

### **Si523**

# 13.56MHz contactless reader chip

### 1. Introduction

Si523 is a highly integrated NFC front-end for contactless communication at 13.56 MHz, and supports automatic carrier detection function (ACD). Reader/Writer mode supporting ISO/IEC 14443A/B.

The Si523's internal transmitter part is able to drive a reader/writer antenna designed to communicate with ISO/IEC 14443A/B cards and transponders without additional active circuitry. The receiver part provides a robust and efficient implementation of a demodulation and decoding circuitry for signals from ISO/IEC 14443A/B compatible cards and transponders. The digital part handles the complete ISO/IEC 14443A/B framing and error detection (Parity and CRC).

In ACD mode, the chip is mostly in sleep mode and woken up by 3K RC at a fixed time. It detects a 13.56MHz RF field and RF card with extremely low power consumption, and automatically generates interrupts to wake up the MCU when the field or card is detected. The functions of the detection field and card can be enabled separately. Under a typical 500ms polling cycle, the current is approximately 3.5uA. The entire ACD process does not require MCU intervention.

Various host controller interfaces are implemented:

- SPI interface
- Serial UART (similar to RS232 with voltage levels according pad voltage supply)
- I2C interface.



# Content

| 1. Introduction                                       |    |
|-------------------------------------------------------|----|
| 2. Feature and benefits                               | 6  |
| 3. Quick reference data                               | 7  |
| 4. Block diagram                                      | 8  |
| 5. Pinning information                                | 10 |
| 6. Functional description                             | 13 |
| 6.1 ISO 14443A functionality                          | 13 |
| 6.2 ISO/IEC 14443 B functionality                     | 14 |
| 6.3 Auto Low Power Polling Loop                       | 15 |
| 6.3.1 RF reference value automatic acquisition method | 17 |
| 6.3.2 Detection circuit                               | 17 |
| 6.3.3 Oscillator monitoring                           | 18 |
| 6.3.4 3K RC                                           | 18 |
| 6.3.5 ARI                                             | 18 |
| 6.3.6 ACD configuration monitoring                    | 18 |
| 7. Register set                                       | 19 |
| 7.1 Registers overview                                | 19 |
| 7.2 PAGE0: Command and status                         | 22 |
| 7.2.1 PageReg                                         | 22 |
| 7.2.2 CommandReg                                      | 23 |
| 7.2.3 CommlEnReg                                      | 24 |
| 7.2.4 DivlEnReg                                       | 25 |
| 7.2.5 CommlRqReg                                      | 26 |
| 7.2.7 ErrorReg                                        | 28 |
| 7.2.8 Status1Reg                                      | 29 |
| 7.2.9 Status2Reg                                      | 30 |
| 7.2.10 FIFODataReg                                    | 31 |
| 7.2.11 FIFOLevelReg                                   | 31 |
| 7.2.12 WaterLevelReg                                  | 32 |
| 7.2.13 ControlReg                                     | 32 |
| 7.2.14 BitFramingReg                                  | 33 |
| 7.2.15 CollReg                                        | 34 |
| 7.2.16 PollReg                                        | 35 |
| 7.3 PAGE1: communication                              | 39 |
| 7.3.1 PageReg                                         | 39 |
| 7.3.2 ModeReg                                         | 40 |
| 7.3.3 TxModeReg                                       | 41 |
| 7.3.4 RxModeReg                                       | 42 |
| 7.3.5 TxControlReg                                    | 44 |
| 7.3.6 TxAutoReg                                       | 44 |





|        | 7.3.7 TxSelReg                                    | 45 |
|--------|---------------------------------------------------|----|
|        | 7.3.8 RxSelReg                                    | 46 |
|        | 7.3.9 RxThresholdReg                              | 47 |
|        | 7.3.10 DemodReg                                   | 48 |
|        | 7.3.11 RFU                                        | 49 |
|        | 7.3.12 RFU                                        | 49 |
|        | 7.3.13 MifNFCReg                                  | 49 |
|        | 7.3.14 ManualRCVReg                               | 50 |
|        | 7.3.15 TypeBReg                                   | 50 |
|        | 7.3.16 SerialSpeedReg                             | 51 |
| ,      | 7.4 PAGE2: configuration                          | 52 |
|        | 7.4.1 PageReg                                     | 52 |
|        | 7.4.2/3 CRCResultReg                              | 53 |
|        | 7.4.4 GsNOffReg                                   | 54 |
|        | 7.4.5 ModWidthReg                                 | 54 |
|        | 7.4.6 RFU                                         | 55 |
|        | 7.4.7 RFCfgReg                                    | 55 |
|        | 7.4.8 GsNOnReg                                    | 56 |
|        | 7.4.9 CWGsPReg                                    | 57 |
|        | 7.4.10 ModGsPReg                                  | 57 |
|        | 7.4.11/12 TModeReg, TPrescalerReg                 | 58 |
|        | 7.4.13/14 TReloadReg                              | 60 |
|        | 7.4.15/16 TCounterValReg                          | 61 |
| ,      | 7.5 PAGE3: Test                                   | 63 |
|        | 7.5.1 PageReg                                     | 63 |
|        | 7.5.2 TestSel1Reg                                 | 63 |
|        | 7.5.3 TestSel2Reg                                 | 64 |
|        | 7.5.4 TestPinEnReg                                | 65 |
|        | 7.5.5 TestPinValueReg                             | 65 |
|        | 7.5.6 TestBusReg                                  | 66 |
|        | 7.5.7 AutoTestReg                                 | 66 |
|        | 7.5.8 VersionReg                                  | 67 |
|        | 7.5.9 AnalogTestReg                               | 68 |
|        | 7.5.10 TestDAC1Reg                                | 70 |
|        | 7.5.11 TestDAC2Reg                                | 70 |
|        | 7.5.12 TestADCReg                                 | 71 |
|        | 7.5.13 RFTReg                                     | 71 |
| 8. Dig | igital interfaces                                 | 72 |
| ;      | 8.1 Automatic microcontroller interface detection | 72 |
| ;      | 8.2 SPI                                           | 72 |
|        | 8.2.1 SPI read data                               | 73 |
|        | 8.2.2 SPI write data                              | 74 |





| 8.2.3 SPI address byte                        | 74  |
|-----------------------------------------------|-----|
| 8.3 UART                                      | 75  |
| 8.3.1 Connection to a host                    | 75  |
| 8.3.2 Selectable UART transfer speeds         | 75  |
| 8.3.3 UART framing                            | 77  |
| 8.4 I2C                                       | 79  |
| 8.4.1Data validity                            | 79  |
| 8.4.2 START and STOP conditions               | 80  |
| 8.4.3 Byte format                             | 81  |
| 8.4.4 Acknowledge                             | 81  |
| 8.4.5 7-Bit addressing                        | 82  |
| 8.4.6 Register write access                   | 83  |
| 8.4.7 Register read access                    | 83  |
| 8.4.8 High-speed mode                         | 84  |
| 8.4.10 Serial data transfer format in HS mode | 85  |
| 8.4.11 Switching between F/S mode and HS mode | 86  |
| 8.4.12 Si523 at lower speed modes             | 87  |
| 9. UART analog interface and contactless UART | 88  |
| 9.1 General                                   | 88  |
| 9.2 TX driver                                 | 88  |
| 9.3 Serial data switch                        | 90  |
| 9.4 CRC coprocessor                           | 91  |
| 10. FIFO                                      | 92  |
| 10.1 Accessing the FIFO buffer                | 92  |
| 10.2 Controlling the FIFO buffer              | 92  |
| 10.3 FIFO buffer status information           | 93  |
| 11. Interrupt request system                  | 94  |
| 11.1Interrupt sources overview                | 94  |
| 12. Timer unit                                | 96  |
| 13. Power reduction modes                     |     |
| 13.1 Hard power-down                          | 98  |
| 13.2 Soft power-down mode                     |     |
| 13.3 Transmitter power-down mode              |     |
| 14. Oscillator circuitry                      |     |
| 15. Reset and oscillator start-up time        |     |
| 15.1 Reset timing requirements                |     |
| 15.2 Oscillator start-up time                 |     |
| 16. Command set                               |     |
| 16.1 General description                      |     |
| 16.2 Command overview                         |     |
| 16.3 Command descriptions                     |     |
| 16.3.1 Idle                                   | 103 |





| 16.3.2 Generate RandomID                      | 103 |
|-----------------------------------------------|-----|
| 16.3.3 CalcCRC                                | 103 |
| 16.3.4 Transmit                               | 104 |
| 16.3.5MStart                                  | 104 |
| 16.3.6 ADC_EXCUTE                             | 104 |
| 16.3.7 NoCmdChange                            | 104 |
| 16.3.8 Receive                                | 104 |
| 16.3.9 Transceive                             | 105 |
| 16.3.10 SoftReset                             | 105 |
| 17. Application information                   | 106 |
| 18 .Recommended operating conditions          | 107 |
| 19. Package information                       |     |
| 20. Version information                       | 109 |
| 21. Order Information                         | 110 |
| 22. Technical Support and Contact information | 111 |



## 2. Feature and benefits

- Highly integrated analog circuitry to demodulate and decode responses
- Buffered output drivers for connecting an antenna with the minimum number of external components
- Typical operating distance in Read/Write mode up to 50 mm depending on the antenna size and tuning
- Supports ISO/IEC 14443 A with higher transmission rates communication, up to 848 kBd
- Supported host interfaces:
  - SPI up to 10 Mbit/s
  - I2C interface up to 400 kBd in fast mode, up to 3400 kBd in high-speed mode
  - Serial UART up to 1228.8 kBd
- FIFO buffer handles 64 byte send and receive
- Flexible interrupt modes
- Hard reset with low power
- Power-down by software
- Programmable timer
- Internal oscillator for connection to 27.12 MHz quartz crystal
- 2.5 V to 3.6 V power supply
- CRC coprocessor
- Programmable I/O pins
- Support ACD mode
  - ACD mode supports for automatic detection of RF and cards
  - ACD process without MCU intervention
  - OSC vibration failure monitoring



# 3. Quick reference data

Voltage, current and temperature in various modes

**Table 3-1 Quick reference data** 

|                                   | 1         | Tubic of Quick reference                 | 1        |     |     |      |      |
|-----------------------------------|-----------|------------------------------------------|----------|-----|-----|------|------|
| Parameter                         | Symbol    | Condition                                | NOTE     | Min | Тур | Max  | Unit |
| Analog supply voltage             | VDDA      | AVDD=PVDD=SVDD=TVDD;                     | (1)      | 2.3 | 3.3 | 4    | v    |
| TVDD supply voltage               | VDD(TVDD) | VSSA=VSSD=VSS(PVSS)=VSS(TVSS)=0V         |          | 2.3 | 3.3 | 4    | V    |
| PVDD supply voltage               | VDD(PVDD) |                                          | (1)      | 2.3 | 3.3 | 4    | V    |
| SVDD supply voltage               | VDD(SVDD) | VSSA=VSSD=VSS(PVSS)=VSS(TVSS)=0V         |          | 2.3 | 3.3 | 4    | V    |
|                                   |           | AVDD=VDD(SVDD)=VDD(TVDD)=VDD(P           | VDD)=3.3 | V   |     |      |      |
| Power-down current                | Ipd       | hard power-down; pin NRSTPD set LOW      | (2)      | -   | 1.1 | 1.5  | uA   |
|                                   |           | soft power-down; RF level detector on    | (2)      | -   | 1.1 | 1.5  | uA   |
| Auto card search                  | IACD1     | 500ms auto card search interval          |          | -   | 3.5 | 4    | uA   |
| average current                   |           |                                          |          |     |     |      |      |
| Auto field search average current | IACD2     | 500ms auto field search interval         |          | -   | 2.9 | 3.5  | uA   |
| PVDD supply current               | IDDD      | pin PVDD; PVDD=3.3V                      |          | -   | 0.9 | 1.5  | mA   |
|                                   |           | pin AVDD; VDDA = 3V,                     |          | -   | 3   | 4    | mA   |
| Analog supply current             | IDDA      | CommandReg register's RcvOff bit = 0     |          |     |     |      |      |
|                                   |           | pin AVDD; receiver switched off; VDDA =  |          | -   | 0.9 | 1    | mA   |
|                                   |           | 3V, CommandReg register's RcvOff bit = 1 |          |     |     |      |      |
| TVDD supply current               | IDD(TVDD) | continuous wave                          | (3)      | -   | 20  | 30   | mA   |
| Storage temperature               |           | QFN32                                    |          | -55 | -   | +125 | °C   |
| Operating temperature             |           | QFN32                                    |          | -40 | -   | +85  | °C   |

NOTE: (1) VDDA, VDDD and VDD(TVDD) must always be the same voltage. VDD(PVDD) must equal or smaller than VDDD.

- (2) Ipd is the total current for all supplies.
- (3)During typical circuit operation, the overall current is below 30 mA.

NOTE: Stresses beyond those Absolute Maximum Ratings may cause permanent damage to the

device.



# 4.Block diagram

The analog interface handles the modulation and demodulation of the analog signals.

The contactless UART manages the protocol requirements for the communication protocols in cooperation with the host. The FIFO buffer ensures fast and convenient data transfer to and from the host and the contactless UART.

Various host interfaces are implemented to meet different customer requirements.

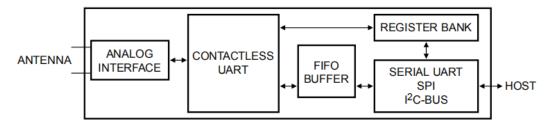



Figure 4-1 Simplified block diagram of the Si523



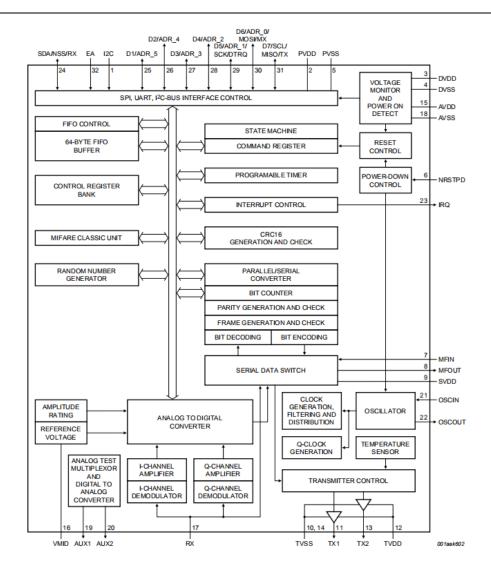



Figure 4-2 Detailed block diagram of the Si523



# 5. Pinning information

Si523 Pinning:

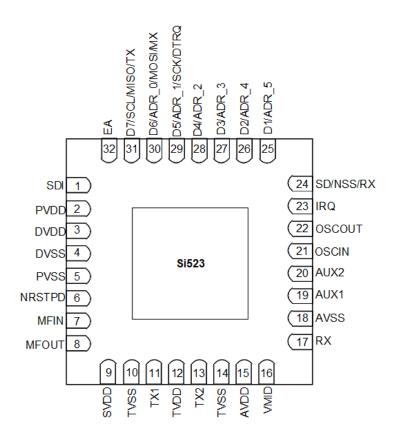



Figure 5.1 Pinning configuration

Table 5-1 Pinning description

| Pin | Symbol | Type[1] | Description                                                                                                                                                                                                                             |
|-----|--------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1   | SDI    | I       | I2C bus input[2]                                                                                                                                                                                                                        |
| 2   | PVDD   | P       | Pad power supply                                                                                                                                                                                                                        |
| 3   | DVDD   | P       | Digital Power Supply                                                                                                                                                                                                                    |
| 4   | DVSS   | P       | Digital Ground                                                                                                                                                                                                                          |
| 5   | PVSS   | P       | Pad power supply ground                                                                                                                                                                                                                 |
| 6   | NRSTPD | I       | Not Reset and Power Down: When LOW, internal current sinks are switched off, the oscillator is inhibited, and the input pads are disconnected from the outside world. With a positive edge on this pin the internal reset phase starts. |
| 7   | MFIN   | I       | Communication Interface Input: accepts a digital, serial data stream                                                                                                                                                                    |



| SVDD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| TVSS P Transmitter Ground: supplies the output stage of TX1  TX1 O Transmitter 1: delivers the modulated 13.56 MHz energy TX2  TVDD P Transmitter Power Supply: supplies the output stage TX2  TX2 O Transmitter 2: delivers the modulated 13.56 MHz energy TX2  TX2 P Transmitter Ground: supplies the output stage of TX1  AVDD P Analog Power Supply  VMID P Internal Reference Voltage: This pin delivers the interpretate voltage.  TRAN I Receiver Input  AVSS P Analog Ground  AUX1 O Auxiliary Outputs: These pins are used for testing.  OSCIN I Crystal Oscillator Input: input to the inverting amproscillator. This pin is also the input for an externally generated to the supplies the output stage of TX1  TX2 O Transmitter 2: delivers the modulated 13.56 MHz energy TX2  TX2 O Transmitter Power Supply: supplies the output stage of TX1  TX2 O Transmitter Power Supply: supplies the output stage of TX1  TX2 O Transmitter Power Supply: supplies the output stage of TX1  AVDD P Analog Ground: This pin delivers the interpretated Province Tx1  TX2 O Transmitter 1: delivers the modulated 13.56 MHz energy TX2  TX2 O Transmitter Power Supply: supplies the output stage of TX1  AVDD P Transmitter 2: delivers the modulated 13.56 MHz energy TX2  AVDD P Transmitter Power Supply: supplies the output stage of TX1  AVDD P Transmitter Power Supply: supplies the output stage of TX1  AVDD P Transmitter Power Supply: supplies the output stage of TX1  TX2 O Transmitter 1: delivers the modulated 13.56 MHz energy TX2  AVDD P Transmitter 2: delivers the modulated 13.56 MHz energy TX2  AVDD P Transmitter 2: delivers the modulated 13.56 MHz energy TX2  TX2 O Transmitter 2: delivers the modulated 13.56 MHz energy TX2  TX2 O Transmitter 1: delivers the modulated 13.56 MHz energy TX2  TX2 O Transmitter 2: delivers the modulated 13.56 MHz energy TX2  TX2 O Transmitter 2: delivers the modulated 13.56 MHz energy TX2  TX2 O Transmitter 2: delivers the modulated 13.56 MHz energy TX2  TX2 O Transmitter 2: delivers the modulated 13.56 MHz energy TX2  TX2 O Transmitt | and TX2        |
| 11 TX1 O Transmitter 1: delivers the modulated 13.56 MHz energy and the supply are supplied to the output stage TX2  13 TX2 O Transmitter 2: delivers the modulated 13.56 MHz energy are supplied to the output stage of TX1  14 TVSS P Transmitter Ground: supplies the output stage of TX1  15 AVDD P Analog Power Supply  16 VMID P Internal Reference Voltage: This pin delivers the interget voltage.  17 RX I Receiver Input  18 AVSS P Analog Ground  19 AUX1 O Auxiliary Outputs: These pins are used for testing.  20 AUX2 O Crystal Oscillator Input: input to the inverting amonoscillator. This pin is also the input for an externally get (fosc = 27.12 MHz).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |
| TVDD P Transmitter Power Supply: supplies the output stage TX2  13 TX2 O Transmitter 2: delivers the modulated 13.56 MHz energy that the temperature of TX1  14 TVSS P Transmitter Ground: supplies the output stage of TX1  15 AVDD P Analog Power Supply  16 VMID P Internal Reference Voltage: This pin delivers the interget voltage.  17 RX I Receiver Input  18 AVSS P Analog Ground  19 AUX1 O Auxiliary Outputs: These pins are used for testing.  20 AUX2 O Crystal Oscillator Input: input to the inverting amproscillator. This pin is also the input for an externally get (fosc = 27.12 MHz).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | gy carrier     |
| 14 TVSS P Transmitter Ground: supplies the output stage of TX1  15 AVDD P Analog Power Supply  16 VMID P Internal Reference Voltage: This pin delivers the intervoltage.  17 RX I Receiver Input  18 AVSS P Analog Ground  19 AUX1 O Auxiliary Outputs: These pins are used for testing.  20 AUX2 O  21 OSCIN I Crystal Oscillator Input: input to the inverting amposcillator. This pin is also the input for an externally generated and input for an external generat |                |
| 15 AVDD P Analog Power Supply  16 VMID P Internal Reference Voltage: This pin delivers the intervoltage.  17 RX I Receiver Input  18 AVSS P Analog Ground  19 AUX1 O Auxiliary Outputs: These pins are used for testing.  20 AUX2 O  21 OSCIN I Crystal Oscillator Input: input to the inverting amposcillator. This pin is also the input for an externally generated to the input for an externally generated and the input for an external generated and the in | gy carrier     |
| 16 VMID P Internal Reference Voltage: This pin delivers the intervoltage.  17 RX I Receiver Input  18 AVSS P Analog Ground  19 AUX1 O Auxiliary Outputs: These pins are used for testing.  20 AUX2 O Crystal Oscillator Input: input to the inverting amposcillator. This pin is also the input for an externally generated to the input for an external generated to the input  | and TX2        |
| rinchial Reference Voltage.  RX I Receiver Input  Receiver Input  AVSS P Analog Ground  AUX1 O Auxiliary Outputs: These pins are used for testing.  AUX2 O Crystal Oscillator Input: input to the inverting amproscillator. This pin is also the input for an externally generated to the input for an external generated to the input for  |                |
| 18 AVSS P Analog Ground  19 AUX1 O Auxiliary Outputs: These pins are used for testing.  20 AUX2 O Crystal Oscillator Input: input to the inverting amproscillator. This pin is also the input for an externally generated to the input for an external generated to the inp | nal reference  |
| 19 AUX1 O Auxiliary Outputs: These pins are used for testing.  20 AUX2 O Crystal Oscillator Input: input to the inverting amproscillator. This pin is also the input for an externally generated the control of the cont |                |
| 20 AUX2 O  21 OSCIN I Crystal Oscillator Input: input to the inverting amproscillator. This pin is also the input for an externally generated (fosc = 27.12 MHz).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |
| OSCIN  I Crystal Oscillator Input: input to the inverting amproscillator. This pin is also the input for an externally generated (fosc = 27.12 MHz).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |
| oscillator. This pin is also the input for an externally get (fosc = 27.12 MHz).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |
| 22 OSCOUT O CONTRACTOR OF THE  |                |
| 22 OSCOUT O Crystal Oscillator Output: Output of the inverting am oscillator.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | plifier of the |
| 23 IRQ O Interrupt Request: output to signal an interrupt event                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| 24 SD I/O I2C bus serial data input and output[2]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |
| NSS I SPI input[2]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |
| RX I UART Address input[2]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |
| 25 D1 I/O Test port[2]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |
| ADR_5 I/O I2C bus address5 input[2]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |
| 26 D2 I/O Test port                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |
| ADR_4 I I2C bus address4 input[2]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |
| 27 D3 I/O Test port                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |
| ADR_3 I I2C bus address3 input[2]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |
| 28 D4 I/O Test port                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |
| ADR_2 I I2C bus address2 input[2]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |
| 29 D5 I/O Test port                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |
| ADR_1 I I2C bus address1 input[2]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |
| SCK I SPI seria clock input l[2]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |





|    | DTRQ  | О   | UART makes a request to controller[2]                         |
|----|-------|-----|---------------------------------------------------------------|
| 30 | D6    | I/O | Test port                                                     |
|    | ADR_0 | I   | I2C bus address0 input[2]                                     |
|    | MOSI  | I/O | SPI Master Out Slave In[2]                                    |
|    | MX    | О   | UART for the output of the controller[2]                      |
| 31 | D7    | I/O | Test port                                                     |
|    | SCL   | I/O | I2C bus clock input/output[2]                                 |
|    | MISO  | I/O | SPI Master In Slave Out[2]                                    |
|    | TX    | 0   | UART Data output to controller[2]                             |
| 32 | EA    | I   | External address input: can be used to define the I2C address |

NOTE: [1] Pin types: I = Input, O = Output, P = Power;

[2] The functions of these pins have another specifications in Chapter 8 Digital interface



# **6.Functional description**

The Si523 transmission module supports the Read/Write mode for ISO/IEC 14443 A and ISO/IEC 14443 B using various transfer speeds and modulation protocols.

Note: All indicated modulation indices and modes in this chapter are system parameters. This means that beside the IC settings a suitable antenna tuning is required to achieve the optimum performance.

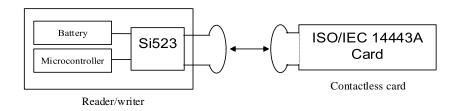



Figure 6-1 Si523 Read/Write mode

### **6.1 ISO 14443A functionality**

The physical level communication is shown below.

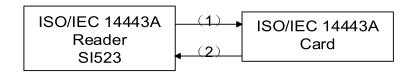



Figure 6-2 ISO/IEC 14443A Read/Write mode communication diagram

The physical parameters are described in Table 6-1.

