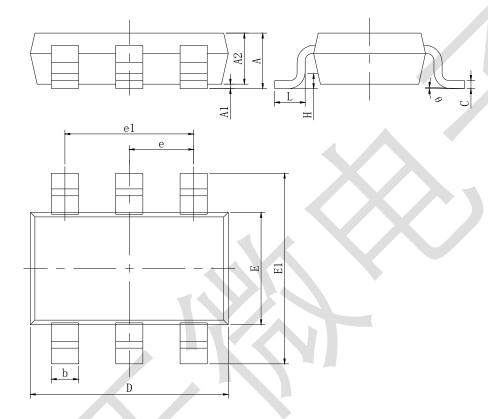
#### 材料要求:

磁芯: EPC17(TDK PC40 或同等材质)

 $Ae = 22.8 mm^2$ 

骨架: EPC17 卧式 6+4PIN


初级: 2-UEW 漆包线 次级: 三层绝缘线


绝缘胶带: 3M1298 或同等材质



# 12. 封装形式

封装类型: S0T23-6





| Symbol | Dimensions In Mi | llimeters (mm) | Dimensions In Inches |        |  |
|--------|------------------|----------------|----------------------|--------|--|
|        | Min              | Max            | Min                  | Max    |  |
| A      | 0.700            | 0.900          | 0.028                | 0. 035 |  |
| A1     | 0.000            | 0.100          | 0.000                | 0.004  |  |
| A2     | 0.700            | 0.800          | 0.028                | 0. 031 |  |
| b      | 0.350            | 0.500          | 0.014                | 0. 020 |  |
| С      | 0.080            | 0. 200         | 0.003                | 0.008  |  |
| D      | 2. 820           | 3. 020         | 0.111                | 0. 119 |  |
| Е      | 1.600            | 1.700          | 0.063                | 0.067  |  |
| E1     | 2. 650           | 2. 950         | 0.104                | 0. 116 |  |
| е      | 0.95 (BSC)       |                | 0. 037 (BSC)         |        |  |
| e1     | 1.90 (BSC)       |                | 0. 075               | (BSC)  |  |
| L      | 0. 300           | 0.600          | 0.012                | 0.024  |  |
| θ      | 0°               | 8°             | 0°                   | 8°     |  |

V1.1