

CMT8266W0 高速六通道增强型数字隔离器

1 特性

- 安全相关认证
 - DIN VDE V 0884-11: 2017-01
 - 符合 UL 1577 组件认证
 - CSA 认证,符合 IEC 60950-1, IEC 62368-1, IEC 61010-1 and IEC 60601-1 终端设备标准
 - 符合 GB4943.1-2022 的 CQC 认证
 - 符合 EN 60950-1, EN 62368-1 和 EN 61010-1 标准的 TUV 认证。
- 增强电磁兼容性(EMC)
 - 系统级 ESD、EFT、浪涌抗扰性
 - ±8kV IEC 61000-4-2 跨隔离栅接触放电保护
 - 低辐射
- 数据率: 高达 150Mbps
- 宽电源电压范围: 2.5 V 至 5.5 V
- 工作环境温度范围: -40°C to125°C
- 稳健可靠的隔离栅:
 - 40 年以上的预期使用寿命
 - 高达 5.7 kV_{RMS} 隔离额定值
 - 高达 8 kV 浪涌能力
 - ± 250 kV/µs 典型 CMTI
- 默认输出低电平选项
- 低功耗, 1 Mbps 时每通道的电流典型值为 1.5 mA
- 低传播延迟:典型值为 9 ns (由 5V 电源供电)
- 互锁功能
- SOIC-16 封装 (宽体和窄体)

2 应用

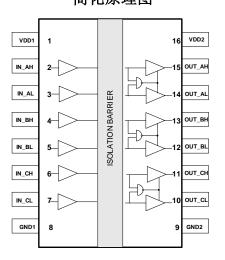
- 工业自动化
- 新能源汽车
- 光伏逆变器
- 电机控制
- 隔离式 SPI
- 通用多通道隔离

3 描述

CMT8266W0 为高性能六通道数字隔离器,具有多达六路正向通道,通过 UL1577 安全认证,支持多种绝缘耐压(3.75kV_{RMS}, 5.7kV_{RMS}),同时能够以较低的功耗实现高电磁抗扰度和低辐射。

CMT8266W0 的数据速率高达 150Mbps,共模瞬态抗扰度(CMTI)高达 250kV/us。当输入功率丢失时,CMT8266W0 的默认输出为低电平,以防止在上电阶段 IPM 切换。

CMT8266W0的宽供电电压支持与大多数数字接口直接连接。高系统级电磁兼容性能,提高了使用的可靠性和稳定性。


CMT8266W0 具有相邻通道的互锁功能,提供穿透保护,消除 IPM 内部 IGBT 的短路风险,增强系统的稳固性。

CMT8266W0 系列芯片同时支持 SOIC-16 宽体 及窄体封装。

芯片订购信息

芯片型号	封装	尺寸 (mm x mm)			
CMT8266	NB(N)SOIC-16 窄体	9.90 x 3.90			
W0	WB(W) SOIC-16 宽体	10.30 x 7.50			
更多订购信息详见第 14 章节。					

简化原理图

目 录

1	特性		1
2	应用		1
3	描述		1
		最大额定值	
		运行条件	
		额定值	
		=	
		苗述	
8	典型应	並用	6
	8.1	典型应用原理图	6
	8.2	PCB 布局指南	
9	参数测	则试电路	8
10	电气	特性	10
	10.1	电气特性	
	10.1	电气存性 - 5 V 电源	
	10.2	电源电流特性 - 3.3 V 电源	
	10.4	电源电流特性 - 2.5 V 电源	
	10.5	典型性能	
	10.6	隔离特性	
	10.7	安规认证	16
	10.8	安全限定值	
	10.9	温度特性	
11	功能	描述	18
	11.1	功能概述	18
	11.2	绝缘寿命	
12	封装	外形	
		CMT8266W0 窄体 SOIC-16 封装	
		CMT8266W0	
40			
		信息	
		·信息	
15	文档	变更记录	26
16	联系	5 方式	27

www.hoperf.cn

4 绝对最大额定值

表 1. 绝对最大额定值[1]