Table 6-1 Communication overview for ISO/IEC 14443 A reader/writer

| Communicati              | Signal type               | Transfer speed           |                          |                          |                          |  |
|--------------------------|---------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--|
| on direction             |                           | 106kBd                   | 212kBd                   | 424kBd                   | 848kBd                   |  |
| Reader to card (send     | reader side<br>modulation | 100%ASK                  | 100% ASK                 | 100%ASK                  | 100% ASK                 |  |
| data from the Si523 to a | bit encoding              | modified Miller encoding | modified Miller encoding | modified Miller encoding | modified Miller encoding |  |
| card)                    | bit length                | (128/13.56) µs           | (64/13.56) μs            | (32/13.56) µs            | (16/13.56) µs            |  |



| Card to                 | card side    | subcarrier load | subcarrier load | subcarrier load | subcarrier load |
|-------------------------|--------------|-----------------|-----------------|-----------------|-----------------|
| reader                  | modulation   | modulation      | modulation      | modulation      | modulation      |
| (Si523                  | subcarrier   | 13.56MHz/16     | 13.56MHz/16     | 13.56MHz/16     | 13.56MHz/16     |
| receives data<br>from a | frequency    |                 |                 |                 |                 |
| card))                  | bit encoding | Manchester      | BPSK            | BPSK            | BPSK            |

The Si523's contactless UART and dedicated external host must manage the complete ISO/IEC 14443 A protocol. The internal CRC coprocessor calculates the CRC value based on ISO/IEC 14443 A-3 and handles parity generation internally based on the transmission rates.

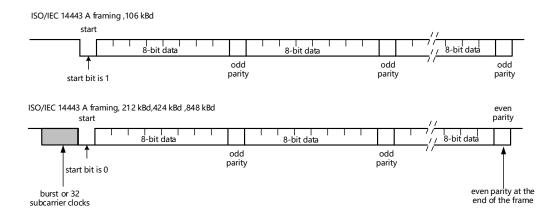



Figure 6-3 Data coding and framing according to ISO/IEC 14443 A

# 6.2 ISO/IEC 14443 B functionality

The Si523 reader IC fully supports international standard ISO 14443 which includes communication schemes ISO 14443 A and ISO 14443 B.

Table 6-3 Communication overview for ISO 14443B reader/writer

| Communicati          | Signal type               | Transfer speed |               |               |               |
|----------------------|---------------------------|----------------|---------------|---------------|---------------|
| on direction         |                           |                |               |               |               |
|                      |                           | 106kBd         | 212kBd        | 424kBd        | 424kBd        |
| Reader to card (send | reader side<br>modulation | 10%ASK         | 10%ASK        | 10%ASK        | 10%ASK        |
| data from the        | Bit encoding              | NRZ -L         | NRZ -L        | NRZ -L        | NRZ -L        |
| Si523 to a card)     | Bit length                | (128/13.56) µs | (64/13.56) μs | (32/13.56) μs | (16/13.56) μs |



| Card to reader (Si523      | card side<br>modulation | subcarrier load<br>modulation | subcarrier load<br>modulation | subcarrier load<br>modulation | subcarrier load<br>modulation |
|----------------------------|-------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|
| receives data from a card) | subcarrier<br>frequency | 13.56MHz/16                   | 13.56MHz/16                   | 13.56MHz/16                   | 13.56MHz/16                   |
|                            | Bit encoding            | BPSK                          | BPSK                          | BPSK                          | BPSK                          |

# 6.3 Auto Low Power Polling Loop

Auto Low Power Polling Loop consists of 3 parts ——listen, polling and sleep, where listen and sleep can be enabled separately, can achieve extremely low power consumption automatic field and card inspection under a 500ms polling cycle, its average current is only 3.5uA, which can automatically detect 13.56MHz RF field and RF card at lowest power consumption.

The schematic diagram is as follows:

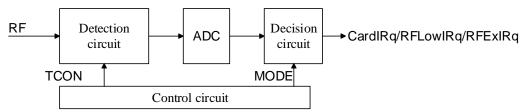



Figure 6-4 ACD function diagram

The implementation principle of polling and listening functions can be found in the description of the detection circuit, T\_CON during the polling and listening stages can be configured separately.



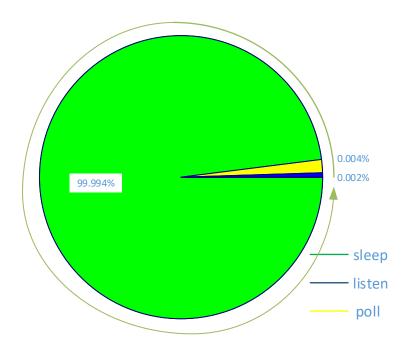



Figure 6-5 schematic diagram of the polling process

According to user settings, 2-5 listening polls after entering polling mode can be ignored.

### 1) Listening stage

Si523 is searching for readers at this stage. Si523 does not transmit carriers and detects if there are 13.56MHz carriers transmitted by other external readers. If its amplitude is greater than RFExTreshold, stop executing Loop and generate an interrupt.

### 2) Polling stage

Si523 is searching for RF cards at this stage. Si523 first transmits the carrier and then detects the amplitude change of the 13.56MHz carrier. If the amplitude change of the carrier exceeds the set threshold, it is determined have a card and an interrupt is generated.

- a) Card checking mode: can be set to automatic mode and absolute value mode
- Automatic mode Compare the carrier amplitude detected this time with the carrier amplitude detected last time, and if the difference exceeds the set threshold, it will be determined that there is a card.
- Absolute value mode Compare the detected carrier amplitude with the set



value, and if the difference exceeds the set threshold, it is determined that there is a card.

- b) Card checking direction: The card checking direction can be set to three modes as needed:
  - Rising edge:carrier amplitude with card is greater than that without card
  - Falling edge:carrier amplitude with card is smaller than that without card
  - ➤ Double edge carrier amplitude with card is greater or smaller than that without card
  - > Field anomaly judgment
  - 3) Sleep stage: The chip is in a sleep state.

Related registers: 0x01, 0x0F A/B/C/D/E/F/G/I/J/K/L/M/N/O/P

### 6.3.1 RF reference value automatic acquisition method

Automatically obtain through commands:

- By writing ADC EXCUTE command to obtain, command code is 0110b
- Waiting for more than 100us
- Writing ADC\_EXCUTE again, read 0X0F\_G is the required reference value

#### 6.3.2 Detection circuit

The principle of the detection circuit is as follows::

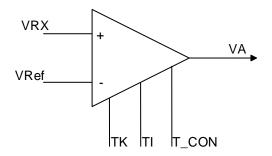



Figure 6-6 Detection circuit diagram



VRX: field strength of antenna terminal;

VRef: ADC reference voltage, controlled by T CON;

VA: The voltage sent by the detection module to the ADC.

### 6.3.3 Oscillator monitoring

During the polling process, when the crystal oscillator fails to start up for 4 consecutive times, a crystal oscillator failure interrupt is generated. After an interrupt occurs, the chip does not wake up, but continues to execute Polling Loop. Once the OSC vibrates, the internal counter will reset.

The relevant registers: 0x0F F/0x0F O/0x0F P.

#### 6.3.4 3K RC

Timed wake-up is driven by 3K RC, which only operates in Polling Loop.

Clock calibration - divided into automatic calibration and manual calibration:

- Automatic calibration: Automatically calibrate by writing the MStart command with the command code 0101b;
- Manual calibration: Perform manual calibration by configuring registers.

Related register: 0x0F A/0x0F E/0x0F F  $\circ$ 

### 6.3.5 ARI

This function is used to indicate whether the RF field is turned on during card search. ARI opens 1 us earlier than the RF field and closes 1 us later than the RF field. ARI function and D1 pin multiplexing.

Related register:  $0x0F L/0x0F J_{\circ}$ 

### 6.3.6 ACD configuration monitoring

Before entering polling mode, set ACCEn to 1 to enable configuration of monitoring. Once the data is lost, ACCErr will be generated and transmitted through IRQ. Before updating the polling configuration, ACCEn must be pulled low. Pull low ACCEn, ACCErr will be automatically cleared.



# 7. Register set

# 7.1 Registers overview

**Table7-1** registers overview

| Address (HEX) | Register Name      | Function                                                              |  |  |  |  |
|---------------|--------------------|-----------------------------------------------------------------------|--|--|--|--|
| PAGE0: C      | command and Status |                                                                       |  |  |  |  |
| 0             | PageReg            | Selects the register page                                             |  |  |  |  |
| 1             | CommandReg         | Starts and stops command execution                                    |  |  |  |  |
| 2             | CommlRqReg         | Controls bits to enable and disable the passing of Interrupt Requests |  |  |  |  |
| 3             | DivIEnReg          | Controls bits to enable and disable the passing of Interrupt Requests |  |  |  |  |
| 4             | ComIRqReg          | Contains Interrupt Request bits                                       |  |  |  |  |
| 5             | DivlRqReg          | Contains Interrupt Request bits                                       |  |  |  |  |
| 6             | ErrorReg           | Error bits showing the error status of the last command executed      |  |  |  |  |
| 7             | Status1Reg         | Contains status bits for communication                                |  |  |  |  |
| 8             | Status2Reg         | Contains status bits of the receiver and transmitter                  |  |  |  |  |
| 9             | FIFODataReg        | In- and output of 64 byte FIFO-buffer                                 |  |  |  |  |
| A             | FIFOLevelReg       | Indicates the number of bytes stored in the FIFO                      |  |  |  |  |
| В             | WaterLevelReg      | Defines the level for FIFO under- and overflow warning                |  |  |  |  |
| С             | ControlReg         | Contains miscellaneous Control Registers                              |  |  |  |  |
| D             | BitFramingReg      | Adjustments for bit oriented frames                                   |  |  |  |  |
| Е             | CollReg            | Bit position of the first bit collision detected on the RF-interface  |  |  |  |  |
| F_A           | RCCfg1             | 3K RC configuration1                                                  |  |  |  |  |
| F_B           | ACRDCfg            | RF card and RF field detection                                        |  |  |  |  |
| F_C           | ManRefVal          | Manual mode reference value                                           |  |  |  |  |
| F_D           | ValDelta           | Field strength variation range                                        |  |  |  |  |
| F_E           | ADCCfg             | Polling ADC configuration                                             |  |  |  |  |
| F_F           | RCCfg2             | 3K RC configuration2                                                  |  |  |  |  |
| F_G           | ADCVal             | Polling ADC sanmple value                                             |  |  |  |  |
| F_H           | WdtCnt             | Watchdog interval setting                                             |  |  |  |  |
| F_I           | ARI                | ACRD                                                                  |  |  |  |  |
| F_J           | RFU                | -                                                                     |  |  |  |  |
|               |                    |                                                                       |  |  |  |  |

# **Si523**

| ı          |                |                                                                      |  |  |  |
|------------|----------------|----------------------------------------------------------------------|--|--|--|
| F_K        | LPDCfg1        | Sensor configuration1                                                |  |  |  |
| F_L        | LPDCfg2        | Sensor configuration2                                                |  |  |  |
| F_M        | RFLowDetect    | Low RF detection during ACD                                          |  |  |  |
| F_N        | ExRFDetect     | External RF detection during ACD                                     |  |  |  |
| F_O        | ACRDIRqEn      | ACD interrupt enable                                                 |  |  |  |
| F_P        | ACRDIRq        | ACD interrupt                                                        |  |  |  |
| PAGE1: com | nmand          |                                                                      |  |  |  |
| 0          | PageReg        | Selects the register page                                            |  |  |  |
| 1          | ModeReg        | Defines general modes for transmitting and receiving                 |  |  |  |
| 2          | TxModeReg      | Defines the data rate and framing during transmission                |  |  |  |
| 3          | RxModeReg      | Defines the data rate and framing during receiving                   |  |  |  |
| 4          | TxControlReg   | Controls the logical behavior of the antenna driver pins TX1 and TX2 |  |  |  |
| 5          | TxAutoReg      | Controls the setting of the antenna drivers                          |  |  |  |
| 6          | TxSelReg       | Selects the internal sources for the antenna driver                  |  |  |  |
| 7          | RxSelReg       | Selects internal receiver settings                                   |  |  |  |
| 8          | RxTH           | Selects thresholds for the bit decoder                               |  |  |  |
| 9          | DemodReg       | Defines demodulator settings                                         |  |  |  |
| A          | RFU            | -                                                                    |  |  |  |
| В          | RFU            | -                                                                    |  |  |  |
| С          | MifNFCReg      | Controls the communication in ISO/IEC 14443 A                        |  |  |  |
| D          | Mfrx           | Allows manual fine tuning of the internal receiver                   |  |  |  |
| Е          | TypeBReg       | Configure the ISO/IEC 14443 B                                        |  |  |  |
| F          | SerialSpeedReg | Selects the speed of the serial UART interface                       |  |  |  |
| PAGE2: con | figuration     |                                                                      |  |  |  |
| 0          | PageReg        | Selects the register page                                            |  |  |  |
| 1          | CRCResultReg   | Shows the actual MSB and LSB values of the CRC calculation           |  |  |  |
| 2          | , c            |                                                                      |  |  |  |
| 3          | GsNOffReg      | Selects the conductance of the antenna driver pins TX1 and TX2 for   |  |  |  |
|            |                | modulation, when the driver is switched off                          |  |  |  |
| 4          | ModWidthReg    | Controls the setting of the ModWidth                                 |  |  |  |
| 5          | RFU            | -                                                                    |  |  |  |
| 6          | RFCfgReg       | Configures the receiver gain and RF level                            |  |  |  |
| 7          | GsNOnReg       | Selects the conductance of the antenna driver pins TX1 and TX2 for   |  |  |  |



|            |                     | modulation when the drivers are switched on                                                   |  |  |  |  |
|------------|---------------------|-----------------------------------------------------------------------------------------------|--|--|--|--|
| 8          | CWGsPReg            | defines the conductance of the antenna driver pins TX1 and TX2 for modulation when not active |  |  |  |  |
| 9          | ModGsPReg           | defines the conductance of the p-driver output during modulation                              |  |  |  |  |
| A          | TMode Register      | Defines settings for the internal timer                                                       |  |  |  |  |
| В          | TPrescaler Register |                                                                                               |  |  |  |  |
| С          | TRloadReg           | Describes the 16-bit timer reload value                                                       |  |  |  |  |
| D          |                     |                                                                                               |  |  |  |  |
| Е          | TCounterValReg      | Shows the 16-bit actual timer value                                                           |  |  |  |  |
| F          |                     |                                                                                               |  |  |  |  |
| PAGE3: tes | ting                |                                                                                               |  |  |  |  |
| 0          | PageReg             | Selects the register page                                                                     |  |  |  |  |
| 1          | CommTest1Reg        | General test signal configuration                                                             |  |  |  |  |
| 2          | TestSel2Reg         | General test signal configuration and PRBS control                                            |  |  |  |  |
| 3          | TestPinEnReg        | Enables pin output driver on 8-bit parallel bus (Note: For serial interfaces only)            |  |  |  |  |
| 4          | TestPinValueReg     | Defines the values for the 8-bit parallel bus when it is used as I/O bus                      |  |  |  |  |
| 5          | TestBusReg          | Shows the status of the internal testbus                                                      |  |  |  |  |
| 6          | SelfTestReg         | Controls the digital selftest                                                                 |  |  |  |  |
| 7          | VersionReg          | Shows the version                                                                             |  |  |  |  |
| 8          | AnalogTestReg       | Controls the pins AUX1 and AUX2                                                               |  |  |  |  |
| 9          | TestDAC1Reg         | Defines the test value for the TestDAC1                                                       |  |  |  |  |
| A          | TestDAC2Reg         | Defines the test value for the TestDAC2                                                       |  |  |  |  |
| В          | TestADCReg          | Shows the actual value of ADC I and Q                                                         |  |  |  |  |
| C-F        | RFT                 | Reserved for production tests                                                                 |  |  |  |  |

Depending on the functionality of a register, the access conditions to the register can vary. In principle bits with same behavior are grouped in common registers. In Table 7-2 the access conditions are described.

Table 7-2 Behavior of register bits and its designation

| Abbreviation | Behavior | Description |
|--------------|----------|-------------|
|              |          |             |



| r/w | read and | These bits can be written and read by the microcontroller. Since they are used only for |
|-----|----------|-----------------------------------------------------------------------------------------|
|     | write    | control means, there content is not influenced by internal state machines, e.g. the     |
|     |          | PageSelect-Register may be written and read by the microcontroller. It will also be     |
|     |          | read by internal state machines, but never changed by them.                             |
| dy  | dynamic  | These bits can be written and read by the microcontroller. Nevertheless, they may also  |
|     |          | be written automatically by internal state machines, e.g. the Command-Register          |
|     |          | changes its value automatically after the execution of the actual command.              |
| r   | Read     | These registers hold bits, which value is determined by internal states only, e.g. the  |
|     | only     | CRCReady bit can not be written from external but shows internal states.                |
| w   | Write    | Reading these registers returns always ZERO.                                            |
|     | only     |                                                                                         |
| RFU | -        | These registers are reserved for future use and shall not be changed.                   |
| RFT | -        | These registers are reserved for production tests and shall not be changed.             |

# 7.2 PAGE0: Command and status

# 7.2.1 PageReg

Table 7-3 Page Reg Address: 00h reset value: 00h

|        | 7                 | 6                 | 5         | 4   | 3   | 2   | 1          | 0   |
|--------|-------------------|-------------------|-----------|-----|-----|-----|------------|-----|
|        | UsePage<br>Select | Regbank<br>Select | RegSelect |     |     |     | PageSelect |     |
| Access | r/w               | r/w               | r/w       | r/w | r/w | r/w | r/w        | r/w |

**Table7-4** PageReg Bit Description

| Bit | Symbol        | Description                                                                                 |
|-----|---------------|---------------------------------------------------------------------------------------------|
| 7   | UsePageSelect | Set to logic 1, the value of PageSelect is used as register address A5 and A4. The LSB-     |
|     |               | bits of the register address are defined by the address pins or the internal address latch, |



|     |               | respectively. Set to logic 0, the whole content of the internal address latch defines the register address.                                                        |
|-----|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6   | RegbankSelect | Set to logic 1, it is used to read/write 0Fh register set                                                                                                          |
| 5:2 | RegSelect     | 0000: read/write register set A; 0001: read/write register set B;                                                                                                  |
|     |               |                                                                                                                                                                    |
|     |               | 1111: read/write register set P                                                                                                                                    |
| 1:0 | PageSelect    | The value of PageSelect is used only if UsePageSelect is set to logic 1. In this case it specifies the register page (which is A5 and A4 of the register address). |

# 7.2.2 CommandReg

Starts and stops command execution.

Table 7-5 Command Reg address: 01h reset value: 20h

|        | 7        | 6   | 5      | 4     | 3  | 2   | 1     | 0  |
|--------|----------|-----|--------|-------|----|-----|-------|----|
|        | AutoPoll | 0   | RevOff | Power |    | Cor | nmand |    |
|        |          |     |        | Down  |    |     |       |    |
| Access | dy       | RFU | r/w    | dy    | dy | dy  | dy    | dy |

Table 7-6 Description of Command Reg bits

| Bit | Symbol    | Description                                                                            |
|-----|-----------|----------------------------------------------------------------------------------------|
| 7   | AutoPoll  | 0: Off 1: On                                                                           |
|     |           | Automatically start polling whenever an external cycle signal rising edge is detected. |
|     |           | During the polling ,whenever field strength is detected, AutoPoll is set to 0, and     |
|     |           | generate an interrupt signal,otherwise,enter PowerDown mode, waiting for the next      |
|     |           | external cycle signal.                                                                 |
| 6   | -         | Reserved for future use                                                                |
| 5   | RcvOff    | Set to logic 1, the analog part of the receiver is switched off.                       |
| 4   | PowerDown | Set to logic 1, Soft Power-down mode is entered.                                       |



|     |         | Set to logic 0, the Si523 starts the wake up procedure. During this procedure this bit still shows a 1. A 0 indicates that the Si523 is ready for operations.  NOTE: The bit Power Down cannot be set, when the command |
|-----|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |         | SoftReset has been activated.                                                                                                                                                                                           |
| 3:0 | Command | Activates a command according to the Command Code. Reading this                                                                                                                                                         |
|     |         | register shows which command is actually executed.                                                                                                                                                                      |

# 7.2.3 CommlEnReg

Control bits to enable and disable the passing of interrupt requests.

Table7-7 CommlEnReg Address: 02h reset value: 80h

|        | 7      | 6     | 5     | 4       | 3          | 2          | 1      | 0        |
|--------|--------|-------|-------|---------|------------|------------|--------|----------|
|        | IRqInv | TxIEn | RxIEn | IdleIEn | HiAlertIEn | LoAlertIEn | ErrIEn | TimerIEn |
| Access | r/w    | r/w   | r/w   | r/w     | r/w        | r/w        | r/w    | r/w      |

Table 7-8 Description of CommlEnReg bits

| <b>D</b> : |            |                                                                                           |
|------------|------------|-------------------------------------------------------------------------------------------|
| Bit        | Symbol     | Description                                                                               |
| 7          | IRqInv     | Set to logic 1, the signal on pin IRQ is inverted with respect to bit IRq in the register |
|            |            | Status1Reg. Set to logic 0, the signal on pin IRQ is equal to bit IRq. In combination     |
|            |            | with bit IRqPushPull in register DivIEnReg, the default value of 1 ensures, that the      |
|            |            | output level on pin IRQ is 3-state.                                                       |
| 6          | TxIEn      | Allows the transmitter interrupt request (indicated by bit TxIRq) to be propagated to     |
|            |            | pin IRQ.                                                                                  |
| 5          | RxIEn      | Allows the receiver interrupt request (indicated by bit RxIRq) to be propagated to        |
|            |            | pin IRQ.                                                                                  |
| 4          | IdleIEn    | Allows the idle interrupt request (indicated by bit IdleIRq) to be propagated to pin IRQ. |
|            |            | Inv.                                                                                      |
| 3          | HiAlertIEn | Allows the high alert interrupt request (indicated by bit HiAlertIRq) to be               |
|            |            | propagated to pin IRQ.                                                                    |



| 2 | LoAlertIEn | Allows the low alert interrupt request (indicated by bit LoAlertIRq) to be propagated       |
|---|------------|---------------------------------------------------------------------------------------------|
|   |            | to pin IRQ.                                                                                 |
| 1 | ErrIEn     | Allows the error interrupt request (indicated by bit ErrIRq) to be propagated to pin IRQ.   |
| 0 | TimerIEn   | Allows the timer interrupt request (indicated by bit TimerIRq) to be propagated to pin IRQ. |

# 7.2.4 DivlEnReg

Control bits to enable and disable the passing of interrupt requests.

Table 7-9 DivIrqReg address: 03h reset value: 00h

|        | 7       | 6         | 5        | 4           | 3   | 2      | 1   | 0   |
|--------|---------|-----------|----------|-------------|-----|--------|-----|-----|
|        | IRQPush | CardIRqEn | WdtIRqEn | SiginActIEn | RFU | CRCIEn | RFU | RFU |
|        | Pull    |           |          |             |     |        |     |     |
| Access | r/w     | r/w       | r/w      | r/w         | -   | r/w    | -   | -   |

Table 7-10 Description of DivIEnReg bits

|     |             | Table 7 10 Description of Dividinces bits                             |
|-----|-------------|-----------------------------------------------------------------------|
| Bit | Symbol      | Description                                                           |
| 7   | IRQPushPull | Set to logic 1, the pin IRQ works as standard CMOS output pad.        |
|     |             | Set to logic 0, the pin IRQ works as open drain output pad.           |
| 6   | CardIRqEn   | Field strength interrupt                                              |
|     |             | 1: enable                                                             |
|     |             | 0: disable                                                            |
| 5   | WdtIRqEn    | Timed wake-up enable                                                  |
|     |             | 1: enable                                                             |
|     |             | 0: disable                                                            |
| 4   | MFINActIEn  | Allows the MFIN active interrupt request to be propagated to pin IRQ. |
| 3   | RFU         | -                                                                     |



| 2 | CRCIEn | Allows the CRC interrupt request (indicated by bit CRCIRq) to be propagated to pin IRQ. |
|---|--------|-----------------------------------------------------------------------------------------|
| 1 | RFU    | -                                                                                       |
| 0 | RFU    | -                                                                                       |

# 7.2.5 CommlRqReg

Contains Interrupt Request bits.