参数	符号	条件	最小	最大	单位
电源电压[2]	VDD1, VDD2		-0.5	6	٧
最大输入电压	INx	x = A, B, C, D	-0.4	VDD+0.4	٧
最大输出电压	OUTx	x = A, B, C, D	-0.4	VDD+0.4	V
最大输入/输出脉冲电压	-	脉冲宽度应小于 100 ns, duty cycle 应小于 10%。	-0.8	VDD+0.8	<
瞬态共模抑制	CMTI			±250	kV/us
输出电流	lo		-15	15	mA
最大浪涌抑制	-			8	kV
工作温度	TA		-40	125	$^{\circ}\mathbb{C}$
存储温度	T _{STG}		-40	150	$^{\circ}\mathbb{C}$

备注:

5 推荐运行条件

表 2. 推荐运行条件

参数	符号	条件	最小	典型	最大	単位
电源电压	VDD1, VDD2	7	2.5	5	5.5	V
高电平输入电压	ViH	VDDI: 输入侧 VDD	2		VDDI	V
低电平输入电压	V _{IL}	VDDI: 输入侧 VDD	0		0.8	V
数据率	DR		0		150	Mbps
工作温度	TA		-40	25	125	${\mathbb C}$
结温	TJ		-40		150	${\mathbb C}$

Rev 0.2 | 3/27

^{[1].} 超过"绝对最大额定参数"可能会造成设备永久性损坏。该值为压力额定值,并不意味着在该压力条件下设备功能受影响, 但如果长时间暴露在绝对最大额定值条件下,可能会影响设备可靠性。

^{[2].} 除差分 I/O 总线电压外,所有电压值为相对于本地接地端(GND1 或 GND2)且为峰值电压。

6 ESD 额定值

表 3. ESD 额定值

参数	符号	条件	最大	単位
静电放电	V _{ESD}	人体模型(HBM)	±8000	\/
		组件充电模式 (CDM)	± 2000	V

备注:

- [1]. 通过隔离栅施加 IEC ESD 电击,每侧的所有引脚连接在一起,形成一个双端装置。
- [2]. 在空气或油中进行试验,以确定器件本征接触放电能力。

警告! ESD敏感器件. 对芯片进行操作的时候应注意做好ESD防范措施,以免芯片的性能下降或者功能丧失。

Rev 0.2 | 4/27

7 管脚描述

CMT8266W0 支持 SOIC-16 窄体和宽体封装,管脚信息如下。

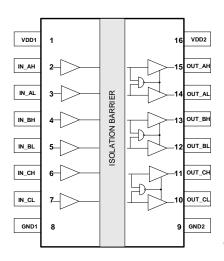


图 1. CMT8266W0 管脚图

表 4. CMT8266W0 管脚描述

管脚编号	管脚名称	功能说明
1	VDD1	隔离器第一侧的电源输入。
2	IN_AH	A口逻辑输入 H电平。
3	IN_AL	A口逻辑输入 L电平。
4	IN_BH	B 口逻辑输入 H 电平。
5	IN_BL	B 口逻辑输入 L 电平。
6	IN_CH	C 口逻辑输入 H 电平。
7	IN_CL	C 口逻辑输入 L 电平。
8	GND1	隔离器第一侧的接地基准。
9	GND2	隔离器第二侧的接地基准。
10	OUT_CL	C 口逻辑输出 L 电平。
11	OUT_CH	C 口逻辑输出 H 电平。
12	OUT_BL	B 口逻辑输出 L 电平。
13	OUT_BH	B 口逻辑输出 H 电平。
14	OUT_AL	A口逻辑输出 L电平。
15	OUT_AH	A 口逻辑输出 H 电平。
16	VDD2	隔离器第二侧的电源输入。