Table 7-11 CommlRqReg address: 04h reset value: 14h

|        | 7    | 6     | 5     | 4       | 3          | 2          | 1      | 0        |
|--------|------|-------|-------|---------|------------|------------|--------|----------|
|        | Set1 | TxIRq | RxIRq | IdleIRq | HiAlertIRq | LoAlertIRq | ErrIRq | TimerIRq |
| Access | w    | dy    | dy    | dy      | dy         | dy         | dy     | dy       |

Table 7-12 Description of CommlRqReg

|     | 1          | Table 7-12 Description of Committy Reg                                               |
|-----|------------|--------------------------------------------------------------------------------------|
| Bit | Symbol     | Description                                                                          |
| 7   | Set1       | Set to logic 1, Set1 defines that the marked bits in the register CommIRqReg         |
|     |            | are set.                                                                             |
|     |            | Set to logic 0, Set1 defines, that the marked bits in the register CommIRqReg        |
|     |            | are cleared.                                                                         |
| 6   | TxIRq      | Set to logic 1 immediately after the last bit of the transmitted data was sent out.  |
| 5   | RxIRq      | Set to logic 1 when the receiver detects the end of a valid datastream.              |
|     |            | If the bit RxNoErr in register RxModeReg is set to logic 1, bit RxIRq is only set to |
|     |            | logic 1 when data bytes are available in the FIFO.                                   |
| 4   | IdleIRq    | Set to logic 1, when a command terminates by itself e.g. when the                    |
|     |            | CommandReg changes its value from any command to the Idle Command.                   |
|     |            | If an unknown command is started, the CommandReg changes its content to              |
|     |            | the idle state and the bit IdleIRq is set. Starting the Idle Command by the          |
|     |            | microcontroller does not set bit IdleIRq.                                            |
| 3   | HiAlertIRq | Set to logic 1, when bit HiAlert in register Status1Reg is set. In opposition to     |
|     |            | HiAlert, HiAlertIRq stores this event and can only be reset as indicated by bit      |



|   |            | Set1.                                                                                                                                                                  |
|---|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2 | LoAlertIRq | Set to logic 1, when bit LoAlert in register Status1Reg is set. In opposition to LoAlert, LoAlertIRq stores this event and can only be reset as indicated by bit Set1. |
| 1 | ErrIRq     | Set to logic 1 if any error bit in the Error Register is set.                                                                                                          |
| 0 | TimerIRq   | Set to logic 1 when the timer decrements the TimerValue Register to zero.                                                                                              |

# 7.2.6 DivlRqReg

Contains Interrupt Request bits .

Table 7-10 DivlRqReg address: 05h reset value: xxh, 000x00xxb

|        | 7    | 6       | 5      | 4           | 3   | 2      | 1   | 0   |
|--------|------|---------|--------|-------------|-----|--------|-----|-----|
|        | Set2 | CardIRq | WdtIRq | SiginActIRq | RFU | CRCIRq | RFU | RFU |
| Access | W    | dy      | dy     | dy          | -   | dy     | -   | -   |

Table 7-11 Description of DivlRqReg bits

| Bit | Symbol     | Description                                                                        |
|-----|------------|------------------------------------------------------------------------------------|
| 7   | Set2       | Set to logic 1, Set2 defines that the marked bits in the register                  |
|     |            | DivIRqReg are set.                                                                 |
|     |            | Set to logic 0, Set2 defines that the marked bits in the register                  |
|     |            | DivIRqReg are cleared                                                              |
| 6   | CardIRq    | Field strength interrupt                                                           |
|     |            | 1: card present                                                                    |
|     |            | 0: no card                                                                         |
| 5   | WdtIRq     | Timed wake-up interrupt                                                            |
|     |            | 1: occurrence                                                                      |
|     |            | 0: not occurred                                                                    |
| 4   | MFINActIRq | Set to logic 1, when MFIN is active. This interrupt is set when either a rising or |
|     |            | falling signal edge is detected.                                                   |
| 3   | RFU        | -                                                                                  |
| 2   | CRCIRq     | Set to logic 1, when the CRC command is active and all data are                    |
|     |            | processed.                                                                         |
| 1   | RFU        | -                                                                                  |
| 0   | RFU        | -                                                                                  |



### 7.2.7 ErrorReg

Error bit register showing the error status of the last command executed.

Table7-13 ErrorReg Address: 06h reset value: 00h

|        | 7     | 6       | 5   | 4          | 3       | 2      | 1         | 0           |
|--------|-------|---------|-----|------------|---------|--------|-----------|-------------|
|        | WrErr | TempErr | RFU | BufferOvfl | CollErr | CRCErr | ParityErr | ProtocolErr |
| Access | r     | r       | 1   | r          | r       | r      | r         | r           |

|     |             | Table7-14 ErrorReg Bit Description                                                               |
|-----|-------------|--------------------------------------------------------------------------------------------------|
| Bit | Symbol      | Description                                                                                      |
| 7   | WrErr       | Set to logic 1 if data is written into FIFO by the host controller during the time between       |
|     |             | sending the last bit on the RF interface and receiving the last bit on the RF interface.         |
| 6   | TempErr     | Set to logic 1, if the internal temperature sensor detects overheating.                          |
|     |             | In this case, the antenna drivers are switched off automatically.                                |
| 5   | RFU         | -                                                                                                |
| 4   | BufferOvfl  | Set to logic 1, if the host controller or a Si523's internal state machine (e.g. receiver)       |
|     |             | tries to write data into the FIFO-buffer although the FIFO-buffer is already full.               |
| 3   | CollErr     | Set to logic 1, if a bit-collision is detected. It is cleared automatically at receiver start-up |
|     |             | phase. This bit is only valid during the bitwise anticollision at 106 kbit/s. During             |
|     |             | communication schemes at 212 and 424 kbit/s this bit is always set to logic 1.                   |
| 2   | CRCErr      | Set to logic 1, if bit RxCRCEn in register RxModeReg is set and the CRC calculation              |
|     |             | fails. It is cleared to 0 automatically at receiver start-up phase.                              |
| 1   | ParityErr   | Set to logic 1, if the parity check has failed. It is cleared automatically at receiver start-   |
|     |             | up phase. Only valid for ISO/IEC 14443A or NFCIP-1 communication at 106 kbit.                    |
| 0   | ProtocolErr | Set to logic 1 if the SOF is incorrect. It is cleared automatically at receiver start-up phase.  |
|     |             | The bit is only valid for 106 kbit in Active and Passive Communication mode.                     |

NOTE: Command execution will clear all error bits except for bit TempErr. A setting by software is impossible.



## 7.2.8 Status1Reg

Contains status bits of the CRC, Interrupt and FIFO-buffer.

Table7-15 Status1Reg Address: 07h reset value: xxh, x100x01xb

|        | 7   | 6     | 5        | 4   | 3        | 2   | 1       | 0       |
|--------|-----|-------|----------|-----|----------|-----|---------|---------|
|        | RFU | CRCOk | CRCReady | IRq | TRunning | RFU | HiAlert | LoAlert |
| Access | -   | r     | r        | r   | r        | -   | r       | r       |

Table 7-16 Status 1 Reg Bit Description

| 1   | 1        | 1able/-16 Status1Reg Bit Description                                                                                                                                                                                                                                                                             |
|-----|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Bit | Symbol   | Description                                                                                                                                                                                                                                                                                                      |
| 7   | RFU      | -                                                                                                                                                                                                                                                                                                                |
| 6   | CRCOk    | Set to logic 1, if the CRC Result is zero. For data transmission and reception the bit CRCOk is undefined (use CRCErr in register ErrorReg). CRCOk indicates the status of the CRC co-processor, during calculation the value changes to ZERO, when the calculation is done correctly, the value changes to ONE. |
| 5   | CRCReady | Set to logic 1, when the CRC calculation has finished. This bit is only valid for the CRC co-processor calculation using the command CalcCRC.                                                                                                                                                                    |
| 4   | IRq      | This bit shows, if any interrupt source requests attention (with respect to the setting of the interrupt enable bits, see register CommIEnReg and DivIEnReg).                                                                                                                                                    |
| 3   | TRunning | Set to logic 1, if the Si523's timer unit is running, e.g. the timer will decrement the TCounterValReg with the next timer clock.  NOTE: In the gated mode the bit TRunning is set to logic 1, when the timer is enabled by the register bits. This bit is not influenced by the gated signal.                   |
| 2   | RFU      | -                                                                                                                                                                                                                                                                                                                |
| 1   | HiAlert  | Set to logic 1, when the number of bytes stored in the FIFO-buffer fulfills the following equation:HiAlert = (64-FIFOLength)≤WaterLevel                                                                                                                                                                          |
| 0   | LoAlert  | Set to logic 1, when the number of bytes stored in the FIFO-buffer fulfills the following equation: LoAlert = FIFOLength \( \) WaterLevel                                                                                                                                                                        |



## 7.2.9 Status2Reg

Status bits of receiver, transmitter, and data detectors

Table7-17 Status2Reg Address: 08h reset value: 00h

|        | 7             | 6          | 5   | 4   | 3   | 2 | 1         | 0  |
|--------|---------------|------------|-----|-----|-----|---|-----------|----|
|        | TempSensClear | I2CForceHS | RFU | RFU | RFU | M | Iodem Sta | te |
| Access | r/w           | r/w        | -   | -   | -   | r | r         | r  |

Table 7-18 Status 2 Reg Bit Description

|     | Table /- 18 Status 2 Reg Bit Description |                                                                                                                                                                                                      |                                                                                                               |  |  |  |
|-----|------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|--|--|--|
| Bit | Symbol                                   | Description                                                                                                                                                                                          | on                                                                                                            |  |  |  |
| 7   | TempSensClear                            |                                                                                                                                                                                                      | Set to logic 1, this bit clears the temperature error, if the temperature is below the alarm limit of 125 °C. |  |  |  |
| 6   | I2CForceHS                               | I2C input filter settings. Set to logic 1, the I2C input filter is set to the High-speed mode independent of the I2C protocol. Set to logic 0, the I2C input filter is set to the used I2C protocol. |                                                                                                               |  |  |  |
| 5:3 | RFU                                      | -                                                                                                                                                                                                    |                                                                                                               |  |  |  |
| 2:0 | Modem State                              | ModemS                                                                                                                                                                                               | tate shows the state of the transmitter and receiver state machines.                                          |  |  |  |
|     |                                          | Value                                                                                                                                                                                                | Description                                                                                                   |  |  |  |
|     |                                          | 000                                                                                                                                                                                                  | IDLE                                                                                                          |  |  |  |
|     |                                          | 001                                                                                                                                                                                                  | Wait for StartSend in register BitFramingReg                                                                  |  |  |  |
|     |                                          | 010                                                                                                                                                                                                  | TxWait: Wait until RF field is present, if the bit TxWaitRF is                                                |  |  |  |
|     |                                          |                                                                                                                                                                                                      | set to logic 1. The minimum time for TxWait is defined by the                                                 |  |  |  |
|     |                                          |                                                                                                                                                                                                      | TxWaitReg register.                                                                                           |  |  |  |
|     |                                          | 011                                                                                                                                                                                                  | Sending                                                                                                       |  |  |  |
|     |                                          | 100                                                                                                                                                                                                  | RxWait: Wait until RF field is present, if the bit RxWaitRF is                                                |  |  |  |
|     |                                          |                                                                                                                                                                                                      | set to logic 1. The minimum time for RxWait is defined by the                                                 |  |  |  |
|     |                                          |                                                                                                                                                                                                      | RxWait in the RxSelReg register.                                                                              |  |  |  |
|     |                                          | 101                                                                                                                                                                                                  | Wait for data                                                                                                 |  |  |  |
|     |                                          | 110                                                                                                                                                                                                  | Receiving                                                                                                     |  |  |  |



### 7.2.10 FIFODataReg

In and output of 64 byte FIFO-buffer.

Table7-19 FIFODataReg Address: 09h reset value: xxh, xxxxxxxxb

|        | 7     | 6    | 5  | 4  | 3  | 2  | 1  | 0  |
|--------|-------|------|----|----|----|----|----|----|
|        | FIFOL | )ata |    |    |    |    |    |    |
| Access | dy    | dy   | dy | dy | dy | dy | dy | dy |

Table 7-20 FIFOD at a Reg Bit Description

|   | Bit | Symbol   | Description                                                                           |
|---|-----|----------|---------------------------------------------------------------------------------------|
| ŀ | Dit | Symbol   | Description                                                                           |
|   | 7:0 | FIFOData | Data input and output port for the internal 64 byte FIFO buffer. The FIFO buffer acts |
|   |     |          | as parallel in/parallel out converter for all serial data stream in and outputs.      |

### 7.2.11 FIFOLevelReg

Indicates the number of bytes stored in the FIFO.

Table 7-21 Page Reg Address: 0Ah reset value: 00h

|        | 7           | 6 | 5 | 4 | 3      | 2   | 1 | 0 |
|--------|-------------|---|---|---|--------|-----|---|---|
|        | FlushBuffer |   |   |   | FIFOLe | vel |   |   |
| Access | W           | r | r | r | r      | r   | r | r |

**Table7-22 PageReg Bit Description** 

| Bit | Symbol      | Description                                                                                                                                                                         |
|-----|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7   | FlushBuffer | Set to logic 1, this bit clears the internal FIFO-bufferss read and write pointer and the bit BufferOvfl in the register ErrReg immediately. Reading this bit will always return 0. |
| 6:0 | FIFOLevel   | Indicates the number of bytes stored in the FIFO-buffer. Writing to the FIFODataReg increments, reading decrements the FIFOLevel.                                                   |



### 7.2.12 WaterLevelReg

Defines the level for FIFO under- and overflow warning.

Table7-23 WaterLevelReg Address: 0Bh reset value: 08h

|        | 7   | 6   | 5   | 4   | 3   | 2        | 1   | 0   |
|--------|-----|-----|-----|-----|-----|----------|-----|-----|
|        | 0   | 0   |     |     | Wa  | terLevel |     |     |
| Access | RFU | RFU | r/w | r/w | r/w | r/w      | r/w | r/w |

Table 7-24 Water Level Reg Bit Description

|     | Tuble? 21 Water Deventing Die Description |                                                                                      |  |  |  |  |  |  |
|-----|-------------------------------------------|--------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Bit | Symbol                                    | Description                                                                          |  |  |  |  |  |  |
| 7:6 | -                                         | Reserved for future use.                                                             |  |  |  |  |  |  |
| 5:0 | WaterLevel                                | This register defines a warning level to indicate a FIFO-buffer over- or underflow:  |  |  |  |  |  |  |
|     |                                           | The bit HiAlert in Status1Reg is set to logic 1, if the remaining number of bytes in |  |  |  |  |  |  |
|     |                                           | the FIFO-buffer space is equal or less than the defined number of WaterLevel bytes.  |  |  |  |  |  |  |
|     |                                           | The bit LoAlert in Status1Reg is set to logic 1, if equal or less than               |  |  |  |  |  |  |
|     |                                           | WaterLevel bytes are in the FIFO.                                                    |  |  |  |  |  |  |

## 7.2.13 ControlReg

Control bit o

Table7-25 ControlReg Address: 0Ch reset value: 00h

|        | 7        | 6         | 5   | 4   | 3   | 2 | 1          | 0 |
|--------|----------|-----------|-----|-----|-----|---|------------|---|
|        | TStopNow | TStartNow | RFU | RFU | RFU |   | RxLastBits |   |
| Access | W        | W         | -   | -   | -   | r | r          | r |

**Table7-26** ControlReg Bit Description

|     |           | •                                                                                   |
|-----|-----------|-------------------------------------------------------------------------------------|
| Bit | Symbol    | Description                                                                         |
|     |           |                                                                                     |
| 7   | TStopNow  | Set to logic 1, the timer stops immediately. Reading this bit will always return 0. |
|     |           |                                                                                     |
| 6   | TStartNow | Set to logic 1 starts the timer immediately. Reading this bit will always return 0. |



| 5:3 | RFU        | -                                                                                 |
|-----|------------|-----------------------------------------------------------------------------------|
| 2:0 | RxLastBits | RxLastBits Shows the number of valid bits in the last received byte. If zero, the |
|     |            | whole byte is valid.                                                              |

# 7.2.14 BitFramingReg

Adjustments for bit oriented frames.

Table 7-27 BitFramingReg Address: 0Dh reset value: 00h

|        | 7         | 6   | 5           | 4 | 3   | 2          | 1   | 0   |
|--------|-----------|-----|-------------|---|-----|------------|-----|-----|
|        | StartSend |     | RxAlign     |   |     | TxLastBits |     |     |
| Access | w         | r/w | r/w r/w r/w |   | RFU | r/w        | r/w | r/w |

Table 7-28 Bit Framing Reg Bit Description

|     |           | Table 7-26 Ditt Faming Reg Dit Description                                              |  |  |  |  |
|-----|-----------|-----------------------------------------------------------------------------------------|--|--|--|--|
| Bit | Symbol    | Description                                                                             |  |  |  |  |
| 7   | StartSend | Set to logic 1, the transmission of data starts.                                        |  |  |  |  |
|     |           | This bit is only valid in combination with the Transceive command.                      |  |  |  |  |
| 6:4 | RxAlign   | Used for reception of bit oriented frames: RxAlign defines the bit position for the     |  |  |  |  |
|     |           | first bit received to be stored in the FIFO. Further received bits are stored at the    |  |  |  |  |
|     |           | following bit positions.                                                                |  |  |  |  |
|     |           | Example:                                                                                |  |  |  |  |
|     |           | RxAlign = 0: the LSB of the received bit is stored at bit 0, the second received bit is |  |  |  |  |
|     |           | stored at bit position 1.                                                               |  |  |  |  |
|     |           | RxAlign = 1: the LSB of the received bit is stored at bit 1, the second received bit is |  |  |  |  |
|     |           | stored at bit position 2.                                                               |  |  |  |  |
|     |           | RxAlign = 7: the LSB of the received bit is stored at bit 7, the second received bit is |  |  |  |  |
|     |           | stored in the following byte at bit position 0.                                         |  |  |  |  |
|     |           | This bit shall only be used for bitwise anticollision at 106 kbit/s in Passive          |  |  |  |  |
|     |           | Communication mode. In all other modes it shall be set to logic 0.                      |  |  |  |  |
| 3   | -         | Reserved for future use.                                                                |  |  |  |  |



| 2:0 | TxLastBits | Used for transmission of bit oriented frames: TxLastBits defines the number of bits        |
|-----|------------|--------------------------------------------------------------------------------------------|
|     |            | of the last byte that shall be transmitted. A 000 indicates that all bits of the last byte |
|     |            | shall be transmitted.                                                                      |

### **7.2.15 CollReg**

Defines the first bit collision detected on the RF interface.

Table 7-29 Coll Reg Address: 0Eh reset value: xxh, 101xxxxxb

|        | 7         | 6   | 5        | 4 | 3 | 2       | 1 | 0 |
|--------|-----------|-----|----------|---|---|---------|---|---|
|        | Values    | RFU | CollPos  |   |   | CollPos |   |   |
|        | AfterColl |     | NotValid |   |   |         |   |   |
| Access | r/w       | -   | r        | r | r | r       | r | r |

**Table7-30 CollReg Bit Description** 

| Bit | Symbol          | Description                                                                               |
|-----|-----------------|-------------------------------------------------------------------------------------------|
| 7   | ValuesAfterColl | If this bit is set to logic 0, all receiving bits will be cleared after a collision. This |
|     |                 | bit shall only be used during bitwise anticollision at 106 kbit, otherwise it shall be    |
|     |                 | set to logic 1.                                                                           |
| 6   | RFU             | Reserved for future use.                                                                  |
| 5   | CollPosNotValid | Set to logic 1, if no Collision is detected or the Position of the Collision is out of    |
|     |                 | the range of bits CollPos. This bit shall only be interpreted in Passive                  |
|     |                 | Communication mode at 106 kbit or ISO/IEC 14443A Reader/Writer mode.                      |
| 4:0 | CollPos         | These bits show the bit position of the first detected collision in a received frame,     |
|     |                 | only data bits are interpreted.                                                           |
|     |                 | Example:                                                                                  |
|     |                 | 00h indicates a bit collision in the 32th bit                                             |
|     |                 | 01h indicates a bit collision in the 1st bit                                              |
|     |                 | 08h indicates a bit collision in the 8th bit                                              |
|     |                 | These bits shall only be interpreted in Passive Communication mode at 106 kbit            |
|     |                 | or ISO/IEC 14443A Reader/Writer mode if bit CollPosNotValid is set to logic 0             |



## **7.2.16 PollReg**

Address 0x0F includes 16 register files,and selects which group to access by address 0x00/0x10/0x20/0x30

Table 7-31 PollReg Address: 0Fh reset value: xxh

| Address | Bit | Symbol  | Access | reset value | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|---------|-----|---------|--------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0F_A    |     | RCCfg1  |        | 05h         | 3K RC configuration 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|         | 7   | Trimsel | r/w    | 0ь          | manual calibration     automatic calibration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|         | 6   | Max     | r/w    | 0b          | 1: rectification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|         | 5:0 | mdelay  | r/w    | 000101ь     | ACD wake up interval (mdelay+1) *100ms, min:100ms, max:6400ms                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0F_B    |     | ACRDCfg |        | 02h         | 3K RC configuration1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|         | 7:6 | ACDEdge | r/w    | 00Ь         | definition:  LSample: last sampling value  CSample: sampling value for this card inspection  ValSet is value of 0F_C[6:0]  ValDelta is value of 0F_D[6:0]  Absolute value mode card decision condition 00/11:  CSample > ValSet + ValDelta or CSample <  ValSet - ValDelta  01: CSample > ValSet + ValDelta  10: CSample < ValSet - ValDelta  Relative value mode card decision condition 00/11:  CSample > LSample+ ValDelta or CSample <  LSample > LSample+ ValDelta  01: CSample > LSample+ ValDelta  01: CSample > LSample+ ValDelta |
|         | 5   | ACDMode | r/w    | 0ь          | absolute value comparison     relative value comparison                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|         | 4:3 | ACDRFEn | r/w    | 00Ь         | 01: enable low-power card detection 10: enable low-power RF detection 00/11: enable low-power card detection and RF detection at same time.                                                                                                                                                                                                                                                                                                                                                                                               |



# **Si523**

|      |     |          | 1   |           |                                                                                                                                                                                                                                                                                     |
|------|-----|----------|-----|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      | 2:1 | MaskACD  | r/w | 01b       | In ACD mode  00: from the 3rd round of polling to detect the card or RF field  01: from the 4th round of polling to detect the card or RF field  10: from the 5th round of polling to detect the card or RF field  11: from the 6th round of polling to detect the card or RF field |
|      | 0   | -        |     |           | reserved                                                                                                                                                                                                                                                                            |
| 0F_C |     | ValSet   |     | 70h       | Manual mode reference value                                                                                                                                                                                                                                                         |
|      | 7   | -        | RFU | 0b        |                                                                                                                                                                                                                                                                                     |
|      | 6:0 | ValSet   | r/w | 1110000b  | Manual setting of no card field strength reference value                                                                                                                                                                                                                            |
| 0F_D |     | ValDelta |     | 0fh       | Field strength variation range                                                                                                                                                                                                                                                      |
|      | 7   | -        | RFU | 0         |                                                                                                                                                                                                                                                                                     |
|      | 6:0 | ValDelta | r   | 0001111b  | Setting the range of field strength variation                                                                                                                                                                                                                                       |
| 0F_E |     | -        | -   | 03h       | reserved                                                                                                                                                                                                                                                                            |
|      | 7   | -        | -   | -         | reserved                                                                                                                                                                                                                                                                            |
|      | 6   | -        | -   |           | reserved                                                                                                                                                                                                                                                                            |
|      | 5   | -        | -   |           | reserved                                                                                                                                                                                                                                                                            |
|      | 4:3 | -        | -   |           | reserved                                                                                                                                                                                                                                                                            |
|      | 2:0 | -        | -   |           | reserved                                                                                                                                                                                                                                                                            |
| 0F_F |     | RCCFG1   |     | c0h       | 3K RC configuration2                                                                                                                                                                                                                                                                |
|      | 7   | OMEN     | r/w | 1b        | enable OSC monitoring     disable OSC monitoring                                                                                                                                                                                                                                    |
|      | 6:0 | TRIMSET  | r/w | 1000000Ь  | Manually setting calibration values of RCOSC                                                                                                                                                                                                                                        |
| 0F_G |     | ADCVal   |     | xx        | Polling ADC sampling values                                                                                                                                                                                                                                                         |
|      | 7   | -        | RFU | 0b        |                                                                                                                                                                                                                                                                                     |
|      | 6:0 | VAL_ADC  | r   | x         | ADC sampling values                                                                                                                                                                                                                                                                 |
| 0F_H |     | WdtCnt   |     | 26h       | Watchdog interrupt generation interval setting                                                                                                                                                                                                                                      |
|      | 7:0 | WdtCnt   | r/w | 00100110Ь | In polling mode, the watchdog counter is incremented by 1 each time the card is checked, when the watchdog counter value is                                                                                                                                                         |

# **Si523**

|      |     | <u> </u> |     | ı   |                                               |
|------|-----|----------|-----|-----|-----------------------------------------------|
|      |     |          |     |     | equal to WdtCnt,a watchdog interrupt is       |
|      |     |          |     |     | generated, and the watchdog counts restart    |
|      |     |          |     |     | again,but the chip is not awakened.           |
| 0F_I |     | ARI      |     | 00h |                                               |
|      | 7:6 | -        | -   | -   |                                               |
|      |     |          |     |     | Detection front-end amplifier control         |
|      |     |          |     |     | 00/11:detection front-end amplifier OFF       |
|      | 5:4 | TK       | r/w | 00b | 01: detect front-end amplification by 10      |
|      |     |          |     |     | 10: detect front-end amplification by 21      |
|      | 3   |          |     |     | 100 decect from one anapineation of 21        |
|      | 3   | -        | -   | -   |                                               |
|      |     |          |     |     | ARI polarity control                          |
|      | 2   | ARIPol   | r/w | 0b  | 1: ARI low level indication in ACD            |
|      |     |          |     |     | mode,RF on                                    |
|      |     |          |     |     | 0: ARI high level in ACD mode ,RF on          |
|      |     |          |     |     | ARI enable                                    |
|      | 1   | ARIEn    | r/w | 0ь  | 1: enable, D1 output ARI                      |
|      |     |          |     |     | 0: disable, don't affect the status of pin    |
|      |     |          |     |     | D1                                            |
|      | 0   | ARI      | r   | x   | In ACD mode RF status indication              |
|      |     |          |     |     | Whether detecting configuration lost in       |
| 0F_J |     | ACC      | -   | -   | ACD mode。                                     |
|      |     |          |     |     | 0: polling configuration data does not lost   |
|      | 7   | ACCErr   | r   | 0   | 1: polling configuration data has lost        |
|      |     |          |     |     | Only active when ACCEn=1                      |
|      |     |          |     |     |                                               |
|      |     |          |     |     | ACC enable, when configure the ACD            |
|      | 6   | ACCEn    | r/w | 0   | register, this bit must be cleared to 0 first |
|      |     |          |     |     | 0: write 55h set to 0                         |
|      |     |          |     |     | 1: write not 55h set to 1                     |
|      | 5:0 | -        | -   | 0   | reserved                                      |
| 0F_K |     | LPDCFG1  |     | 0fh |                                               |
|      | 7   | -        | -   | -   | reserved                                      |
|      |     |          |     |     | Subtractor gain control word in detection     |
|      |     |          |     |     | circuit                                       |
|      | 6:5 | TR       | r/w | 00b | 00: one time                                  |
|      |     |          |     |     | 01: three times                               |
|      |     |          |     |     | 10: seven times                               |
|      |     |          |     |     | 10. Bevon unios                               |



# **Si523**

|      |     |                 |     |          | 11: fifteen times                                                             |
|------|-----|-----------------|-----|----------|-------------------------------------------------------------------------------|
|      |     |                 |     |          |                                                                               |
|      |     |                 |     |          | Front detection operational amplifier slope control word in detection circuit |
|      | 4.2 |                 |     | 0.11     | 00: 0.5                                                                       |
|      | 4:3 | TI              | r/w | 01b      | 01: 1                                                                         |
|      |     |                 |     |          | 10: 1.5                                                                       |
|      |     |                 |     |          | 11: 2                                                                         |
|      |     |                 |     |          | When detecting, the control word of ADC                                       |
|      |     |                 |     |          | reference voltage. By configuring this bit, the                               |
|      |     |                 |     |          | output of detection module is located within                                  |
|      |     |                 |     |          | the ADC range.                                                                |
|      |     |                 |     |          | 000: 1.407V                                                                   |
|      |     |                 |     |          | 001: 1.472V                                                                   |
|      | 2:0 | VCON            | r/w | 111b     | 010: 1.537V                                                                   |
|      |     |                 |     |          | 011: 1.603V                                                                   |
|      |     |                 |     |          | 100: 1.66V                                                                    |
|      |     |                 |     |          | 101: 1.718V                                                                   |
|      |     |                 |     |          | 110: 1.8V                                                                     |
|      |     |                 |     |          | 111: 1.9V                                                                     |
| 0F_L |     | -               | -   | -        | reserved                                                                      |
| 0F_M |     | RFLowDetect     |     | 08h      | Low RF monitoring configuration during ACD                                    |
|      | 7   | RFLowDetectEn   | r/w | 0b       | 1: Enable the ability Reader to detect RF abnormal detection                  |
|      | ,   | RI EOWDERCELLII |     |          | 0: disable the ability Reader to detect RF abnormal detection                 |
|      |     |                 |     |          | check whether RF is too low during detecting card                             |
|      | 6:0 | RFLowThreshold  | r/w | 0001000Ь | Threshold optional range is 0~128                                             |
|      |     |                 |     |          | Threshold calculation formula:                                                |
|      |     |                 |     |          | RFLowThreshold                                                                |
| 0F_N |     | ExRFDetect      |     | 08h      | External RF monitoring configuration during ACD                               |
|      | 7   | -               | RFU | 0        |                                                                               |
|      |     |                 |     |          | Determine whether there is any other RF                                       |
|      | 6:0 | RFNoThreshold   | r/w | 0001000Ь | threshold around                                                              |
| 0F_O |     | ACRDIRqEn       |     | 00h      | ACD related interrupt enable                                                  |
|      |     |                 |     |          |                                                                               |



| _    | 7:4 | -           | RFU | 0b  |                                                                                                                                                                                                                                                                                                                                                     |
|------|-----|-------------|-----|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      | 3   | OSCMonIRqEn | r/w | 0b  | 1:enable OSCMonIrqEn interrupt                                                                                                                                                                                                                                                                                                                      |
|      | 2   | -           | RFU | 0b  |                                                                                                                                                                                                                                                                                                                                                     |
|      | 1   | RFLowIRqEn  | r/w | 0b  | 1: enable RFLowIrq interrupt                                                                                                                                                                                                                                                                                                                        |
|      | 0   | RFExIRqEn   | r/w | 0b  | 1: enable RFExIrq interrupt                                                                                                                                                                                                                                                                                                                         |
| 0F_P |     | ACRDIRq     |     | 00h | ACD related interrupt                                                                                                                                                                                                                                                                                                                               |
|      | 7   | set3        | W   | 0b  | cooperate with the interrupt flag bit, it is used to clear the interrupt flag to 0 or set to 1.  when this bit is written as 0, and the corresponding interrupt bit is written as 1 to indicate a clear interrupt position.  when this bit is written as 1, and the corresponding bit is written as 1, it indicates that this interrupt bit is set. |
|      | 6:4 | -           | RFU | 0b  |                                                                                                                                                                                                                                                                                                                                                     |
|      | 3   | OSCMonIRq   | dy  | 0b  | 1: OSC four consecutive wake-up failures                                                                                                                                                                                                                                                                                                            |
|      | 2   | -           | RFU | 0b  | reserved                                                                                                                                                                                                                                                                                                                                            |
|      | 1   | RFLowIRq    | dy  | 0b  | 1: RF value too low during card detecting                                                                                                                                                                                                                                                                                                           |
|      | 0   | RFExIRq     | dy  | 0b  | 1: external RF detected                                                                                                                                                                                                                                                                                                                             |

## 7.3 PAGE1: communication

#### 7.3.1 PageReg

Table7-33 PageReg Address: 10h reset value: 00h

|        | 7              | 6              | 5   | 4         | 3   | 2   | 1          | 0   |
|--------|----------------|----------------|-----|-----------|-----|-----|------------|-----|
|        | UsePage Select | Regbank Select |     | RegSelect |     |     | PageSelect |     |
| Access | r/w            | r/w            | r/w | r/w       | r/w | r/w | r/w        | r/w |

**Table7-34** PageReg Bit Description

| Bit | Symbol        | Description                                                            |
|-----|---------------|------------------------------------------------------------------------|
| 7   | UsePageSelect | Set to logic 1, the value of PageSelect is used as register address A5 |
|     |               | and A4. The LSB-bits of the register address are defined by the        |



|     |               | address pins or the internal address latch, respectively.  Set to logic 0, the whole content of the internal address latch defines the register address. The address pins are used as described in |
|-----|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |               | Section 8.1 "Automatic microcontroller interface detection".                                                                                                                                       |
| 6   | RegbankSelect | Set to logic 1, it is used to read/write 0Fh register group                                                                                                                                        |
| 5:2 | RegSelect     | 0000: read/write register set A;                                                                                                                                                                   |
|     |               | 0001: read/write register set B;                                                                                                                                                                   |
|     |               |                                                                                                                                                                                                    |
|     |               | 1111: read/write register set P                                                                                                                                                                    |
| 1:0 | PageSelect    | The value of PageSelect is only active when UsePageSelect is set to 1. In this case it                                                                                                             |
|     |               | specifies the register page (which is A5 and A4 of the register address).                                                                                                                          |

## 7.3.2 ModeReg

Defines general mode settings for transmitting and receiving.

Table 7-35 ModeReg Address: 11h reset value: 3Bh

|        | 7        | 6   | 5        | 4   | 3        | 2   | 1    | 0     |
|--------|----------|-----|----------|-----|----------|-----|------|-------|
|        | MSBFirst | RFU | TxWaitRF | RFU | PolSigin | RFU | CRCP | reset |
| Access | r/w      | -   | r/w      | -   | r/w      | -   | r/w  | r/w   |

**Table7-36 ModeReg Bit Description** 

|     | Table 7-50 Widderleg Die Description |                                                                              |  |  |  |  |
|-----|--------------------------------------|------------------------------------------------------------------------------|--|--|--|--|
| Bit | Symbol                               | Description                                                                  |  |  |  |  |
| 7   | MSBFirst                             | Set to logic 1, the CRC co-processor calculates the CRC with MSB             |  |  |  |  |
|     |                                      | first and the CRCResultMSB and the CRCResultLSB in the CRCResultReg register |  |  |  |  |
|     |                                      | are bit reversed.                                                            |  |  |  |  |
|     |                                      | NOTE: During RF communication this bit is ignored.                           |  |  |  |  |
| 6   | RFU                                  | -                                                                            |  |  |  |  |
| 5   | TxWaitRF                             | Set to logic 1 the transmitter in reader/writer or initiator mode for        |  |  |  |  |
|     |                                      | NFCIP-1 can only be started, if an RF field is generated.                    |  |  |  |  |
| 4   | RFU                                  | -                                                                            |  |  |  |  |



| 3   | PolSigin  | Defines the polarity of the MFIN pin. Set to logic 1, the polarity of MFIN pin is active high. Set to logic 0 the polarity of MFIN pin is active low.  NOTE: The internal envelope signal is coded active low. Changing this bit will generate a SiginActIRq interrupt. |                                 |  |  |
|-----|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|--|--|
|     |           | generate                                                                                                                                                                                                                                                                | a SigniActikų intertupt.        |  |  |
| 2   | RFU       | -                                                                                                                                                                                                                                                                       |                                 |  |  |
| 1:0 | CRCPreset | Defines the preset value for the CRC coprocessor for the command  CalCRC. Coprocessor will select default value based on RxMode and TxMode automatically.                                                                                                               |                                 |  |  |
|     |           | Value 00 01 10 11                                                                                                                                                                                                                                                       | Description 0000 6363 A671 FFFF |  |  |

## 7.3.3 TxModeReg

Defines the data rate and framing during transmission

Table 7-37 TxModeReg Address: 12h reset value: 00h

|        |         |         | 111,1000010 | 9  | ~ ·    | eser ittrace. | 0 0    |      |
|--------|---------|---------|-------------|----|--------|---------------|--------|------|
|        | 7       | 6       | 5           | 4  | 3      | 2             | 1      | 0    |
|        | TxCRCEn | TxSpeed |             |    | InvMod | TxMix         | TxFrai | ming |
| Access | r/w     | dy      | dy          | dy | r/w    | r/w           | dy     | dy   |

**Table7-38 TxModeReg Bit Description** 

| Bit | Symbol  | Description                                                                   |             |  |  |
|-----|---------|-------------------------------------------------------------------------------|-------------|--|--|
| 7   | TxCRCEn | Set to logic 1, this bit enables the CRC generation during data transmission. |             |  |  |
|     |         | NOTE: This bit shall only be set to logic 0 at 106 kbit.                      |             |  |  |
| 6:4 | TxSpeed | Defines the bit rate while data transmission.                                 |             |  |  |
|     |         | Value                                                                         | Description |  |  |



|     |           | 000                                                               | 106kbits/s                                                 |  |  |
|-----|-----------|-------------------------------------------------------------------|------------------------------------------------------------|--|--|
|     |           | 001                                                               | 212kbits/s                                                 |  |  |
|     |           | 010                                                               | 424kbits/s                                                 |  |  |
|     |           | 011                                                               | 848kbits/s                                                 |  |  |
|     |           | 100                                                               | Reserved                                                   |  |  |
|     |           | 101                                                               | Reserved                                                   |  |  |
|     |           | 110                                                               | Reserved                                                   |  |  |
|     |           | 111                                                               | Reserved                                                   |  |  |
| 3   | InvMod    | Set to logic 1, the modulation for transmitting data is inverted. |                                                            |  |  |
| 2   | TxMix     | Set to logic                                                      | 1, the signal at pin MFIN is mixed with the internal coder |  |  |
| 1:0 | TxFraming | Defines the                                                       | framing used for data transmission.                        |  |  |
|     |           | Value                                                             | Description                                                |  |  |
|     |           | 00                                                                | ISO/IEC 14443A                                             |  |  |
|     |           | 01                                                                | Reserved                                                   |  |  |
|     |           | 10                                                                | Reserved                                                   |  |  |
|     |           | 11                                                                | Reserved                                                   |  |  |

#### 7.3.4 RxModeReg

Defines the data rate and framing during reception.

Table7-39 RxModeReg Address: 13h reset value: 00h

|        | 7       | 6       | 5  | 4  | 3       | 2          | 1   | 0      |
|--------|---------|---------|----|----|---------|------------|-----|--------|
|        | RxCRCEn | RxSpeed |    |    | RxNoErr | RxMultiple | RxF | raming |
| Access | r/w     | dy      | dy | dy | r/w     | r/w        | dy  | dy     |

Table 7-40 RxModeReg Bit Description

| Bit | Symbol  | Description                                                            |
|-----|---------|------------------------------------------------------------------------|
| Dit | Symbol  | Description                                                            |
| 7   | RxCRCEn | Set to logic 1, this bit enables the CRC calculation during reception. |
|     |         | NOTE: This bit shall only be set to logic 0 at 106 kbit.               |



| 6:4 | RxSpeed    | Defines                                                                   | Defines the bit rate while data transmission.                        |  |  |  |  |  |
|-----|------------|---------------------------------------------------------------------------|----------------------------------------------------------------------|--|--|--|--|--|
|     |            | The Si523's analog part handles only transfer speeds up to 424 kbit       |                                                                      |  |  |  |  |  |
|     |            | internally, the digital UART handles the higher transfer speeds as well.  |                                                                      |  |  |  |  |  |
|     |            | Value                                                                     | Value Description                                                    |  |  |  |  |  |
|     |            | 000                                                                       | 106kbits/s                                                           |  |  |  |  |  |
|     |            | 001                                                                       | 212kbits/s                                                           |  |  |  |  |  |
|     |            | 010                                                                       | 424kbits/s                                                           |  |  |  |  |  |
|     |            | 011                                                                       | 848kbits/s                                                           |  |  |  |  |  |
|     |            | 100                                                                       | Reserved                                                             |  |  |  |  |  |
|     |            | 101                                                                       | Reserved                                                             |  |  |  |  |  |
|     |            | 110                                                                       | Reserved                                                             |  |  |  |  |  |
|     |            | 111 Reserved                                                              |                                                                      |  |  |  |  |  |
| 3   | RxNoErr    | If set to logic 1 a not valid received data stream (less than 4 bits      |                                                                      |  |  |  |  |  |
|     |            | received) will be ignored. The receiver will remain active.               |                                                                      |  |  |  |  |  |
| 2   | RxMultiple | Set to logic 0, the receiver is deactivated after receiving a data frame. |                                                                      |  |  |  |  |  |
|     |            | Set to 1                                                                  | ogic 1, it is possible to receive more than one data frame. Having   |  |  |  |  |  |
|     |            | set this                                                                  | bit, the receive and transceive commands will not terminate          |  |  |  |  |  |
|     |            | automa                                                                    | tically. In this case the multiple receiving can only be deactivated |  |  |  |  |  |
|     |            | by writ                                                                   | ing any command (except the Receive command) to the                  |  |  |  |  |  |
|     |            | Comma                                                                     | andReg register or by clearing the bit by the host controller.       |  |  |  |  |  |
|     |            | At the                                                                    | end of a received data stream an error byte is added to the FIFO.    |  |  |  |  |  |
|     |            | The err                                                                   | or byte is a copy of the ErrorReg register.                          |  |  |  |  |  |
| 1:0 | RxFraming  | Defines                                                                   | s the expected framing for data reception.                           |  |  |  |  |  |
|     |            | Value                                                                     | Description                                                          |  |  |  |  |  |
|     |            | 00                                                                        | ISO/IEC 14443A                                                       |  |  |  |  |  |
|     |            | 01                                                                        | Reserved                                                             |  |  |  |  |  |
|     |            | 10                                                                        | Reserved                                                             |  |  |  |  |  |
|     |            | 11                                                                        | Reserved                                                             |  |  |  |  |  |



#### 7.3.5 TxControlReg

Controls the logical behavior of the antenna driver pins Tx1 and Tx2.

Table 7-40 TxControlReg Address: 14h reset value: 80h

|        | 7        | 6        | 5        | 4        | 3     | 2    | 1     | 0     |
|--------|----------|----------|----------|----------|-------|------|-------|-------|
|        | InvTx2RF | InvTx1RF | InvTx2RF | InvTx1RF | Tx2CW | DELL | Tx2RF | Tx1RF |
|        | On       | On       | Off      | Off      | 1X2CW | RFU  | En    | En    |
| Access | r/w      | r/w      | r/w      | r/w      | r/w   | -    | r/w   | r/w   |

Table 7-41 TxControlReg Bit Description

|     |             | Table 7-41 TxControlkeg Bit Description                                         |
|-----|-------------|---------------------------------------------------------------------------------|
| Bit | Symbol      | Description                                                                     |
| 7   | InvTx2RFOn  | Set to logic 1, the output signal at pin TX2 will be inverted, if driver TX2    |
|     |             | is enabled.                                                                     |
| 6   | InvTx1RFOn  | Set to logic 1, the output signal at pin TX1 will be inverted, if driver TX1    |
|     |             | is enabled.                                                                     |
| 5   | InvTx2RFOff | Set to logic 1, the output signal at pin TX2 will be inverted, if driver TX2 is |
|     |             | enabled.                                                                        |
| 4   | InvTx1RFOff | Set to logic 1, the output signal at pin TX1 will be inverted, if driver TX1 is |
|     |             | enabled.                                                                        |
| 3   | Tx2CW       | Set to logic 1, the output signal on pin TX2 will deliver continuously the      |
|     |             | un-modulated 13.56 MHz energy carrier. Set to logic 0, Tx2CW is enabled to      |
|     |             | modulate the 13.56 MHz energy carrier.                                          |
| 2   | RFU         | -                                                                               |
| 1   | Tx2RFEn     | Set to logic 1, the output signal on pin TX2 will deliver the 13.56 MHz energy  |
|     |             | carrier modulated by the transmission data.                                     |
| 0   | Tx1RFEn     | Set to logic 1, the output signal on pin TX1 will deliver the 13.56 MHz energy  |
|     |             | carrier modulated by the transmission data.                                     |

## 7.3.6 TxAutoReg

Controls the settings of the antenna driver.



Table7-42 TxAutoReg Address: 15h reset value: 00h

|        | 7   | 6               | 5   | 4   | 3   | 2   | 1   | 0   |
|--------|-----|-----------------|-----|-----|-----|-----|-----|-----|
|        | RFU | Force100<br>ASK | RFU | RFU | RFU | RFU | RFU | RFU |
| Access | -   | r/w             | -   | -   | -   | -   | -   | -   |

Table 7-43 TxAutoReg Bit Description

| Bit | Symbol      | Description                                              |
|-----|-------------|----------------------------------------------------------|
| 7   | RFU         | -                                                        |
| 6   | Force100ASK | Set to logic 1, Force100ASK forces a 100% ASK modulation |
|     |             | independent of the setting in register ModGsPReg.        |
| 5:0 | RFU         | -                                                        |

## 7.3.7 TxSelReg

Selects the sources for the analog part.

Table7-44 TxSelReg Address: 16h reset value: 10h

|        | 7   | 6   | 5         | 4   | 3         | 2   | 1   | 0   |
|--------|-----|-----|-----------|-----|-----------|-----|-----|-----|
|        | 0   | 0   | DriverSel |     | SigOutSel |     |     |     |
| Access | RFU | RFU | r/w       | r/w | r/w       | r/w | r/w | r/w |

Table7-45 TxSelReg Bit Description

|     | Table 1-45 TABLING Dit Description |                                          |                                                                |  |  |  |  |  |
|-----|------------------------------------|------------------------------------------|----------------------------------------------------------------|--|--|--|--|--|
| Bit | Symbol                             | Description                              |                                                                |  |  |  |  |  |
| 7:6 | -                                  | Reserved for future use.                 |                                                                |  |  |  |  |  |
| 5:4 | DriverSel                          | Selects the input of driver Tx1 and Tx2. |                                                                |  |  |  |  |  |
|     |                                    | value Description                        |                                                                |  |  |  |  |  |
|     |                                    | 00                                       | Tristate                                                       |  |  |  |  |  |
|     |                                    |                                          | NOTE: In soft power down the drivers are only in Tristate mode |  |  |  |  |  |
|     |                                    |                                          | if DriverSel is set to Tristate mode.                          |  |  |  |  |  |
|     |                                    | 01                                       | Modulation signal (envelope) from the internal coder           |  |  |  |  |  |



| 1   |           |                                      |                                                            |  |  |  |
|-----|-----------|--------------------------------------|------------------------------------------------------------|--|--|--|
|     |           | 10                                   | Modulation signal (envelope) from MFIN                     |  |  |  |
|     |           | 11                                   | HIGH                                                       |  |  |  |
|     |           |                                      | NOTE: The HIGH level depends on the setting of InvTx1RFOn/ |  |  |  |
|     |           |                                      | InvTx1RFOff and InvTx2RFOn/InvTx2RFOff.                    |  |  |  |
| 3:0 | SigOutSel | Selects the input for the MFOUT Pin. |                                                            |  |  |  |
|     |           | value                                | Description                                                |  |  |  |
|     |           | 0000                                 | Tristate                                                   |  |  |  |
|     |           | 0001 Low                             |                                                            |  |  |  |
|     |           | 0010                                 | High                                                       |  |  |  |
|     |           | 0011                                 | TestBus signal as defined by bit TestBusBitSel in register |  |  |  |
|     |           |                                      | TestSel1Reg.                                               |  |  |  |
|     |           | 0100                                 | Serial data stream to be transmitted after modulation      |  |  |  |
|     |           | 0101                                 | Serial data stream to be transmitted before modulation     |  |  |  |
|     |           | 0110                                 | Reserved                                                   |  |  |  |
|     |           | 0111                                 | Data received after modulation                             |  |  |  |
|     |           | 1000-1011                            | Reserved                                                   |  |  |  |

## 7.3.8 RxSelReg

Selects internal receiver settings.

Table7-46 RxSelReg Address: 17h reset value: 84h

|        | 7       | 6   | 5      | 4   | 3   | 2   | 1   | 0   |  |
|--------|---------|-----|--------|-----|-----|-----|-----|-----|--|
|        | UartSel |     | RxWait |     |     |     |     |     |  |
| Access | r/w     | r/w | r/w    | r/w | r/w | r/w | r/w | r/w |  |

Table7-47 RxSelReg Bit Description

| Bit | Symbol  | Description                               |
|-----|---------|-------------------------------------------|
| 7:6 | UartSel | Selects the input of the contactless UART |



|     |        | Value                                                                              | Description                                                                       |  |  |  |  |  |
|-----|--------|------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--|--|--|--|--|
|     |        | 00                                                                                 | Constant Low                                                                      |  |  |  |  |  |
|     |        | 01                                                                                 | Envelope signal at MFIN                                                           |  |  |  |  |  |
|     |        | 10                                                                                 | Modulation signal from the internal analog part                                   |  |  |  |  |  |
|     |        | 11                                                                                 | NRZ signal without carrier, only effect at 106kbps                                |  |  |  |  |  |
| 5:0 | RxWait | After data transmission, the activation of the receiver is delayed for RxWait bit- |                                                                                   |  |  |  |  |  |
|     |        | clocks. During this 'frame guard time' any signal at pin RX is ignored. This       |                                                                                   |  |  |  |  |  |
|     |        | parameter                                                                          | parameter is ignored by the Receive command. All other commands (e.g.             |  |  |  |  |  |
|     |        | Transceive)                                                                        | Transceive) use this parameter. Depending on the mode of the Si523, the counter   |  |  |  |  |  |
|     |        | starts different. In Passive Communication mode the counter starts with the last   |                                                                                   |  |  |  |  |  |
|     |        | modulation                                                                         | modulation pulse of the transmitted data stream. In Active Communication mode the |  |  |  |  |  |
|     |        | counter star                                                                       | rts immediately after the external RF field is switched on.                       |  |  |  |  |  |

## 7.3.9 RxThresholdReg

Selects thresholds for the bit decoder.