8 典型应用

8.1 典型应用原理图

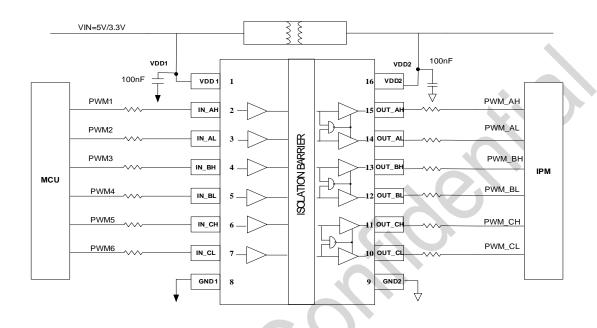


图 2. CMT8262W0 典型应用原理图

备注: 用户须注意不能将 VDD 与地接反。

8.2 PCB 布局指南

CMT8266W0 VDD1 到 GND1 以及 VDD2 到 GND2 至少需要一个 0.1uF 旁路电容;摆放时电容要尽可能接近芯片的电源引脚 VDD1 与 VDD2。如下图推荐的 PCB 布局所示,需确保 IC 底下的间隙远离走线、焊盘、过孔等。为增强设计稳健性,设计时可以在信号输入/输出串联 50~300ohm 电阻;这些电阻不仅可以增强噪声抑制能力,同时还可以增强系统的可靠性,比如抗闩锁能力。

CMT8266W0 典型输出阻抗为 50ohm ±40%。当驱动呈现传输线特性时,输出布线需要进行阻抗匹配。

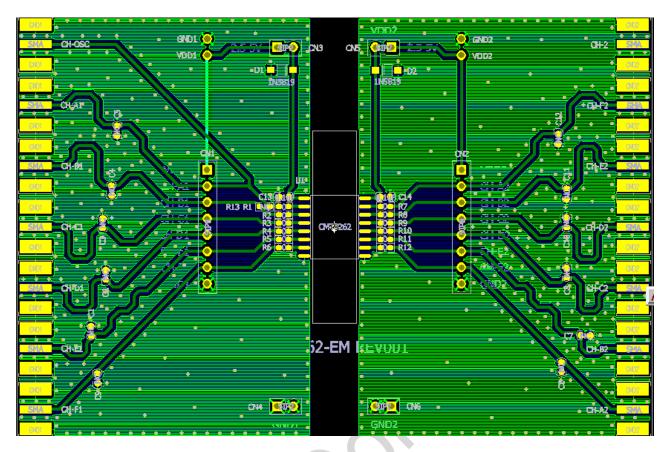


图 3. 推荐 PCB 布局

9 参数测试电路

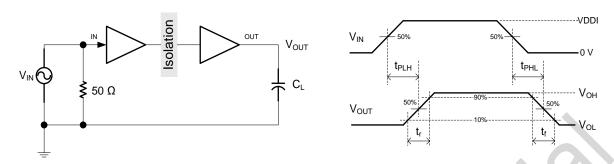


图 4. 开关特性测试电路及波形

备注:

- 1. 输入脉冲由波形发生器产生, V_{IN} 主要技术指标: $f_{PULSE} \le 100$ kHz, 50% duty cycle, $t_r \le 3$ ns, $t_f \le 3$ ns, $Z_O = 50$ Ω 。在输入侧,需要一个 50 Ω 终端匹配电阻,实际应用电路则不需要该电阻。
- 2. 负载电容对测试结果影响较大,合计仪器设备和连接等效电容最好不超过 15 pF。

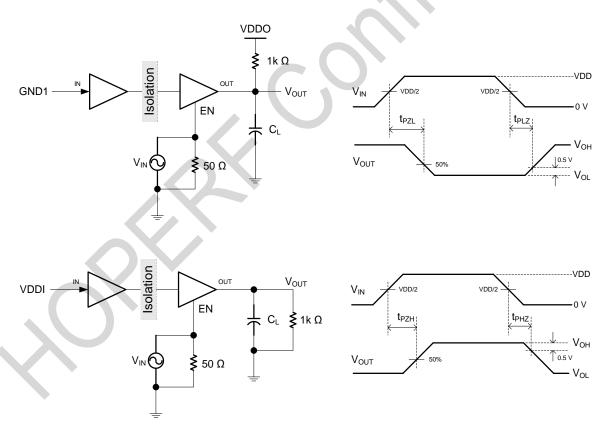


图 5. 使能/关闭传播延时测试电路及波形

备注:

- 1. 输入脉冲由波形发生器产生,主要技术指标: f_{PULSE} ≤ 10 kHz, 50% duty cycle, t_r ≤ 3 ns, t_f ≤ 3 ns, Z_O = 50 Ω。
- 2. C_L = 15 pF , 合计仪器设备和连接等效电容在±20%范围内。