Table7-48 RxThresholdReg Address: 18h reset value: 84h

|        | 7        | 6   | 5   | 4   | 3   | 2         | 1   | 0   |
|--------|----------|-----|-----|-----|-----|-----------|-----|-----|
|        | MinLevel |     |     |     | RFU | CollLevel |     |     |
| Access | r/w      | r/w | r/w | r/w | -   | r/w       | r/w | r/w |

Table 7-49 RxThresholdReg Bit Description

|     |           | Tuble, 15 Text in constant g Die Description                                                                                                                      |
|-----|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Bit | Symbol    | Description                                                                                                                                                       |
| 7:4 | MinLevel  | Defines the minimum signal strength at the decoder input that shall be                                                                                            |
|     |           | accepted. If the signal strength is below this level, it is not evaluated.                                                                                        |
| 3   | RFU       | Reserved for future use.                                                                                                                                          |
| 2:0 | CollLevel | Defines the minimum signal strength at the decoder input that has to be reached by the weaker half-bit of the Manchester-coded signal to generate a bit-collision |
|     |           | relatively to the amplitude of the stronger half-bit.                                                                                                             |



#### 7.3.10 DemodReg

Defines demodulator settings.

Table 7-50 DemodReg Address: 19h reset value: 4Dh

|        | 7     | 6   | 5     | 4        | 3     | 2   | 1     | 0   |
|--------|-------|-----|-------|----------|-------|-----|-------|-----|
|        | AddIQ | )   | FixIQ | TPrescal | TauRc | v   | TauSy | nc  |
|        |       |     |       | Even     |       |     |       |     |
| Access | r/w   | r/w | r/w   | r/w      | r/w   | r/w | r/w   | r/w |

Table 7-51 DemodReg Bit Description

|     | -            | Table/-                                                                          | 51 DemodReg Bit Description                                               |  |  |  |  |  |
|-----|--------------|----------------------------------------------------------------------------------|---------------------------------------------------------------------------|--|--|--|--|--|
| Bit | Symbol       | Description                                                                      | Description                                                               |  |  |  |  |  |
| 7:6 | AddIQ        | Defines th                                                                       | Defines the use of I and Q channel during reception                       |  |  |  |  |  |
|     |              | NOTE: Fi                                                                         | NOTE: FixIQ has to be set to logic 0 to enable the following settings.    |  |  |  |  |  |
|     |              | Value                                                                            | Description                                                               |  |  |  |  |  |
|     |              | 00                                                                               | Select the stronger channel                                               |  |  |  |  |  |
|     |              | 01                                                                               | Select the stronger and freeze the selected during communication          |  |  |  |  |  |
|     |              | 10                                                                               | combines the I and Q channel                                              |  |  |  |  |  |
|     |              | 11                                                                               | Reserved                                                                  |  |  |  |  |  |
| 5   | FixIQ        | If set to logic 1 and the bits of AddIQ are set to X0, the reception is fixed to |                                                                           |  |  |  |  |  |
|     |              | I channel.                                                                       |                                                                           |  |  |  |  |  |
|     |              | If set to lo                                                                     | gic 1 and the bits of AddIQ are set to X1, the reception is fixed to      |  |  |  |  |  |
|     |              | Q channel                                                                        |                                                                           |  |  |  |  |  |
|     |              | NOTE: If                                                                         | MFIN/MFOUT is used as S2C interface FixIQ set to 1 and AddIQ              |  |  |  |  |  |
|     |              | set to X0 i                                                                      | s rewired.                                                                |  |  |  |  |  |
| 4   | TPrescalEven | If set to lo                                                                     | gic 0 the following formula is used to calculate fTimer of the prescaler: |  |  |  |  |  |
|     |              | fTimer = 1                                                                       | 3.56 MHz / (2 * TPreScaler + 1).                                          |  |  |  |  |  |
|     |              | If set to lo                                                                     | gic 1 the following formula is used to calculate fTimer of the prescaler: |  |  |  |  |  |
|     |              | fTimer = 1                                                                       | 3.56 MHz / (2 * TPreScaler + 2).                                          |  |  |  |  |  |
|     |              | (Default T                                                                       | PrescalEven is logic 0)                                                   |  |  |  |  |  |
| 3:2 | TauRcv       | Changes the                                                                      | he time constant of the internal during data reception.                   |  |  |  |  |  |



|     |   |         | NOTE: If set to 00, the PLL is frozen during data reception. |
|-----|---|---------|--------------------------------------------------------------|
| 1:0 | 0 | TauSync | Changes the time constant of the internal PLL during burst.  |

#### 7.3.11 RFU

Reserved for future use.

#### 7.3.12 RFU

Reserved for future use.

#### 7.3.13 MifNFCReg

Defines ISO/IEC 14443A/NFC specific settings in target or Card Operating mode.

Table7-56 MifNFCReg Address: 1Ch reset value: 62h

|        | 7   | 6 | 5 | 4  | 3  | 2   | 1   | 0    |
|--------|-----|---|---|----|----|-----|-----|------|
|        | RFU |   |   | RI | FU | RFU | Txv | wait |
| Access | -   | - | - | -  | -  | -   | r/w | r/w  |

**Table7-57** MifNFCReg Bit Description

| Bit | Symbol | Description                                                                                                                                                                                                                                                                                                                                  |
|-----|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7:2 | RFU    | -                                                                                                                                                                                                                                                                                                                                            |
| 1:0 | Txwait | These bits define the minimum response time between receive and transmit in number of data bits + 7 data bits.  The shortest possible minimum response time is 7 data bits. (TxWait=0). The minimum response time can be increased by the number of bits defined in TxWait.  The longest minimum response time is 10 data bits (TxWait = 3). |
|     |        | If a transmission of a frame is started before the minimum response time is over, the Si523 waits before transmitting the data until the minimum response time is over, and the frame is started immediately if the data bit synchronization is correct. (adjustable with TxBitPhase).                                                       |



#### 7.3.14 ManualRCVReg

Allows manual fine tuning of the internal receiver.

NOTE: For standard applications it is not recommended to change this register settings.

Table 7-58 Manual RCV Reg Address: 1Dh reset value: 00h

|        | 7   | 6   | 5   | 4                 | 3   | 2   | 1   |
|--------|-----|-----|-----|-------------------|-----|-----|-----|
|        | RFU | RFU | RFU | Parity<br>Disable | RFU | RFU | RFU |
| Access | -   | -   | -   | r/w               | -   | -   | -   |

Table7-59 ManualRCVReg Bit Description

|     | Table 105 Hamaunite   Trop 210 2 000 i priori |                                                                      |  |  |  |  |  |
|-----|-----------------------------------------------|----------------------------------------------------------------------|--|--|--|--|--|
| Bit | Symbol                                        | Description                                                          |  |  |  |  |  |
| 7:5 | RFU                                           | -                                                                    |  |  |  |  |  |
| 4   | ParityDisable                                 | If this bit is set to logic 1, the generation of the Parity bit for  |  |  |  |  |  |
|     |                                               | transmission and the Parity-Check for receiving is switched off. The |  |  |  |  |  |
|     |                                               | received Parity bit is handled like a data bit.                      |  |  |  |  |  |
| 3:0 | RFU                                           | -                                                                    |  |  |  |  |  |

#### 7.3.15 TypeBReg

Table 7-58 Type BReg Address: 1Eh reset value: 00h

|        | 7        | 6        | 5   | 4           | 3       | 2       | 1: 0  |
|--------|----------|----------|-----|-------------|---------|---------|-------|
|        | RxSOFReq | RxEOFReq | RFU | EOFSOFWidth | NoTxSOF | NoTxEOF | TxEGT |
| Access | r/w      | r/w      | -   | r/w         | r/w     | r/w     | r/w   |
| Rights |          |          |     |             |         |         |       |

**Table7-59** TypeBReg Bit Description

| Bit | Symbol   | Description                                                               |
|-----|----------|---------------------------------------------------------------------------|
| 7   | RxSOFReq | If this bit is set to logic 1, the SOF is required. A datastream starting |
|     |          | without SOF is ignored.                                                   |



|     | 1           |                                                                            |  |  |  |  |  |  |
|-----|-------------|----------------------------------------------------------------------------|--|--|--|--|--|--|
|     |             | If this bit is cleared, a datastream with and without SOF is accepted.     |  |  |  |  |  |  |
|     |             | The SOF will be removed and not written into the FIFO.                     |  |  |  |  |  |  |
| 6   | RxEOFReq    | If this bit is set to logic 1, the EOF is required. A datastream ending    |  |  |  |  |  |  |
|     |             | without EOF will generate a Protocol-Error. If this bit is cleared, a      |  |  |  |  |  |  |
|     |             | datastream with and without EOF is accepted. The EOF will be               |  |  |  |  |  |  |
|     |             | removed and not written into the FIFO.                                     |  |  |  |  |  |  |
| 5   | RFU         | Reserved for future use.                                                   |  |  |  |  |  |  |
| 4   | EOFSOFWidth | If this bit is set to logic 1 and EOFSOFAdjust bit is logic 0, the SOF     |  |  |  |  |  |  |
|     |             | and EOF will have the maximum length defined in ISO/IEC 14443B.            |  |  |  |  |  |  |
|     |             | If this bit is cleared and EOFSOFAdjust bit is logic 0, the SOF and        |  |  |  |  |  |  |
|     |             | EOF will have the minimum length defined in ISO/IEC 14443B.                |  |  |  |  |  |  |
|     |             | If this bit is set to 1 and the EOFSOFadjust bit is logic 1 will result in |  |  |  |  |  |  |
|     |             | SOF low = $(11etu - 8 \text{ cycles})/fc$                                  |  |  |  |  |  |  |
|     |             | SOF high = $(2 \text{ etu} + 8 \text{ cycles})/\text{fc}$                  |  |  |  |  |  |  |
|     |             | EOF low = $(11 \text{ etu} - 8 \text{ cycles})/\text{fc}$                  |  |  |  |  |  |  |
|     |             | If this bit is set to 0 and the EOFSOFAdjust bit is logic 1 will result in |  |  |  |  |  |  |
|     |             | an incorrect system behavior in respect to ISO specification.              |  |  |  |  |  |  |
| 3   | NoTxSOF     | If this bit is set to logic 1, the generation of the SOF is suppressed.    |  |  |  |  |  |  |
| 2   | NoTxEOF     | If this bit is set to logic 1, the generation of the EOF is suppressed.    |  |  |  |  |  |  |
| 1:0 | TxEGT       | These bits define the length of the EGT.                                   |  |  |  |  |  |  |
|     |             | 00 Obit                                                                    |  |  |  |  |  |  |
|     |             | 01 1bit                                                                    |  |  |  |  |  |  |
|     |             | 10 2bit                                                                    |  |  |  |  |  |  |
|     |             | 11 3bit                                                                    |  |  |  |  |  |  |

#### 7.3.16 SerialSpeedReg

Selects the speed of the serial UART interface.

Table 7-62 Serial Speed Reg Address: 1Fh reset value: EBh

|        | 7     | 6   | 5   | 4     | 3   | 2   | 1   | 0   |
|--------|-------|-----|-----|-------|-----|-----|-----|-----|
|        | BR_T0 |     |     | BR_T1 |     |     |     |     |
| Access | r/w   | r/w | r/w | r/w   | r/w | r/w | r/w | r/w |

Table 7-63 Serial Speed Reg Bit Description

| Bit | Symbol | Description                                                            |
|-----|--------|------------------------------------------------------------------------|
| 7:5 | BR_T0  | Factor BR_T0 to adjust the transfer speed, for description see Section |
|     |        | 8.3.2 "Selectable UART transfer speeds".                               |
| 4:0 | BR_T1  | Factor BR_T1 to adjust the transfer speed, for description see Section |
|     |        | 8.3.2 "Selectable UART transfer speeds".                               |

## 7.4 PAGE2: configuration

## 7.4.1 PageReg

Table 7-64 PageReg Address: 20h reset value: 00h

|        | 7             | 6             | 5: 2      | 1          | 0   |
|--------|---------------|---------------|-----------|------------|-----|
|        | UsePageSelect | RegbankSelect | RegSelect | PageSelect |     |
| Access | r/w           | r/w           | r/w       | r/w        | r/w |

**Table7-65** PageReg Bit Description

| Bit | Symbol        | Description                                                                                                                                                                                                                                                |
|-----|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7   | UsePageSelect | Set to logic 1, the value of PageSelect is used as register address A5 and A4. The LSB-bits of the register address are defined by the address pins or the internal address latch, respectively. Set to logic 0, the whole content of the internal address |
|     |               | latch defines the register address.                                                                                                                                                                                                                        |
| 6   | RegbankSelect | Set to logic 1, it is used to read/write 0Fh register set                                                                                                                                                                                                  |
| 5:2 | RegSelect     | 0000: read/write register set A; 0001: read/write register set B;                                                                                                                                                                                          |
|     |               | 1111: read/write register set P                                                                                                                                                                                                                            |



| 1:0 | PageSelect | The value of PageSelect is used only if UsePageSelect is set to logic 1. In this case, |
|-----|------------|----------------------------------------------------------------------------------------|
|     |            | it specifies the register page (which is A5 and A4 of the register address).           |

#### 7.4.2/3 CRCResultReg

Shows the actual MSB and LSB values of the CRC calculation.

NOTE: The CRC is split into two 8-bit register. Setting the bit MSBFirst in ModeReg register reverses the bit order, the byte order is not changed.

Table 7-66 CRCResultReg Address: 21h reset value: FFh 7 6 3 2 0 1 CRCResultMSB Access r r r r r r r r

Table 7-67 CRCR esult Reg Bit Description

|     | 1 White the Cite of the Cite o |                                                                                                                                     |  |  |  |  |  |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Bit | Symbol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Description                                                                                                                         |  |  |  |  |  |
| 7:0 | CRCResultMSB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | This register shows the actual value of the most significant byte of the CRCResultReg register. It is valid only if bit CRCReady in |  |  |  |  |  |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | register Status1Reg is set to logic 1.                                                                                              |  |  |  |  |  |

Table7-68 CRCResultReg Address: 22h reset value: FFh

|        | 7            | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|--------|--------------|---|---|---|---|---|---|---|
|        |              |   |   |   |   |   |   |   |
|        | CRCResultLSB |   |   |   |   |   |   |   |
|        |              |   |   |   |   |   |   |   |
| Access | r            | r | r | r | r | r | r | r |

Table 7-69 CRCR esult Reg Bit Description

|     | Tuble? 05 Cite Resulting Die Description |                                                                      |  |  |  |  |  |  |
|-----|------------------------------------------|----------------------------------------------------------------------|--|--|--|--|--|--|
| Bit | Symbol                                   | Description                                                          |  |  |  |  |  |  |
| 7:0 | CRCResultLSB                             | This register shows the actual value of the most significant byte of |  |  |  |  |  |  |
|     |                                          | the CRCResultReg register. It is valid only if bit CRCReady in       |  |  |  |  |  |  |
|     |                                          | register Status1Reg is set to logic 1.                               |  |  |  |  |  |  |



#### 7.4.4 GsNOffReg

Selects the conductance for the N-driver of the antenna driver pins TX1 and TX2 when the driver is switched off.

Table 7-70 GsNOffReg Address: 23h reset value: 88h

|        | 7        | 6   | 5   | 4   | 3         | 2   | 1   | 0   |
|--------|----------|-----|-----|-----|-----------|-----|-----|-----|
|        | CWGsNOff |     |     |     | ModGsNOff |     |     |     |
| Access | r/w      | r/w | r/w | r/w | r/w       | r/w | r/w | r/w |

Table 7-71 GsNOffReg Bit Description

|     | Table 7-71 GSNOTIKEG Bit Description |                                                                                                                                                                                                                                                 |  |  |  |  |
|-----|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Bit | Symbol                               | Description                                                                                                                                                                                                                                     |  |  |  |  |
| 7:4 | CWGsNOff                             | This value is used for LoadModulation. The value of this register defines the conductance of the output N-driver during times of no modulation.                                                                                                 |  |  |  |  |
|     |                                      | NOTE: The conductance value is binary weighted. During soft Power-down mode the highest bit is forced to 1. The value of the resgister is only used if the driver is switched off. Otherwise the bit value CWGsNOn of register GsNOnReg is used |  |  |  |  |
| 3:0 | ModGsNOff                            | This value is used for LoadModulation. The value of this register defines the conductance of the output N-driver for the time of modulation. This may be used to regulate the modulation index.                                                 |  |  |  |  |
|     |                                      | NOTE: The conductance value is binary weighted. During soft Power-down mode the highest bit is forced to 1. The value of the register is only used if the driver is switched off. Otherwise the bit value ModGsNOn of register GsNOnReg is used |  |  |  |  |

#### 7.4.5 ModWidthReg

Controls the modulation width settings.



|        | Tab      | le7-72 M | odWidthR | eg Addre | ess: 24h | reset value | : 26h |     |
|--------|----------|----------|----------|----------|----------|-------------|-------|-----|
|        | 7        | 6        | 5        | 4        | 3        | 2           | 1     | 0   |
|        | ModWidth |          |          |          |          |             |       |     |
| Access | r/w      | r/w      | r/w      | r/w      | r/w      | r/w         | r/w   | r/w |

Table 7-73 Mod Width Reg Bit Description

|     |          | Table 7-75 Wild WidthKeg Dit Description                                                |
|-----|----------|-----------------------------------------------------------------------------------------|
| Bit | Symbol   | Description                                                                             |
| 7:0 | ModWidth | These bits define the width of the Miller modulation as initiator in Active and Passive |
|     |          | Communication mode as multiples of the carrier frequency (ModWidth + 1/fc). The         |
|     |          | maximum value is half the bit period.                                                   |
|     |          | The resulting number of carrier periods are calculated according to the following       |
|     |          | formulas:                                                                               |
|     |          | LOW value: #clocksLOW = (ModWidth modulo 8) + 1.                                        |
|     |          | HIGH value: #clocksHIGH = 16 - #clocksLOW.                                              |

#### **7.4.6 RFU**

Reserved for future use.

#### 7.4.7 RFCfgReg

Configures the receiver gain and RF level detector sensitivity.

Table7-76 RFCfgReg Address: 26h reset value: 48h

|        | 7   | 6   | 5      | 4   | 3   | 2 | 1   | 0 |  |
|--------|-----|-----|--------|-----|-----|---|-----|---|--|
|        | RFU |     | RxGain |     |     |   | RFU |   |  |
| Access | -   | r/w | r/w    | r/w | r/w |   | -   |   |  |

Table7-77 RFCfgReg Bit Description

|     |        | Table: Its eighteg bit bettiption                               |
|-----|--------|-----------------------------------------------------------------|
| Bit | Symbol | Description                                                     |
| 7   | RFU    | -                                                               |
| 6:3 | RxGain | This register defines the receivers signal voltage gain factor: |



|     |     | Value | Gain |
|-----|-----|-------|------|
|     |     | value | Gain |
|     |     | 000   | 18dB |
|     |     | 001   | 23dB |
|     |     | 010   | 18dB |
|     |     | 011   | 23dB |
|     |     | 100   | 33dB |
|     |     | 101   | 38dB |
|     |     | 110   | 43dB |
|     |     | 111   | 48dB |
| 2:0 | RFU | -     |      |

## 7.4.8 GsNOnReg

Selects the conductance for the N-driver of the antenna driver pins TX1 and TX2 when the driver is switched on.

Table 7-78 GsNOnReg Address: 27h reset value: 88h

|        | 7   | 6   | 5      | 4   | 3        | 2   | 1   | 0   |  |
|--------|-----|-----|--------|-----|----------|-----|-----|-----|--|
|        |     | CW  | /GsNOn |     | ModGsNOn |     |     |     |  |
| Access | r/w | r/w | r/w    | r/w | r/w      | r/w | r/w | r/w |  |

Table 7-79 GsNOnReg Bit Description

|     |         | <u> </u>                                                                               |
|-----|---------|----------------------------------------------------------------------------------------|
| Bit | Symbol  | Description                                                                            |
| 7:4 | CWGsNOn | The value of this register defines the conductance of the output N-driver during times |
|     |         | of no modulation. This may be used to regulate the output power and subsequently       |
|     |         | current consumption and operating distance.                                            |
|     |         | NOTE: The conductance value is binary weighted. During soft Power-down mode            |
|     |         | the highest bit is forced to 1. This value is only used if the driver TX1 or TX2 are   |
|     |         | switched on. Otherwise the value of the bits CWGsNOff of register GsNOffReg is         |
|     |         | used.                                                                                  |



| 3:0 | ModGsNOn | The value of this register defines the conductance of the output N-driver for the time |
|-----|----------|----------------------------------------------------------------------------------------|
|     |          | of modulation. This may be used to regulate the modulation index.                      |
|     |          | NOTE: The conductance value is binary weighted. During soft Power-down mode            |
|     |          | the highest bit is forced to 1. This value is only used if the driver TX1 or Tx2 are   |
|     |          | switched on. Otherwise the value of the bits ModsNOff of register GsNOffReg is         |
|     |          | used.                                                                                  |

#### 7.4.9 CWGsPReg

Defines the conductance of the P-driver during times of no modulation

|        | T   | able7-80 | <b>CWGsPReg</b> | Address | s: 28h | reset value: | 20h |     |
|--------|-----|----------|-----------------|---------|--------|--------------|-----|-----|
|        | 7   | 6        | 5               | 4       | 3      | 2            | 1   | 0   |
|        | RFU | RFU      | CWGsP           |         |        |              |     |     |
| Access | -   | -        | r/w             | r/w     | r/w    | r/w          | r/w | r/w |

Table 7-81 CWGsPReg Bit Description

|     |        | Table 7-81 CW GSF Keg Bit Description                                               |
|-----|--------|-------------------------------------------------------------------------------------|
| Bit | Symbol | Description                                                                         |
| 7:6 | RFU    | Reserved for future use.                                                            |
| 5:0 | CWGsP  | The value of this register defines the conductance of the output P-driver. This may |
|     |        | be used to regulate the output power and subsequently current consumption and       |
|     |        | operating distance.                                                                 |
|     |        | NOTE: The conductance value is binary weighted. During soft Power-down mode         |
|     |        | the highest bit is forced to 1.                                                     |

## 7.4.10 ModGsPReg

Defines the driver P-output conductance during modulation.

| Ta | ble7-82 | ModGsPReg | g Addres | s: 29h | reset value: | 20h |   |
|----|---------|-----------|----------|--------|--------------|-----|---|
|    |         |           |          |        |              |     |   |
| 7  | 6       | 5         | 4        | 3      | 2            | 1   | 0 |



|        | RFU | RFU | ModGsP |     |     |     |     |     |
|--------|-----|-----|--------|-----|-----|-----|-----|-----|
| Access | -   | -   | r/w    | r/w | r/w | r/w | r/w | r/w |

Table 7-83 ModGsPReg Bit Description

|     |        | Tuble 7 00 17104 GST Reg Bit Description                                               |
|-----|--------|----------------------------------------------------------------------------------------|
| Bit | Symbol | Description                                                                            |
| 7:6 | RFU    | Reserved for future use.                                                               |
| 5:0 | ModGsP | The value of this register defines the conductance of the output P-driver for the time |
|     |        | of modulation. This may be used to regulate the modulation index.                      |
|     |        | NOTE: The conductance value is binary weighted. During soft Power-down mode            |
|     |        | the highest bit is forced to 1.                                                        |

#### 7.4.11/12 TModeReg, TPrescalerReg

Defines settings for the timer.

NOTE: The Prescaler value is split into two 8-bit registers

Table7-84 TModeReg Address: 2Ah reset value: 00h

|        |       |       |     | 1105 110010001 2110 | 10000 | , , <b>, , , , , , , , , , , , , , , , , </b> | -       |     |
|--------|-------|-------|-----|---------------------|-------|-----------------------------------------------|---------|-----|
|        | 7     | 6     | 5   | 4                   | 3     | 2                                             | 1       | 0   |
|        | TAuto | TGate | d   | TAutoRestart        |       | TPresc                                        | aler_Hi |     |
| Access | r/w   | r/w   | r/w | r/w                 | r/w   | r/w                                           | r/w     | r/w |

**Table7-85 TModeReg Bit Description** 

|     |        | Table 7-05 Tiviouchez Bit Description                                           |
|-----|--------|---------------------------------------------------------------------------------|
| Bit | Symbol | Description                                                                     |
| 7   | TAuto  | Set to logic 1, the timer starts automatically at the end of the transmission   |
|     |        | in all communication modes at all speeds or when bit InitialRFOn is set to      |
|     |        | logic 1 and the RF field is switched on.                                        |
|     |        | In mode ISO14443-B 106kbit/s the timer stops after the 5th                      |
|     |        | bit (1 startbit, 4 databits) if the bit RxMultiple in the register RxModeReg is |
|     |        | not set. In all other modes, the timer stops after the 4th bit if the bit       |
|     |        | RxMultiple the register RxModeReg is not set.                                   |



|     |               | If DyMule                                                                         | If RxMultiple is set to logic 1, the timer never stops. In this case the timer |  |  |  |  |  |
|-----|---------------|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--|--|--|--|--|
|     |               |                                                                                   |                                                                                |  |  |  |  |  |
|     |               | can be sto                                                                        | can be stopped by setting the bit TStopNow in register ControlReg to 1.        |  |  |  |  |  |
|     |               | Set to log                                                                        | ic 0 indicates, that the timer is not influenced by the protocol.              |  |  |  |  |  |
| 6:5 | TGated        | The intern                                                                        | al timer is running in gated mode.                                             |  |  |  |  |  |
|     |               | NOTE: In                                                                          | the gated mode, the bit TRunning is 1 when the timer is enabled                |  |  |  |  |  |
|     |               | by the reg                                                                        | ister bits. This bit does not influence the gating signal.                     |  |  |  |  |  |
|     |               | Value                                                                             | Description                                                                    |  |  |  |  |  |
|     |               | 00                                                                                | Non gated mode                                                                 |  |  |  |  |  |
|     |               | 01                                                                                | Gated by MFIN                                                                  |  |  |  |  |  |
|     |               | 10                                                                                | Gated by AUX1                                                                  |  |  |  |  |  |
|     |               | 11 Gated by A3                                                                    |                                                                                |  |  |  |  |  |
| 4   | TAutoRestart  | Set to logic 1, the timer automatically restart its count-down from TReloadValue, |                                                                                |  |  |  |  |  |
|     |               | instead of                                                                        | counting down to zero.                                                         |  |  |  |  |  |
|     |               | Set to logi                                                                       | c 0 the timer decrements to ZERO and the bit TimerIRq is set to logic 1.       |  |  |  |  |  |
| 3:0 | TPrescaler_Hi | Defines hi                                                                        | gher 4 bits for TPrescaler.                                                    |  |  |  |  |  |
|     |               | The follow                                                                        | ving formula is used to calculate fTimer if TPrescalEven bit in                |  |  |  |  |  |
|     |               | DemodRe                                                                           | g is set to logic 0:                                                           |  |  |  |  |  |
|     |               | fTimer                                                                            | = 13.56MHz/(2*TPreScaler + 1)                                                  |  |  |  |  |  |
|     |               | Where TPreScaler = [TPrescaler_Hi:TPrescaler_Lo] (TPrescaler value on 12 bits)    |                                                                                |  |  |  |  |  |
|     |               | (Default T                                                                        | (Default TPrescalEven is logic 0)                                              |  |  |  |  |  |
|     |               | The follow                                                                        | ving formula is used to calculate fTimer if TPrescalEven bit in                |  |  |  |  |  |
|     |               | DemodRe                                                                           | g is set to logic 1:                                                           |  |  |  |  |  |
|     |               | fTimer =                                                                          | 13.56MHz/(2*TPreScaler + 2)                                                    |  |  |  |  |  |

Table 7-86 TPrescaler Reg Address: 2Bh reset value: 00h

|        | 7   | 6   | 5   | 4    | 3         | 2   | 1   | 0   |
|--------|-----|-----|-----|------|-----------|-----|-----|-----|
|        |     |     |     | TPre | scaler_Lo |     |     |     |
| Access | r/w | r/w | r/w | r/w  | r/w       | r/w | r/w | r/w |



| Bit | Symbol        | Description                                                                    |
|-----|---------------|--------------------------------------------------------------------------------|
| 7:0 | TPrescaler_Lo | Defines lower 8 bits for TPrescaler.                                           |
|     |               | The following formula is used to calculate fTimer if TPrescalEven bit in       |
|     |               | DemodReg is set to logic 0:                                                    |
|     |               | fTimer = 13.56 MHz/(2*TPreScaler+1).                                           |
|     |               | Where TPreScaler = [TPrescaler_Hi:TPrescaler_Lo] (TPrescaler value on 12 bits) |
|     |               | The following formula is used to calculate fTimer if TPrescalEven bit in       |
|     |               | DemodReg is set to logic 1:                                                    |
|     |               | fTimer = 13.56 MHz/(2*TPreScaler+2).                                           |
|     |               | Where TPreScaler = [TPrescaler_Hi:TPrescaler_Lo] (TPrescaler value on 12 bits) |

## 7.4.13/14 TReloadReg

Describes the 16-bit long timer reload value.

*NOTE: The Reload value is split into two 8-bit registers.* 

|        | Table7-88 | TReloa        | dReg (hig | h Bit) A | Address: 2 | Ch reset | value: 00 | h   |
|--------|-----------|---------------|-----------|----------|------------|----------|-----------|-----|
|        | 7         | 6             | 5         | 4        | 3          | 2        | 1         | 0   |
|        |           | TReloadVal_Hi |           |          |            |          |           |     |
| Access | r/w       | r/w           | r/w       | r/w      | r/w        | r/w      | r/w       | r/w |

Table 7-89 TReload Reg Bit Description

| Bit | Symbol        | Description                                                                           |
|-----|---------------|---------------------------------------------------------------------------------------|
| 7:0 | TReloadVal_Hi | Defines the higher 8 bits for the TReloadReg.                                         |
|     |               | With a start event the timer loads the TReloadVal. Changing this register affects the |
|     |               | timer only at the next start event.                                                   |

| <br>Table7-90 | TReloa | dReg (lov | v Bit) A | Address: 2 | Dh reset | value: 00ł | 1 |
|---------------|--------|-----------|----------|------------|----------|------------|---|
| 7             | 6      | 5         | 4        | 3          | 2        | 1          | 0 |
|               |        |           | TRe      | loadVal_Lo |          |            |   |



| Access | r/w |
|--------|-----|-----|-----|-----|-----|-----|-----|-----|

Table 7-91 TReload Reg Bit Description

| Bit | Symbol        | Description                                                                           |
|-----|---------------|---------------------------------------------------------------------------------------|
| 7:0 | TReloadVal_Hi | Defines the lower 8 bits for the TReloadReg.                                          |
|     |               | With a start event the timer loads the TReloadVal. Changing this register affects the |
|     |               | timer only at the next start event.                                                   |

#### 7.4.15/16 TCounterValReg

Contains the current value of the timer.

*NOTE: The Counter value is split into two 8-bit register.* 

Table 7-92 TCounter Val Reg (high Bit) Address: 2Eh reset value: xxh,

xxxxxxxxb

|        | 7 | 6 | 5 | 4   | 3        | 2 | 1 | 0 |
|--------|---|---|---|-----|----------|---|---|---|
|        |   |   |   | Ter | ntVal_Hi |   |   |   |
| Access | r | r | r | r   | r        | r | r | r |

Table 7-93 TCounterValReg Bit Description

| Bit | Symbol     | Description                                |
|-----|------------|--------------------------------------------|
| 7:0 | TcntVal_Hi | Current value of the timer, higher 8 bits. |

Table 7-94 TCounter ValReg (lowBit) Address: 2Fh reset value: xxh,

xxxxxxxxb

|        | 7 | 6 | 5 | 4   | 3        | 2 | 1 | 0 |
|--------|---|---|---|-----|----------|---|---|---|
|        |   |   |   | Ten | itVal_Lo |   |   |   |
| Access | r | r | r | r   | r        | r | r | r |

Table 7-95 TCounterValReg Bit Description



# **Si523**

| Bit | Symbol     | Description                               |
|-----|------------|-------------------------------------------|
| 7:0 | TcntVal_Lo | Current value of the timer, lower 8 bits. |



## 7.5 PAGE3: Test

#### 7.5.1 PageReg

Table 7-96 Page Reg Address: 30h reset value: 00h

|        | 7             | 6             | 5   | 4   | 3       | 2   | 1    | 0      |
|--------|---------------|---------------|-----|-----|---------|-----|------|--------|
|        | UsePageSelect | RegbankSelect |     | Re  | gSelect |     | Page | Select |
| Access | r/w           | r/w           | r/w | r/w | r/w     | r/w | r/w  | r/w    |

Table 7-97 Page Reg Bit Description

|     | 1             | Table 7-97 Tageneg bit Description                                      |
|-----|---------------|-------------------------------------------------------------------------|
| Bit | Symbol        | Description                                                             |
| 7   | UsePageSelect | Set to logic 1, the value of PageSelect is used as register address     |
|     |               | A5 and A4. The LSB-bits of the register address are defined by the      |
|     |               | address pins or the internal address latch, respectively.               |
|     |               | Set to logic 0, the whole content of the internal address latch defines |
|     |               | the register address. The address pins are used as described in         |
| 6   | RegbankSelect | Set to logic 1, it is used to read/write 0Fh register set               |
| 5:2 | RegSelect     | 0000: read/write register set A;                                        |
|     |               | 0001: read/write register set B;                                        |
|     |               |                                                                         |
|     |               | 1111: read/write register set P                                         |
| 1:0 | PageSelect    | The value of PageSelect is used only if UsePageSelect is set to         |
|     |               | logic 1. In this case, it specifies the register page (which is A5 and  |
|     |               | A4 of the register address).                                            |

#### 7.5.2 TestSel1Reg

General test signal configuration.

Table 7-98 Test Sel1Reg Address: 31h reset value: 00h

|        | 7   | 6   | 5  | 4  | 3   | 2   | 1            | 0   |
|--------|-----|-----|----|----|-----|-----|--------------|-----|
|        | RFU | RFU | RI | FU | RFU |     | TstBusBitSel |     |
| Access | -   | -   | -  | -  | -   | r/w | r/w          | r/w |

Table 7-99 Test Sel1Reg Bit Description

| ſ |     |              | •                                                                  |
|---|-----|--------------|--------------------------------------------------------------------|
|   | Bit | Symbol       | Description                                                        |
|   |     |              |                                                                    |
|   | 7:3 | RFU          | -                                                                  |
|   |     |              |                                                                    |
|   | 2:0 | TstBusBitSel | Select the TestBus bit from the testbus to be propagated to MFOUT. |

#### 7.5.3 TestSel2Reg

General test signal configuration and PRBS control

Table7-100 TestSel2Reg Address: 32h reset value: 00h

|        | 7          | 6     | 5      | 4   | 3   | 2          | 1   | 0   |
|--------|------------|-------|--------|-----|-----|------------|-----|-----|
|        | TstBusFlip | PRBS9 | PRBS15 |     |     | TestBusSel |     |     |
| Access | r/w        | r/w   | r/w    | r/w | r/w | r/w        | r/w | r/w |

Table7-101 TestSel2Reg Bit Description

|     |            | Table 7 101 Tests cizing bit Describtion                                              |
|-----|------------|---------------------------------------------------------------------------------------|
| Bit | Symbol     | Description                                                                           |
| 7   | TstBusFlip | If set to logic 1, the testbus is mapped to the parallel port by the following order: |
|     |            | D4, D3, D2, D6, D5, D0, D1                                                            |
| 6   | PRBS9      | Starts and enables the PRBS9 sequence according ITU-TO150.                            |
|     |            | NOTE: All relevant registers to transmit data have to be configured before entering   |
|     |            | PRBS9 mode. The data transmission of the defined sequence is started by the send      |
|     |            | command.                                                                              |
| 5   | PRBS15     | Starts and enables the PRBS15 sequence according ITU-TO150.                           |
|     |            | NOTE: All relevant registers to transmit data have to be configured before entering   |
|     |            | PRBS15 mode. The data transmission of the defined sequence is started by the          |
|     |            | send command.                                                                         |
| 4:0 | TstBusSel  | Selects the testbus.                                                                  |



#### 7.5.4 TestPinEnReg

Enables the pin output driver on the 8-bit parallel bus.

Table7-102 TestPinEnReg Address: 33h reset value: 80h

|        | 7           | 6   | 5   | 4   | 3         | 2   | 1   | 0   |
|--------|-------------|-----|-----|-----|-----------|-----|-----|-----|
|        | RS232LineEn |     |     |     | TestPinEn |     |     |     |
| Access | r/w         | r/w | r/w | r/w | r/w       | r/w | r/w | r/w |

Table 7-103 Test Pin En Reg Bit Description

|     | Table? Too Test menteg ble bescription |                                                                                                                                                                           |  |  |  |  |  |
|-----|----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Bit | Symbol                                 | Description                                                                                                                                                               |  |  |  |  |  |
| 7   | RS232LineEn                            | Set to logic 0, the lines MX and DTRQ for the serial UART are disabled.                                                                                                   |  |  |  |  |  |
|     |                                        | Enables the pin output driver on the 8-bit parallel interface.  Example:                                                                                                  |  |  |  |  |  |
| 6:0 | TestPinEn                              | Setting bit 0 to 1 enables D0 Setting bit 5 to 1 enables D5                                                                                                               |  |  |  |  |  |
|     |                                        | NOTE: Only valid if one of serial interfaces is used. If the SPI interface is used only D0 to D4 can be used. If the serial UART interface is used and RS232LineEn is set |  |  |  |  |  |
|     |                                        | to logic 1 only D0 to D4 can be used.                                                                                                                                     |  |  |  |  |  |

#### 7.5.5 TestPinValueReg

Defines the values for the 7-bit parallel port when it is used as I/O.

Table7-104 TestPinValueReg Address: 34h reset value: 00h

|        | 7     | 6   | 5   | 4   | 3           | 2   | 1   | 0   |
|--------|-------|-----|-----|-----|-------------|-----|-----|-----|
|        | UseIO |     |     |     | TestPinValu | ıe  |     |     |
| Access | r/w   | r/w | r/w | r/w | r/w         | r/w | r/w | r/w |

Table7-105 TestPinValueReg Bit Description

|     | •      |             |
|-----|--------|-------------|
| Bit | Symbol | Description |



| 7   | UseIO        | Set to logic 1, this bit enables the I/O functionality for the 7-bit parallel port in case one of the serial interfaces is used. The input/output behavior is defined by TestPinEn in register TestPinEnReg. The value for the output behavior is defined in the bits TestPinVal.  NOTE: If SAMClkD1 is set to logic 1, D1 can not be used as I/O. |
|-----|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6:0 | TestPinValue | Defines the value of the 7-bit parallel port, when it is used as I/O. Each output has to be enabled by the TestPinEn bits in register TestPinEnReg.  NOTE: Reading the register indicates the actual status of the pins D6 -  D0 if UseIO is set to logic 1. If UseIO is set to logic 0, the value of the register TestPinValueReg is read back.   |

#### 7.5.6 TestBusReg

Shows the status of the internal testbus.

Table7-106 TestBusReg Address: 35h reset value: xxh, xxxxxxxxh

|        | 7 | 6       | 5 | 4 | 3 | 2 | 1 | 0 |
|--------|---|---------|---|---|---|---|---|---|
|        |   | TestBus |   |   |   |   |   |   |
| Access | r | r       | r | r | r | r | r | r |

Table 7-107 TestBusReg Bit Description

| Bit | Symbol  | Description                                                                       |
|-----|---------|-----------------------------------------------------------------------------------|
| 7:0 | TestBus | Shows the status of the internal testbus. The testbus is selected by the register |
|     |         | TestSel2Reg.                                                                      |

#### 7.5.7 AutoTestReg

Controls the digital selftest.

Table7-108 AutoTestReg Address: 36h reset value: 40h

| 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|---|---|---|---|---|---|---|---|
|   |   |   |   |   |   |   |   |



|        |     |        | EOFSOF |     |          |     |     |     |
|--------|-----|--------|--------|-----|----------|-----|-----|-----|
|        | RFT | AmpRcv | Adjust | RFU | SelfTest |     |     |     |
| Access | -   | r/w    | r/w    | -   | r/w      | r/w | r/w | r/w |

Table7-109 AutoTestReg Bit Description

|     |          | Table7-109 AutoTestReg Bit Description                                     |
|-----|----------|----------------------------------------------------------------------------|
| Bit | Symbol   | Description                                                                |
| 7   | RFT      | Reserved for production tests.                                             |
| 6   | AmpRcv   | If set to logic 1, the internal signal processing in the receiver chain is |
|     |          | performed non-linear. This increases the operating distance in             |
|     |          | communication modes at 106 kbit.                                           |
|     |          | NOTE: Due to the non linearity the effect of the bits MinLevel and         |
|     |          | CollLevel in the register RxThreshholdReg are as well non linear.          |
| 5   | RFU      | If set to logic 0 and the EOFSOFwidth is set to 1 will result in the       |
|     |          | Maximum length of SOF and EOF according to ISO/IEC14443B                   |
|     |          | If set to logic 0 and the EOFSOFwidth is set to 0 will result in the       |
|     |          | Minimum length of SOF and EOF according to ISO/IEC14443B                   |
|     |          | If this bit is set to 1 and the EOFSOFwidth bit is logic 1 will result in  |
|     |          | SOF low = $(11 \text{ etu} - 8 \text{ cycles})/\text{fc}$                  |
|     |          | SOF high = (2 etu + 8 cycles)/fc                                           |
|     |          | EOF low = $(11 \text{ etu} - 8 \text{ cycles})/\text{fc}$                  |
| 4   | RFU      | -                                                                          |
| 3:0 | SelfTest | Enables the digital self test. The selftest can be started by the selftest |
|     |          | command in the command register. The selftest is enabled by 1001.          |
|     |          | NOTE: For default operation the selftest has to be disabled by 0000.       |

## 7.5.8 VersionReg

Shows the version.

|        | 7 | 6       | 5 | 4 | 3 | 2 | 1 | 0 |
|--------|---|---------|---|---|---|---|---|---|
|        |   | Version |   |   |   |   |   |   |
| Access | r | r       | r | r | r | r | r | r |

**Table7-111 VersionReg Bit Description** 

| Bit | Symbol  | Description |  |
|-----|---------|-------------|--|
| 7:0 | Version | B2h         |  |

#### 7.5.9 AnalogTestReg

Controls the pins AUX1 and AUX2  $\,$ 

Table7-112 AnalogTestReg Address: 38h reset value: 00h

|        | 7      | 6        | 5   | 4   | 3             | 2   | 1   | 0   |
|--------|--------|----------|-----|-----|---------------|-----|-----|-----|
|        | Analog | gSelAux1 |     |     | AnalogSelAux2 |     |     |     |
| Access | r/w    | r/w      | r/w | r/w | r/w           | r/w | r/w | r/w |

Table 7-113 Analog Test Reg Bit Description

|     |               |            | Thialog Testreg Dit Description                                            |
|-----|---------------|------------|----------------------------------------------------------------------------|
| Bit | Symbol        | Desc       | ription                                                                    |
| 7:4 | AnalogSelAux1 | Control th | e AUX pin                                                                  |
| 3:0 | AnalogSelAux2 | Value      | Description                                                                |
|     |               | 0000       | Tristate                                                                   |
|     |               | 0001       | Output of TestDAC1 (AUX1), output of TESTDAC2 (AUX2)                       |
|     |               |            | NOTE: Current output. The use of 1 $k\Omega$ pull-down resistor on AUX is  |
|     |               |            | recommended.                                                               |
|     |               | 0010       | Testsignal Corr1                                                           |
|     |               |            | NOTE: Current output. The use of 1 k $\Omega$ pull-down resistor on AUX is |
|     |               |            | recommended.                                                               |
|     |               | 0011       | Testsignal Corr2                                                           |
|     |               |            |                                                                            |



| T T |      |                                                                            |
|-----|------|----------------------------------------------------------------------------|
|     |      | NOTE: Current output. The use of 1 $k\Omega$ pull-down resistor on AUX is  |
|     | 0100 | recommended.                                                               |
|     |      | Testsignal MinLevel                                                        |
|     |      | NOTE: Current output. The use of 1 $k\Omega$ pull-down resistor on AUX is  |
|     | 0101 | recommended.                                                               |
|     |      | Testsignal ADC channel I                                                   |
|     |      | NOTE: Current output. The use of 1 $k\Omega$ pull-down resistor on AUX is  |
|     | 0110 | recommended.                                                               |
|     |      | Testsignal ADC channel Q                                                   |
|     |      | NOTE: Current output. The use of 1 $k\Omega$ pull-down resistor on AUX is  |
|     | 0111 | recommended.                                                               |
|     |      | Testsignal ADC channel I combined with Q                                   |
|     |      | NOTE: Current output. The use of 1 $k\Omega$ pull-down resistor on AUX is  |
|     | 1000 | recommended.                                                               |
|     |      | Testsignal for production test                                             |
|     |      | NOTE: Current output. The use of 1 k $\Omega$ pull-down resistor on AUX is |
|     | 1001 | recommended.                                                               |
|     | 1010 | SAM clock (13.56 MHz)                                                      |
|     | 1011 | HIGH                                                                       |
|     | 1100 | LOW                                                                        |
|     |      | TxActive                                                                   |
|     |      | At 106 kbit: HIGH during Startbit, Data bit, Parity and CRC. At 212        |
|     |      | and 424 kbit: High                                                         |
|     | 1101 | during Preamble, Sync, Data and CRC.                                       |
|     |      | RxActive                                                                   |
|     |      | At 106 kbit: High during databit, Parity and CRC.                          |
|     | 1110 | At 212 and 424 kbit: High during data and CRC.                             |
|     |      | Subcarrier detected                                                        |
|     |      | 106 kbit: not applicable                                                   |
|     |      | 212 and 424 kbit: High during last part of Preamble, Sync data and CRC     |
|     | 1111 |                                                                            |



|  | TestBus-Bit as defined by the TstBusBitSel in register |
|--|--------------------------------------------------------|
|  | CommTest1Reg.                                          |

#### 7.5.10 TestDAC1Reg

Defines the testvalues for TestDAC1.

Table126 TestDAC1Reg Address: 39h reset value: xxh, 00xxxxxxb

|        | 7   | 6   | 5      | 4   | 3   | 2   | 1   | 0   |
|--------|-----|-----|--------|-----|-----|-----|-----|-----|
|        | 0   | 0   | TestDa | AC1 |     |     |     |     |
| Access | RFT | RFU | r/w    | r/w | r/w | r/w | r/w | r/w |

Table127 TestDAC1Reg Bit Description

| Bit | Symbol   | Description                                                                                                                                    |
|-----|----------|------------------------------------------------------------------------------------------------------------------------------------------------|
| 7   | -        | Reserved for production tests.                                                                                                                 |
| 6   | -        | Reserved for future use.                                                                                                                       |
| 5:0 | TestDAC1 | Defines the testvalue for TestDAC1. The output of the DAC1 can be switched to AUX1 by setting AnalogSelAux1 to 0001 in register AnalogTestReg. |

#### 7.5.11 TestDAC2Reg

Defines the testvalue for TestDAC2.

Table7-114 TestDAC2Reg Address: 3Ah reset value: xxh, 00xxxxxxb

|        | 7   | 6   | 5        | 4   | 3   | 2   | 1   | 0   |
|--------|-----|-----|----------|-----|-----|-----|-----|-----|
|        | 0   | 0   | TestDAC2 |     |     |     |     |     |
| Access | RFU | RFU | r/w      | r/w | r/w | r/w | r/w | r/w |



Table7-115 TestDAC2Reg Bit Description

| Bit | Symbol   | Description                                                       |
|-----|----------|-------------------------------------------------------------------|
| 7:6 | -        | Reserved for future use.                                          |
| 5:0 | TestDAC2 | Defines the testvalue for TestDAC2. The output of the DAC2 can be |
|     |          | switched to AUX2 by setting AnalogSelAux2 to 0001 in register     |
|     |          | AnalogTestReg.                                                    |

## 7.5.12 TestADCReg

Shows the actual value of ADC I and Q channel.

Table7-116 TestADCReg Address: 3Bh reset value: xxh, xxxxxxxxb

|        | 7     | 6 | 5 | 4     | 3 | 2 | 1 | 0 |
|--------|-------|---|---|-------|---|---|---|---|
|        | ADC_I |   |   | ADC_Q |   |   |   |   |
| Access | r     | r | r | r     | r | r | r | r |

**Table7-117 TestADCReg Bit Description** 

| Table 7-117 Test (Detect piton |        |                                          |  |  |  |  |
|--------------------------------|--------|------------------------------------------|--|--|--|--|
| Bit                            | Symbol | Description                              |  |  |  |  |
| 7:4                            | ADC_I  | Shows the actual value of ADC I channel. |  |  |  |  |
| 3:0                            | ADC_Q  | Shows the actual value of ADC Q channel. |  |  |  |  |

## **7.5.13 RFTReg**

Reserved for future use.



## 8. Digital interfaces

#### 8.1 Automatic microcontroller interface detection

The Si523 supports direct interfacing of hosts using SPI, I2C-bus or serial UART interfaces. The Si523 resets its interface and checks the current host interface type automatically after performing a power-on or hard reset. The Si523 identifies the host interface by sensing the logic levels on the control pins after the reset phase. This is done using a combination of fixed pin connections. Table 8-1 shows the different connection configurations.

Table8-1 Connection protocol for detecting different interface types

| 1.66 | neo-1 Connection protocol | tor detecting different | meer race types    |  |  |  |
|------|---------------------------|-------------------------|--------------------|--|--|--|
| Pin  | Interface type            |                         |                    |  |  |  |
|      | UART (input)              | SPI (output)            | I2C (input/output) |  |  |  |
| SDA  | RX                        | NSS                     | SDA                |  |  |  |
| I2C  | 0                         | 0                       | 1                  |  |  |  |
| EA   | 0                         | 1                       | EA                 |  |  |  |
| D7   | TX                        | MISO                    | SCL                |  |  |  |
| D6   | MX                        | MOSI                    | ADR_0              |  |  |  |
| D5   | DTRQ                      | SCK                     | ADR_1              |  |  |  |
| D4   | -                         | _                       | ADR_2              |  |  |  |
| D3   | _                         | _                       | ADR_3              |  |  |  |
| D2   |                           |                         | ADR_4              |  |  |  |
|      | -                         | -                       |                    |  |  |  |
| D1   | -                         | -                       | ADR_5              |  |  |  |

#### **8.2 SPI**

A serial peripheral interface (SPI compatible) is supported to enable high-speed communication to the host. The interface can handle data speeds up to 10 Mbit/s. When communicating with a host, the Si523 acts as a slave, receiving data from the external



host for register settings, sending and receiving data relevant for RF interface communication.

An interface compatible with SPI enables high-speed serial communication between the Si523 and a microcontroller. The implemented interface is in accordance with the SPI standard.

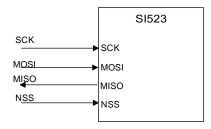



Figure 8.1 SPI connection to host

The Si523 acts as a slave during SPI communication. The SPI clock signal SCK must be generated by the master. Data communication from the master to the slave uses the MOSI line. The MISO line is used to send data from the Si523 to the master.

Data bytes on both MOSI and MISO lines are sent with the MSB first. Data on both MOSI and MISO lines must be stable on the rising edge of the clock and can be changed on the falling edge. Data is provided by the Si523 on the falling clock edge and is stable during the rising clock edge.

#### 8.2.1 SPI read data

Reading data using SPI requires the byte order shown in Table 8-2 to be used. It is possible to read out up to n-data bytes. The first byte sent defines both the mode and the address.

Table8-2 MOSI and MISO byte order

| Line | Byte0     | Byte1     | Byte2     | <br>Byte n    | Byte n+1 |
|------|-----------|-----------|-----------|---------------|----------|
| MOSI | Address 0 | Address 1 | Address 2 | <br>Address n | 00       |
| MISO | X*        | data0     | data1     | <br>data n-1  | data n   |

*NOTE:* X = Do *not care. The MSB must be sent first.* 



#### 8.2.2 SPI write data

To write data to the Si523 using SPI requires the byte order shown in Table 8-3. It is possible to write up to n data bytes by only sending one address byte. The first send byte defines both the mode and the address byte.

Table8-3 MOSI and MISO byte order

| Line | Byte0     | Byte1  | Byte2  | <br>Byte n   | Byte n+1 |
|------|-----------|--------|--------|--------------|----------|
| MOSI | Addres s0 | data 0 | data 1 | <br>data n-1 | data n   |
| MISO | X*        | X*     | X*     | <br>X*       | X*       |

*NOTE:* X = Do not care. The MSB must be sent first.

## 8.2.3 SPI address byte

The address byte has to meet the following format.

Table8-4 Address byte0 register; MOSI

| 7 (MSB)        | 6: 1    | 0 (LSB) |
|----------------|---------|---------|
| 1=read/0=write | Address | 0       |

The MSB of the first byte defines the mode used. To read data from the Si523 the MSB is set to logic 1. To write data to the Si523 the MSB must be set to logic 0. Bits 6 to 1 define the address and the LSB is set to logic 0.



#### **8.3 UART**

#### **8.3.1** Connection to a host

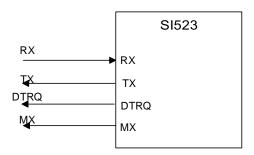



Figure 8.2 UART connection to microcontrollers

NOTE: Signals DTRQ and MX can be disabled by clearing TestPinEnReg register's RS232LineEn bit.

## 8.3.2 Selectable UART transfer speeds

The internal UART interface is compatible with an RS232 serial interface.

The default transfer speed is 8.6 kBd. To change the transfer speed, the host controller must write a value for the new transfer speed to the SerialSpeedReg register. Bits BR\_T0[2:0] and BR\_T1[4:0] define the factors for setting the transfer speed in the SerialSpeedReg register. The BR\_T0[2:0] and BR\_T1[4:0] settings are described in Table 8-5.

Table8-5 BR T0 and BR T1 settings

| Tubico e Dit_10 una Dit_11 settings |      |       |       |       |       |       |       |       |  |  |
|-------------------------------------|------|-------|-------|-------|-------|-------|-------|-------|--|--|
| BR_Tn                               | Bit0 | Bit1  | Bit2  | Bit3  | Bit4  | Bit5  | Bit6  | Bit7  |  |  |
| BR_T0                               | 1    | 1     | 2     | 4     | 8     | 16    | 32    | 64    |  |  |
| BR_T1                               | 1-32 | 33-64 | 33-64 | 33-64 | 33-64 | 33-64 | 33-64 | 33-64 |  |  |

Examples of different transfer speeds and the relevant register settings are given in Table 8-6.

Table8-6 Selectable UART transfer speeds



# Si523

| Transfer speed (kBd) | SeriaSpeedReg value | Transfer speed accuracy (%) * |       |
|----------------------|---------------------|-------------------------------|-------|
|                      | Decimal             | Hexadecimal                   |       |
| 7.2                  | 250                 | FAh                           | -0.25 |
| 8.6                  | 235                 | EBh                           | 0.32  |
| 14.4                 | 218                 | DAh                           | -0.25 |
| 19.2                 | 203                 | CBh                           | 0.32  |
| 38.4                 | 171                 | ABh                           | 0.32  |
| 57.6                 | 154                 | 9Ah                           | -0.25 |
| 115.2                | 122                 | 7Ah                           | -0.25 |
| 128                  | 116                 | 74h                           | -0.06 |
| 230.4                | 90                  | 5Ah                           | -0.25 |
| 460.8                | 58                  | 3Ah                           | -0.25 |
| 921.6                | 28                  | 1Ch                           | 1.45  |
| 1228.8               | 21                  | 15h                           | 0.32  |

Note: The resulting transfer speed error is less than 1.5 % for all described transfer speeds

The selectable transfer speeds shown in Table 6-6 are calculated according to the following equations:

When BR\_T0[2:0]=0:

$$transforspeed = \frac{27.12 \times 10^6}{(BR\_T0 + 1)}$$

When BR\_T0[2:0]>0:

transforspeed = 
$$\frac{27.12 \times 10^{6}}{\frac{(BR\_T1 + 33)}{2^{(BR\_T0 - 1)}}}$$



## 8.3.3 UART framing

Table8-7 UART framing

| Bit   | Length | Value |  |
|-------|--------|-------|--|
| Start | 1bit   | 0     |  |
|       |        |       |  |
| Data  | 8bits  | data  |  |
| Stop  | 1bit   | 1     |  |

NOTE: The LSB for data and address bytes must be sent first. No parity bit is used during transmission.

Read data: To read data using the UART interface, the flow shown in Table 8-8 must be used. The first byte sent defines both the mode and the address.

Table8-8 Read data byte order

| Pin | Byte 0  | Byte 1 |
|-----|---------|--------|
| RX  | address | -      |
| TX  | -       | Data 0 |

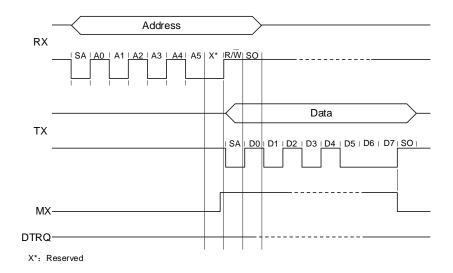



Figure 8.3 UART read data timing diagram

Write data: To write data to the Si523 using the UART interface, the structure



shown in Table 8-9 must be used.

The first byte sent defines both the mode and the address.

Table8-9 Write data byte order

| Pin | Byte0    | Byte1    |
|-----|----------|----------|
| RX  | Address0 | data0    |
| TX  | -        | Address0 |

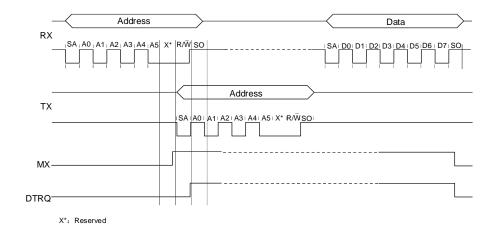



Figure 8.4 UART write data timing diagram

NOTE: The data byte can be sent directly after the address byte on pin RX.

Address byte: The address byte has to meet the following format:

The MSB of the first byte sets the mode used. To read data from the Si523, the MSB is set to logic 1. To write data to the Si523 the MSB is set to logic 0. Bit 6 is reserved for future use, and bits 5 to 0 define the address.

Table8-10 Address byte0 register; MOSI

| 7 (MSB)   | 6        | 5: 1    | 0 (LSB) |
|-----------|----------|---------|---------|
| 1 = read  | reserved | address |         |
| 0 = write |          |         |         |



#### 8.4 I2C

An I2C-bus (Inter-IC) interface is supported to enable a low-cost, low pin count serial bus interface to the host. The I2C-bus interface is implemented according to I2C-bus interface specification, rev. 2.1, January 2000. The interface can only act in Slave mode. Therefore the Si523 does not implement clock generation or access arbitration.

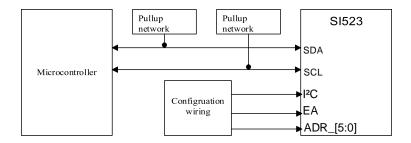



Fig8.5 I2C-bus interface

The Si523 can act either as a slave receiver or slave transmitter in Standard mode, Fast mode and High-speed mode.

SDA is a bidirectional line connected to a positive supply voltage using a current source or a pull-up resistor. Both SDA and SCL lines are set HIGH when data is not transmitted. The Si523 has a 3-state output stage to perform the wired-AND function. Data on the I2C-bus can be transferred at data rates of up to 100 kBd in Standard mode, up to 400 kBd in Fast mode or up to 3.4 Mbit/s in High-speed mode.

If the I2C-bus interface is selected, spike suppression is activated on lines SCL and SDA as defined in the I2C-bus interface specification.

#### 8.4.1Data validity

Data on the SDA line must be stable during the HIGH clock period. The HIGH or LOW state of the data line must only change when the clock signal on SCL is LOW.



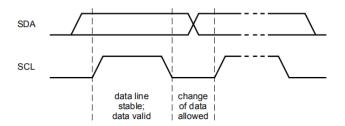



Figure 8.6 Bit transfer on the I2C-bus

#### 8.4.2 START and STOP conditions

To manage the data transfer on the I2C-bus, unique START (S) and STOP (P) conditions are defined.

- (1) A START condition is defined with a HIGH-to-LOW transition on the SDA line while SCL is HIGH.
- (2) A STOP condition is defined with a LOW-to-HIGH transition on the SDA line while SCL is HIGH.

The I2C-bus master always generates the START and STOP conditions. The bus is busy after the START condition. The bus is free again a certain time after the STOP condition.

The bus stays busy if a repeated START (Sr) is generated instead of a STOP condition. The START (S) and repeated START (Sr) conditions are functionally identical. Therefore, S is used as a generic term to represent both the START (S) and repeated START (Sr) conditions.

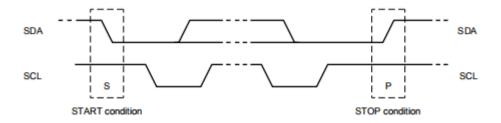



Figure 8.7 START and STOP conditions



### 8.4.3 Byte format

Each byte must be followed by an acknowledge bit. Data is transferred with the MSB first. The number of transmitted bytes during one data transfer is unrestricted but must meet the read/write cycle format.

#### 8.4.4 Acknowledge

An acknowledge must be sent at the end of one data byte. The acknowledge-related clock pulse is generated by the master. The transmitter of data, either master or slave, releases the SDA line (HIGH) during the acknowledge clock pulse. The receiver pulls down the SDA line during the acknowledge clock pulse so that it remains stable LOW during the HIGH period of this clock pulse.

The master can then generate either a STOP (P) condition to stop the transfer or a repeated START (Sr) condition to start a new transfer.

A master-receiver indicates the end of data to the slave-transmitter by not generating an acknowledge on the last byte that was clocked out by the slave. The slave-transmitter releases the data line to allow the master to generate a STOP (P) or repeated START (Sr) condition.

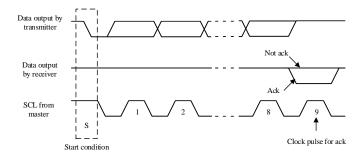



Figure 8.8 Acknowledge on the I2C-bus



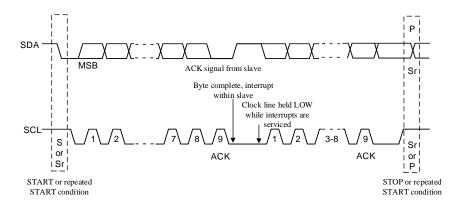



Figure 8.9 Data transfer on the I2C-bus

## 8.4.5 7-Bit addressing

During the I2C-bus address procedure, the first byte after the START condition is used to determine which slave will be selected by the master.

Several address numbers are reserved. During device configuration, the designer must ensure that collisions with these reserved addresses cannot occur. Check the I2C-bus specification for a complete list of reserved addresses.

The I2C-bus address specification is dependent on the definition of pin EA. Immediately after releasing pin NRSTPD or after a power-on reset, the device defines the I2C-bus address according to pin EA.

If pin EA is set LOW, the upper 4 bits of the device bus address are reserved and set to 0101b for all Si523 devices. The remaining 3 bits (ADR\_0, ADR\_1, ADR\_2) of the slave address can be freely configured by the customer to prevent collisions with other I2C-bus devices.

If pin EA is set HIGH, ADR\_0 to ADR\_5 can be completely specified at the external pins ADR\_6 is always set to logic 0.

In both modes, the external address coding is latched immediately after releasing the reset condition. Further changes at the used pins are not taken into consideration.

Depending on the external wiring, the I2C-bus address pins can be used for test signal outputs.



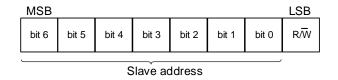



Figure 8.10 First byte following the START procedure

## 8.4.6 Register write access

To write data from the host controller using the I2C-bus to a specific register in the Si523 the following frame format must be used.

- The first byte of a frame indicates the device address according to the I2C-bus rules.
- The second byte indicates the register address followed by up to n-data bytes. In one frame all data bytes are written to the same register address. This enables fast FIFO buffer access. The Read/Write  $(R/\overline{W})$  bit is set to logic 0.

#### 8.4.7 Register read access

To read out data from a specific register address in the Si523, the host controller must use the following procedure:

- Firstly, a write access to the specific register address must be performed as indicated in the frame that follows
- The first byte of a frame indicates the device address according to the I2C-bus rules
  - The second byte indicates the register address. No data bytes are added
  - The Read/Write bit is 0

After the write access, read access can start. The host sends the device address of the Si523. In response, the Si523 sends the content of the read access register. In one frame all data bytes can be read from the same register address. This enables fast FIFO buffer access or register polling.



The Read/Write (R/W) bit is set to logic 1.

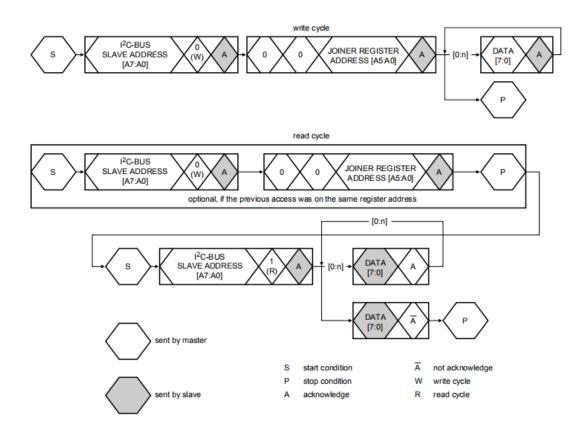



Figure 8.11 Register read and write access

#### 8.4.8 High-speed mode

To achieve data rates of up to 3.4 Mbit/s the following improvements have been made to I<sup>2</sup>C-bus operation.

- The inputs of the device in HS mode incorporate spike suppression, a Schmitt trigger on the SDA and SCL inputs and different timing constants when compared to F/S mode.
- The output buffers of the device in HS mode incorporate slope control of the falling edges of the SDA and SCL signals with different fall times compared to F/S mode.



#### 8.4.10 Serial data transfer format in HS mode

The HS mode serial data transfer format meets the Standard mode I<sup>2</sup>C-bus specification. HS mode can only start after all of the following conditions (all of which are in F/S mode):

- (1) START condition (S)
- (2) 8-bit master code (00001XXXb)
- (3) Not-acknowledge bit  $(\overline{A})$

When HS mode starts, the active master sends a repeated START condition (Sr) followed by a 7-bit slave address with a R/W bit address and receives an acknowledge bit (A) from the selected Si523.

Data transfer continues in HS mode after the next repeated START (Sr), only switching back to F/S mode after a STOP condition (P). To reduce the overhead of the master code, a master links a number of HS mode transfers, separated by repeated START conditions (Sr).

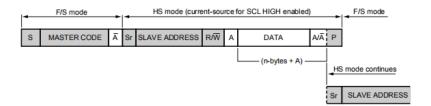



Figure 8.12 I2C-bus HS mode protocol switch



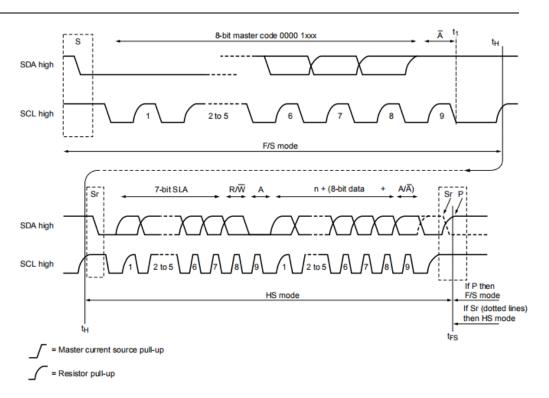



Figure 8.13 I2C-bus HS mode protocol frame

## 8.4.11 Switching between F/S mode and HS mode

After reset and initialization, the Si523 is in Fast mode (which is in effect F/S mode as Fast mode is downward-compatible with Standard mode). The connected Si523 recognizes the "S 00001XXX A" sequence and switches its internal circuitry from the Fast mode setting to the HS mode setting.

The following actions are taken:

- 1. Adapt the SDA and SCL input filters according to the spike suppression requirement in HS mode.
  - 2. Adapt the slope control of the SDA output stages.

It is possible for system configurations that do not have other I2C-bus devices involved in the communication to switch to HS mode permanently. This is implemented by setting Status2Reg register's I2CForceHS bit to logic 1. In permanent HS mode, the master code is not required to be sent. This is not defined in the specification and must only be used when no other devices are connected on the bus. In addition, spikes on the



I2C-bus lines must be avoided because of the reduced spike suppression.

## 8.4.12 Si523 at lower speed modes

Si523 is fully downward-compatible and can be connected to an F/S mode I2C-bus system. The device stays in F/S mode and communicates at F/S mode speeds because a master code is not transmitted in this configuration.



## 9.UART analog interface and contactless UART

### 9.1 General

The integrated contactless UART supports the external host online with framing and error checking of the protocol requirements up to 848 kBd. An external circuit can be connected to the communication interface pins MFIN and MFOUT to modulate and demodulate the data.

The contactless UART handles the protocol requirements for the communication protocols in cooperation with the host. Protocol handling generates bit and byte-oriented framing. In addition, it handles error detection such as parity and CRC, based on the various supported contactless communication protocols.

NOTE: The size and tuning of the antenna and the power supply voltage have an important impact on the achievable operating distance.

#### 9.2 TX driver

The signal on pins TX1 and TX2 is the 13.56 MHz energy carrier modulated by an envelope signal. It can be used to drive an antenna directly using a few passive components for matching and filtering. The signal on pins TX1 and TX2 can be configured using the TxControlReg register.

The modulation index can be set by adjusting the impedance of the drivers. The impedance of the p-driver can be configured using registers CWGsPReg and ModGsPReg. The impedance of the n-driver can be configured using the GsNReg register. The modulation index also depends on the antenna design and tuning.

The TxModeReg and TxSelReg registers control the data rate and framing during transmission and the antenna driver setting to support the different requirements at the different modes and transfer speeds.

Table9-1 Register and bit settings controlling the signal on pin TX1



| Tx1RFEn<br>Bit | Force<br>100ASK<br>Bit | InvTx1RF<br>OnBit | InvTx1RF<br>OffBit | Envelope | TX1<br>pin | GSPMos       | GSNMos       | note                                          |
|----------------|------------------------|-------------------|--------------------|----------|------------|--------------|--------------|-----------------------------------------------|
| 0              | X*                     | X*                | X*                 | X*       | X*         | CWGsN<br>Off | CWGsN<br>Off | RF is switched off                            |
| 1              | 0                      | 0                 | X*                 | 0        | RF<br>RF   | pMod<br>pCW  | nMod<br>nCW  | 100 %<br>ASK: pin                             |
|                | 0                      | 1                 | X*                 | 0        | RF<br>RF   | pMod<br>pCW  | nMod<br>nCW  | TX1 pulled to logic 0,                        |
|                | 1                      | 1                 | X*                 | 0        | 0<br>RF_n  | pMod<br>pCW  | nMod<br>nCW  | independ<br>ent of the<br>InvTx1R<br>FOff bit |

 $X^* = Do \ not \ care$ 

Table 9-2 Register and bit settings controlling the signal on pin TX2

| Tx1RF<br>EnBit | Force<br>100ASK<br>Bit | Tx2CW<br>Bit | InvTx2R<br>FOnBit | InvTx2R<br>FOffBit | Envelope | TX2<br>pin | GSPMo<br>s   | GSNMos       | NOTEs              |
|----------------|------------------------|--------------|-------------------|--------------------|----------|------------|--------------|--------------|--------------------|
| 0              | X*                     | X*           | X*                | X*                 | X*       | X*         | CWGsN<br>Off | CWGsNO<br>ff | RF is switched off |
| 1              | 0                      | 0            | 0                 | X*                 | 0        | RF         | pMod         | nMod         | -                  |
|                |                        |              |                   |                    | 1        | RF         | pCW          | nCW          |                    |
|                |                        |              | 1                 | X*                 | 0        | RF_n       | pMod         | nMod         |                    |
|                |                        |              |                   |                    | 1        | RF_n       | pCW          | nCW          |                    |
|                |                        | 1            | 0                 | X*                 | X*       | RF         | pCW          | nCW          | conductance        |
|                |                        |              | 1                 | X*                 | X*       | RF_n       | pCW          | nCW          | always CW          |
|                |                        |              |                   |                    |          |            |              |              | for                |



|   |   |   |    |    |      |      |      | the Tx2CW bit        |
|---|---|---|----|----|------|------|------|----------------------|
| 1 | 0 | 0 | X* | 0  | 0    | pMod | nMod | 100 % ASK:           |
|   |   |   |    | 1  | RF   | pCW  | nCW  | pin TX2              |
|   |   | 1 | X* | 0  | 0    | pMod | nMod | pulled<br>to logic 0 |
|   |   |   |    | 1  | RF_n | pCW  | nCW  | (independent         |
|   | 1 | 0 | X* | X* | RF   | pCW  | nCW  | of the               |
|   |   | 1 | X* | X* | RF_n | pCW  | nCW  | InvTx2RFO            |
|   |   |   |    |    |      |      |      | n/InvTx2RF           |
|   |   |   |    |    |      |      |      | Off bits)            |
|   |   |   |    |    |      |      |      |                      |

X = Do not care

The following abbreviations have been used in Table 10-1 and Table 10-2:

- (1) RF: 13.56 MHz clock derived from 27.12 MHz quartz crystal oscillator divided by 2
  - (2) RF n: inverted 13.56 MHz clock
  - (3) GSPMos: conductance, configuration of the PMOS array
  - (4) GSNMos: conductance, configuration of the NMOS array
- (5) pCW: PMOS conductance value for continuous wave defined by the CWGsPReg register
- (6) pMod: PMOS conductance value for modulation defined by the ModGsPReg register
- (7) nCW: NMOS conductance value for continuous wave defined by the GsNReg register's CWGsN[3:0] bits
- (8) nMod: NMOS conductance value for modulation defined by the GsNReg register's ModGsN[3:0] bits
  - (9) X = do not care.

NOTE: If only one driver is switched on, the values for CWGsPReg, ModGsPReg and GsNReg registers are used for both drivers

## 9.3 Serial data switch

Two main blocks are implemented in the Si523. The digital block comprises the Rev 1.0 2023/11/13



state machines, encoder/decoder logic. The analog block comprises the modulator and antenna drivers, the receiver and amplifiers. The interface between these two blocks can be configured in the way, that the interfacing signals may be routed to the pins MFIN and MFOUT. MFIN is capable of processing digital NFC signals on transfer speeds above 424 kbit. The MFOUT pin can provide a digital signal that can be used with an additional external circuit to generate transfer speeds above 424 kbit (including 106, 212 and 424 kbit). Furthermore MFOUT and MFIN can be used to enable the S2C interface in the card SAM mode to emulate a card functionality with the Si523 and a secure IC. A secure IC can be the SmartMX smart card controller IC.

This topology allows the analog block of the Si523 to be connected to the digital block of another device.

The serial signal switch is controlled by the TxSelReg and RxSelReg registers.

Figure 9.2 shows the serial data switch for TX1 and TX2.

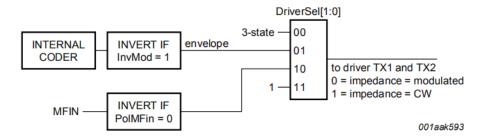



Figure 9.2 Serial data switch for TX1 and TX2

## 9.4 CRC coprocessor

The following CRC coprocessor parameters can be configured:

- ➤ The CRC preset value can be either 0000h, 6363h, A671h or FFFFh depending on the ModeReg register's CRCPreset[1:0] bits setting
- $\triangleright$  The CRC polynomial for the 16-bit CRC is fixed to  $x^{16}+x^{12}+x^5+1$
- ➤ The CRCResultReg register indicates the result of the CRC calculation. This register is split into two 8-bit registers representing the higher and lower bytes.
- ➤ The ModeReg register's MSBFirst bit indicates that data will be loaded with the MSB first.

of the ModeReg register's CRCPreset[1:0] bits



| Table9-4 CRC coprocessor parameters |                                                       |  |
|-------------------------------------|-------------------------------------------------------|--|
| Parameter                           | Value                                                 |  |
| CRC register length                 | 16 bit                                                |  |
| CRC algorithm                       | algorithm according to ISO/IEC 14443 A and ITU-T      |  |
| CRC preset value                    | 0000h, 6363h, A671h or FFFFh depending on the setting |  |

## **10.FIFO**

An  $8 \times 64$  bit FIFO buffer is used in the Si523. It buffers the input and output data stream between the host and the Si523's internal state machine. This makes it possible to manage data streams up to 64 bytes long without the need to take timing constraints into account.

## 10.1 Accessing the FIFO buffer

The FIFO buffer input and output data bus is connected to the FIFODataReg register. Writing to this register stores one byte in the FIFO buffer and increments the internal FIFO buffer write pointer. Reading from this register shows the FIFO buffer contents stored in the FIFO buffer read pointer and decrements the FIFO buffer read pointer. The distance between the write and read pointer can be obtained by reading the FIFOLevelReg register.

When the microcontroller starts a command, the Si523 can, while the command is in progress, access the FIFO buffer according to that command. Only one FIFO buffer has been implemented which can be used for input and output. The microcontroller must ensure that there are not any unintentional FIFO buffer accesses.

## 10.2 Controlling the FIFO buffer

The FIFO buffer pointers can be reset by setting FIFOLevelReg register's FlushBuffer bit to logic 1. Consequently, the FIFOLevel[6:0] bits are all set to logic 0



and the ErrorReg register's BufferOvfl bit is cleared. The bytes stored in the FIFO buffer are no longer accessible allowing the FIFO buffer to be filled with another 64 bytes.

#### 10.3 FIFO buffer status information

The host can get the following FIFO buffer status information:

- Number of bytes stored in the FIFO buffer: FIFOLevelReg register's FIFOLevel[6:0]
  - FIFO buffer almost full warning: Status1Reg register's HiAlert bit
  - FIFO buffer almost empty warning: Status1Reg register's LoAlert bit
- FIFO buffer overflow warning: ErrorReg register's BufferOvfl bit. The BufferOvfl bit can only be cleared by setting the FIFOLevelReg register's FlushBuffer bit.

The Si523 can generate an interrupt signal when:

- ComIEnReg register's LoAlertIEn bit is set to logic 1. It activates pin IRQ when Status1Reg register's LoAlert bit changes to logic 1.
- ComIEnReg register's HiAlertIEn bit is set to logic 1. It activates pin IRQ when Status1Reg register's HiAlert bit changes to logic 1.

If the maximum number of WaterLevel bytes (as set in the WaterLevelReg register) or less are stored in the FIFO buffer, the HiAlert bit is set to logic 1.

$$HiAlert = (64-FIFOLength) \leq WaterLevel$$

If the number of WaterLevel bytes (as set in the WaterLevelReg register) or less are stored in the FIFO buffer, the LoAlert bit is set to logic 1.

 $LoAlert = FIFOLength \le WaterLevel$ 



## 11. Interrupt request system

The Si523 indicates certain events by setting the Status1Reg register's IRq bit and, if activated, by pin IRQ. The signal on pin IRQ can be used to interrupt the host using its interrupt handling capabilities. This allows the implementation of efficient host software.

## 11.1Interrupt sources overview

Table 11-1 shows the available interrupt bits, the corresponding source and the condition for its activation. The ComIrqReg register's TimerIRq interrupt bit indicates an interrupt set by the timer unit which is set when the timer decrements from 1 to 0.

The ComIrqReg register's TxIRq bit indicates that the transmitter has finished. If the state changes from sending data to transmitting the end of the frame pattern, the transmitter unit automatically sets the interrupt bit. The CRC coprocessor sets the DivIrqReg register's CRCIRq bit after processing all the FIFO buffer data which is indicated by CRCReady bit = 1.

The ComIrqReg register's RxIRq bit indicates an interrupt when the end of the received data is detected. The ComIrqReg register's IdleIRq bit is set if a command finishes and the Command[3:0] value in the CommandReg register changes to idle.

The ComIrqReg register's HiAlertIRq bit is set to logic 1 when the Status1Reg register's HiAlert bit is set to logic 1 which means that the FIFO buffer has reached the level indicated by the WaterLevel[5:0] bits.

The ComIrqReg register's LoAlertIRq bit is set to logic 1 when the Status1Reg register's LoAlert bit is set to logic 1 which means that the FIFO buffer has reached the level indicated by the WaterLevel[5:0] bits.

The ComIrqReg register's ErrIRq bit indicates an error detected by the contactless UART during send or receive. This is indicated when any bit is set to logic 1 in register ErrorReg.

#### **Table11-1** Interrupt sources





| Interrupt flag | Interrupt source | Trigger action                                   |
|----------------|------------------|--------------------------------------------------|
| TimerIRq       | Timer unit       | the timer counts from 1 to 0                     |
| TxIRq          | Transmitter      | a transmitted data stream ends                   |
| CRCIRq         | CRC coprocessor  | all data from the FIFO buffer has been processed |
| RxIRq          | Receiver         | a received data stream ends                      |
| IdleIRq        | CommIRqReg       | command execution finishes                       |
| HiAlertIRq     | FIFO             | the FIFO buffer is almost full                   |
| LoAlertIRq     | FIFO             | the FIFO buffer is almost empty                  |
| ErrIRq         | Contactless      | an error is detected                             |
|                | UART             |                                                  |
| CardIRq        | ACD              | card detected                                    |
| RFExIRq        | ACD              | detected other 13.56 Mhz RF signal               |
| RFlowIRq       | ACD              | sent RF too low                                  |
| OscMonIRq      | OSC monitoring   | OSC four consective vibration failures           |
| WdtIRq         | Watchdog         | watchdog timer reaches the set time              |
| ACCErr         | Data monitoring  | configuration data loss when polling             |



## 12. Timer unit

A timer unit is implemented in the Si523. The external host controller may use this timer to manage timing relevant tasks. The timer unit may be used in one of the following configurations:

- Time-out counter
- Watch-dog counter
- Stop watch
- Programmable one-shot
- Periodical trigger

The timer unit can be used to measure the time interval between two events or to indicate that a specific event occurred after a specific time. The timer can be triggered by events which will be explained in the following, but the timer itself does not influence any internal event (e.g. A time-out during data reception does not influence the reception process automatically). Furthermore, several timer related bits are set and these bits can be used to generate an interrupt.

The timer has an input clock of 13.56 MHz (derived from the 27.12 MHz quartz). The timer consists of two stages: 1 prescaler and 1 counter.

The prescaler is a 12-bit counter. The reload value for TPrescaler can be defined between 0 and 4095 in register TModeReg and TPrescalerReg.

The reload value for the counter is defined by 16 bits in a range of 0 to 65535 in the register TReloadReg.

The current value of the timer is indicated by the register TCounterValReg.

If the counter reaches 0 an interrupt will be generated automatically indicated by setting the TimerIRq bit in the register CommonIRqReg. If enabled, this event can be indicated on the IRQ line. The bit TimerIRq can be set and reset by the host controller. Depending on the configuration the timer will stop at 0 or restart with the value from register TReloadReg.

The status of the timer is indicated by bit TRunning in register Status 1 Reg.

The timer can be manually started by TStartNow in register ControlReg or manually stopped by TStopNow in register ControlReg.

Furthermore the timer can be activated automatically by setting the bit TAuto in the register TModeReg to fulfill dedicated protocol requirements automatically





The time delay of a timer stage is the reload value +1.

The definition of total time is: t=(TPrescaler\*2+1)\*(TRload+1)/13.56MHz

if TPrescaleEven bit is set: t = (TPrescaler\*2+2)\*(TRload+1)/13.56MHz.

Maximum time configuration: TPrescaler = 4095, TReloadVal = 65535;

Maximum time: (2\*4095+2)\*65536/13.56MHz = 39.59s

Example:

To indicate 25 us it is required to count 339 clock cycles. This means the value for TPrescaler has to be set to TPrescaler = 169. The timer has now an input clock of 25 us. The timer can count up to 65535 timeslots of each 25  $\mu$ s.



## 13. Power reduction modes

## 13.1 Hard power-down

Hard power-down is enabled when pin NRSTPD is LOW. This turns off all internal current sinks including the oscillator. All digital input buffers are separated from the input pins and clamped internally (except pin NRSTPD). The output pins are frozen at either a HIGH or LOW level.

## 13.2 Soft power-down mode

Soft Power-down mode is entered immediately after the CommandReg register's PowerDown bit is set to logic 1. All internal current sinks are switched off, including the oscillator buffer. However, the digital input buffers are not separated from the input pins and keep their functionality. The digital output pins do not change their state.

During soft power-down, all register values, the FIFO buffer content and the configuration keep their current contents.

After setting the PowerDown bit to logic 0, it takes 1024 clocks until the Soft power-down mode is exited indicated by the PowerDown bit. Setting it to logic 0 does not immediately clear it. It is cleared automatically by the Si523 when Soft power-down mode is exited.

NOTE: If the internal oscillator is used, you must take into account that it is supplied by pin AVDD and it will take a certain time (tosc) until the oscillator is stable and the clock cycles can be detected by the internal logic. It is recommended for the serial UART, to first send the value 55h to the Si523. The oscillator must be stable for further access to the registers. To ensure this, perform a read access to address 0 until the Si523 answers to the last read command with the register content of address 0. This indicates that the Si523 is ready.



## 13.3 Transmitter power-down mode

The Transmitter Power-down mode switches off the internal antenna drivers thereby, turning off the RF field. Transmitter power-down mode is entered by setting either the TxControlReg register's Tx1RFEn bit or Tx2RFEn bit to logic 0.



## 14. Oscillator circuitry

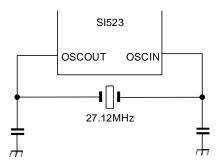



Figure 14.1 Quartz crystal connection

The clock applied to the Si523 provides a time basis for the synchronous system's encoder and decoder. The stability of the clock frequency, therefore, is an important factor for correct operation. To obtain optimum performance, clock jitter must be reduced as much as possible. This is best achieved using the internal oscillator buffer with the recommended circuitry.

If an external clock source is used, the clock signal must be applied to pin OSCIN. In this case, special care must be taken with the clock duty cycle and clock jitter and the clock quality must be verified.



## 15.Reset and oscillator start-up time

## 15.1 Reset timing requirements

The reset signal is filtered by a hysteresis circuit and a spike filter before it enters the digital circuit. The spike filter rejects signals shorter than 10 ns. In order to perform a reset, the signal must be LOW for at least 100 ns.

## 15.2 Oscillator start-up time

If the Si523 has been set to a Power-down mode or is powered by a VDD supply, the start-up time for the Si523 depends on the oscillator used and is shown in Figure 15.1

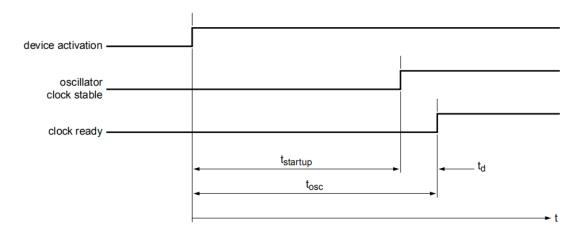



Figure 15.1 Oscillator start-up time

The time ( $t_{startup}$ ) is the start-up time of the crystal oscillator circuit. The crystal oscillator start-up time is defined by the crystal.

The time  $(t_d)$  is the internal delay time of the Si523 when the clock signal is stable before the Si523 can be addressed.

The delay time is calculated by:

$$t_{d} = \frac{1024}{27 \,\mu s} = 37.74 \,\mu s$$

The time ( $t_{OSC}$ ) is the sum of  $t_d$  and  $t_{startup}$ . Rev 1.0 2023/11/13



## 16. Command set

The Si523 operation is determined by a state machine capable of performing a set of commands. A command is executed by writing a command code to the CommandReg register.

Arguments and/or data necessary to process a command are exchanged via the FIFO buffer.

## 16.1 General description

Every command needed to be input as data flow will handle the data in FIFO immediately, except Transceive command. To use this command, bit StartSend in BitFramingReg should open data transmission.

Every command needs related parameters. The command is executed only when FIFO gets correct parameters.

When command starts to be excuted, it will not clear FIFO, which means it can write command parameters into FIFO first, then execute the command.

It can interrupt current executed command by writing a new command code to CommandReg.

#### 16.2 Command overview

Table16-1 command overview

| Command    | Command | Description                                             |
|------------|---------|---------------------------------------------------------|
|            | code    |                                                         |
| Idle       | 0000    | no action, cancels current command execution            |
| Generate   | 0010    | IDgenerates a 10-byte random ID number                  |
| RandomID   | 0010    |                                                         |
| CalcCRC    | 0011    | activates the CRC coprocessor or performs a self test   |
| Transmit   | 0100    | transmits data from the FIFO buffer                     |
| MStart     | 0101    | Trigger 3K RC automatic correction                      |
| ADC_EXCUTE | 0110    | Automatically obtain Poll reference values              |
| NoCmd      | 0111    | no command change, can be used to modify the            |
| Change     | UIII    | CommandReg register bits without affecting the command, |



|            |      | for example, the PowerDown bit                                                                         |
|------------|------|--------------------------------------------------------------------------------------------------------|
| Receive    | 1000 | activates the receiver circuits                                                                        |
| Transceive | 1100 | transmits data from FIFO buffer to antenna and automatically activates the receiver after transmission |
| SoftReset  | 1111 | resets the Si523                                                                                       |

## 16.3 Command descriptions

#### 16.3.1 Idle

Places the Si523 in Idle mode. The Idle command also terminates itself.

#### 16.3.2 Generate RandomID

This command generates a 10-byte random number which is initially stored in the internal buffer. This then overwrites the 10 bytes in the internal 25-byte buffer. This command automatically terminates when finished and the Si523 returns to Idle mode.

#### 16.3.3 CalcCRC

The FIFO buffer content is transferred to the CRC coprocessor and the CRC calculation is started. The calculation result is stored in the CRCResultReg register. The CRC calculation is not limited to a dedicated number of bytes. The calculation is not stopped when the FIFO buffer is empty during the data stream. The next byte written to the FIFO buffer is added to the calculation.

The CRC preset value is controlled by the ModeReg register's CRCPreset[1:0] bits. The value is loaded in to the CRC coprocessor when the command starts.

This command must be terminated by writing a command to the CommandReg register, such as, the Idle command.

If the AutoTestReg register's SelfTest[3:0] bits are set correctly, the Si523 enters Self Test mode. Starting the CalcCRC command initiates a digital self test. The result of the self test is written to the FIFO buffer.



#### 16.3.4 Transmit

The FIFO buffer content is immediately transmitted after starting this command. Before transmitting the FIFO buffer content, all relevant registers must be set for data transmission.

This command automatically terminates when the FIFO buffer is empty. It can be terminated by another command written to the CommandReg register.

#### 16.3.5MStart

Correct 3K RC automatically ,when Max is set to 0, only coarse calibration; when set to 1, first coarse calibration followed by fine calibration.

## 16.3.6 ADC EXCUTE

Automatically start ADC for RF measurement.

#### 16.3.7 NoCmdChange

This command does not influence any running command in the CommandReg register. It can be used to manipulate any bit except the CommandReg register Command[3:0] bits, for example, the RevOff bit or the PowerDown bit.

#### **16.3.8** Receive

The Si523 activates the receiver path and waits for a data stream to be received. The correct settings must be chosen before starting this command.

This command automatically terminates when the data stream ends. This is indicated either by the end of frame pattern or by the length byte depending on the selected frame type and speed.

NOTE: If the RxModeReg register's RxMultiple bit is set to logic 1, the Receive command will not automatically terminate. It must be terminated by starting another command in the CommandReg register.



#### 16.3.9 Transceive

This command continuously repeats the transmission of data from the FIFO buffer and the reception of data from the RF field. The first action is transmit and after transmission the command is changed to receive a data stream.

Each transmit process must be started by setting the BitFramingReg register's StartSend bit to logic 1. This command must be cleared by writing any command to the CommandReg register.

NOTE: If the RxModeReg register's RxMultiple bit is set to logic 1, the Transceive command never leaves the receive state because this state cannot be cancelled automatically.

#### 16.3.10 SoftReset

This command performs a reset of the device. The configuration data of the internal buffer remains unchanged. All registers are set to the reset values. This command automatically terminates when finished.

NOTE: The SerialSpeedReg register is reset and therefore the serial data rate is set to 9.6 kBd.



# 17. Application information

The figure below shows a typical circuit diagram, using a complementary antenna connection to the Si523.

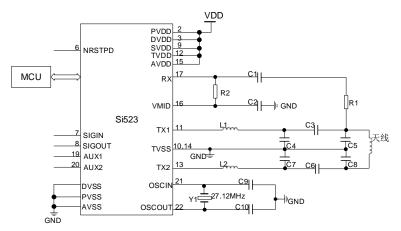



Figure 17-1 Si523 typical application diagram



# 18 .Recommended operating conditions

The limit parameters and recommended working environment are shown in the table below:

Table 18-1 limit parameter

| Parameter      | Symbol | Min | Max  | Unit |
|----------------|--------|-----|------|------|
| Supply voltage | VDD    | 2.3 | 4    | V    |
| Temperature    | Tamb   | -40 | +110 | °C   |

Table 18-2 recommend working environment

| Parameter             | Symbol    | Conditions                                                    | Min | Typical | Max  | Unit |
|-----------------------|-----------|---------------------------------------------------------------|-----|---------|------|------|
| Analog supply voltage | VDDA      | AVDD=VDD(PVDD)=VDD(TVDD);<br>VSSA=VSSD=VSS(PVSS)=VSS(TVSS)=0V | 2.3 | 3.3     | 3.6  | V    |
| TVDD supply voltage   | VDD(TVDD) |                                                               | 2.3 | 3.3     | 3.6  | V    |
| PVDD supply voltage   | VDD(PVDD) |                                                               | 2.3 | 3.3     | 3.6  | V    |
| SVDD supply voltage   | VDD(SVDD) | VSSA=VSSD=VSS(PVSS)=VSS(TVSS)=0V                              | 2.3 | 3.3     | 3.6  | V    |
| Temperature           | Tamb      | QFN32                                                         | -40 | -       | +110 | °C   |



# 19.Package information

Package specifications:

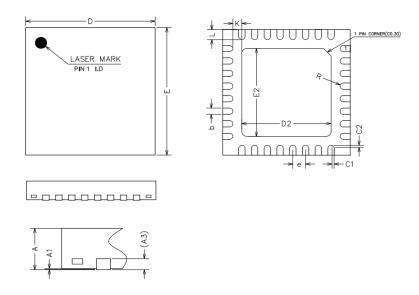



Figure 19.1 Si523 package outline

Parameter (unit: mm):

Table 19-1 typical specifications

| Symbol | Min     | Typical | Max  |
|--------|---------|---------|------|
| A      | 0.70    | 0.75    | 0.80 |
| A1     | 0       | 0.02    | 0.05 |
| A3     | 0.20REF |         |      |
| b      | 0.23    | 0.25    | 0.28 |
| D      | 4.90    | 5.00    | 5.10 |
| Е      | 4.90    | 5.00    | 5.10 |
| D2     | 3.35    | 3.50    | 3.65 |
| E2     | 3.35    | 3.50    | 3.65 |
| e      | 0.48    | 0.50    | 0.53 |
| K      | 0.20    | -       | -    |
| L      | 0.35    | 0.40    | 0.45 |
| R      | 0.09    | -       | -    |
| c1     | -       | 0.08    | -    |
| c2     | -       | 0.08    | -    |



## 20. Version information

| Version | Modified date                 | Modified content |
|---------|-------------------------------|------------------|
| Rev1.0  | Rev1.0 2023/11/13 First draft |                  |



## 21.Order Information

## Package marking

Si523 ABBCDEE

Si523:chip code

A: package date code, 5 represents year 2020

BB: week of sending out processing, 42 represents in the year A the 42th week

C: package factory code, A  $\mbox{\footnotemark}\mbox{\footnotemark}\mbox{\footnotemark}\mbox{\footnotemark}\mbox{\footnotemark}\mbox{\footnotemark}\mbox{\footnotemark}\mbox{\footnotemark}\mbox{\footnotemark}\mbox{\footnotemark}\mbox{\footnotemark}\mbox{\footnotemark}\mbox{\footnotemark}\mbox{\footnotemark}\mbox{\footnotemark}\mbox{\footnotemark}\mbox{\footnotemark}\mbox{\footnotemark}\mbox{\footnotemark}\mbox{\footnotemark}\mbox{\footnotemark}\mbox{\footnotemark}\mbox{\footnotemark}\mbox{\footnotemark}\mbox{\footnotemark}\mbox{\footnotemark}\mbox{\footnotemark}\mbox{\footnotemark}\mbox{\footnotemark}\mbox{\footnotemark}\mbox{\footnotemark}\mbox{\footnotemark}\mbox{\footnotemark}\mbox{\footnotemark}\mbox{\footnotemark}\mbox{\footnotemark}\mbox{\footnotemark}\mbox{\footnotemark}\mbox{\footnotemark}\mbox{\footnotemark}\mbox{\footnotemark}\mbox{\footnotemark}\mbox{\footnotemark}\mbox{\footnotemark}\mbox{\footnotemark}\mbox{\footnotemark}\mbox{\footnotemark}\mbox{\footnotemark}\mbox{\footnotemark}\mbox{\footnotemark}\mbox{\footnotemark}\mbox{\footnotemark}\mbox{\footnotemark}\mbox{\footnotemark}\mbox{\footnotemark}\mbox{\footnotemark}\mbox{\footnotemark}\mbox{\footnotemark}\mbox{\footnotemark}\mbox{\footnotemark}\mbox{\footnotemark}\mbox{\footnotemark}\mbox{\footnotemark}\mbox{\footnotemark}\mbox{\footnotemark}\mbox{\footnotemark}\mbox{\footnotemark}\mbox{\footnotemark}\mbox{\footnotemark}\mbox{\footnotemark}\mbox{\footnotemark}\mbox{\footnotemark}\mbox{\footnotemark}\mbox{\footnotemark}\mbox{\footnotemark}\mbox{\footnotemark}\mbox{\footnotemark}\mbox{\footnotemark}\mbox{\footnotemark}\mbox{\footnotemark}\mbox{\footnotemark}\mbox{\footnotemark}\mbox{\footnotemark}\mbox{\footnotemark}\mbox{\footnotemark}\mbox{\footnotemark}\mbox{\footnotemark}\mbox{\footnotemark}\mbox{\footnotemark}\mbox{\footnotemark}\mbox{\footnotemark}\mbox{\footnotemark}\mbox{\footnotemark}\mbox{\footnotemark}\mbox{\footnotemark}\mbox{\footnotemark}\mbox{\footnotemark}\mbox{\footnotemark}\mbox{\footnotemark}\mbox{\footnotemark}\mbox{\footnotema$ 

D: test factory code, A, Z or H

EE: production batch code

Table 21-1 order information

| Order code   | package          | container     | minimum |
|--------------|------------------|---------------|---------|
| Si523-Sample | 5×5mm 32-pin QFN | Box/Tube      | 5       |
| Si523        | 5×5mm 32-pin QFN | Tape and reel | 4K      |



# 22. Technical Support and Contact information

Nanjing Zhongke Microelectronic Industry Technology Research Institute Co., Ltd Technical Support Center

Phone: 025-68517780

Address: Room 201, Building B, Research Zone 3, Xuzhuang Software Park, Xuanwu District,

Nanjing, Jiangsu, China

Website: <a href="http://www.csm-ic.com">http://www.csm-ic.com</a>

#### **Sales and Marketing**

Phone: 13645157034, 13645157035

Email: <a href="mailto:sales@csmic.ac.cn">sales@csmic.ac.cn</a>

## **Technical Support**

Phone: 13645157034

Email: <a href="mailto:supports@csmic.ac.cn">supports@csmic.ac.cn</a>