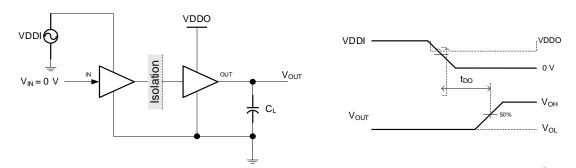


图 6. 缺省输出延时测试电路和电压波形

备注:

- 1. $C_L = 15 pF$,合计仪器设备和连接等效电容在 $\pm 20\%$ 范围内。
- 2. 电源斜率= 10 mV/ns。

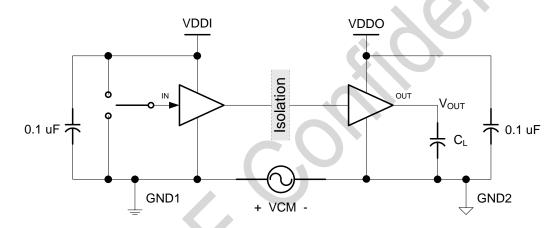


图 7. 瞬态共模抑制能力测试电路

备注:

1. CL = 15 pF, 合计仪器设备和连接等效电容在±20%范围内。

10 电气特性

10.1 电气特性

VDD1 =2.5V~5.5V, VDD2= 3.0 V~5.5 V, TA= -40 to 125 $\,^{\circ}$ C.

(除非另外说明, 所有典型规格是在 VDD1= 5V, VDD2 = 5V, TA = 25℃的情况下测得的。)

表 5. 电气特性

参数	符号	条件	最小	典型	最大	单位
1.1.50. (200)	V_{POR}	上电复位门限		2.3 🦠		V
上电复位(POR)	V _{HYS}	上电复位门限迟滞		0.1		V
<i>t</i> ∧ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	V _{IT}	上升沿输入门限		1.6		V
输入迟滞 	V _{ITHYS}	输入门限迟滞		0.4		V
输入高电平	V _{IH}		2			V
输入低电平	V _{IL}		A		0.8	V
输出高电平	V _{OH}	I _{OH} =-4mA	VDD- 0.3			V
输出低电平	V _{OL}	I _{OL} = 4mA			0.3	V
输出阻抗	Ro			50		Ω
输入上拉/下拉电流	Ipull			13		uA
POR之后启动时间	trbs			10		us
瞬态共模抑制	CMTI		150	250	270	kV/us

10.2 电源电流特性 - 5 V 电源

VDD1 = VDD2 = 5 V, T_{A} = -40 to 125 $^{\circ}$ C $_{\circ}$

表 6. 电源电流特性 - 5 V 电源

参数	符号	典型值	最大值	単位
CMT8266W0	•			
电源电流	I _{DD1}	1.04		mA
V _{IN} =0 V	I _{DD2}	2.9		mA
电源电流: 关闭器件。	I _{DD1}	7.5		mA
$V_{IN} = VDDI$,	I _{DD2}	3.05		mA
电源电流: 16 Kbps 方波时钟输入 AC 信号。	I _{DD1}	4.4		mA
所有通道开关信号为 16 Kbps 方波输入,C _L = 15 pF。	I _{DD2}	2.9		mA
电源电流: 1 Mbps 方波时钟输入 AC 信号。	I _{DD1}	4.45		mA
所有通道开关信号为 1 Mbps 方波输入, $C_L = 15 pF$ 。	I _{DD2}	3.1		mA

Rev 0.2 | 10/27 www.hoperf.cn

表7 电源电流特性 -5 V 电源

参数	符号	条件	最小	典型	最大	单位
数据率	DR		0	150		Mbps
最小脉冲宽度	PW	详见图 6, C _L = 15pF		5		ns
上升沿传播延时	t _{PLH}	详见图 6,C _L = 15pF		8.5		ns
下降沿传播延时	t _{PHL}	详见图 6,C _L = 15pF		12		ns
脉宽失真 t PHL - t PLH	PWD	详见图 6,C _L = 15pF		2.2		ns
上升时间	tr	详见图 6,C _L = 15pF		0.6		ns
下降时间	tf	详见图 6,C _L = 15pF		0.7		ns
眼图抖动峰值	t _{JIT} (PK)			400	\ \\\	ps
通道间延时偏差	t _{SK} (c2c)			0.3	XIC	ns
芯片间延时偏差	t _{SK} (p2p)					ns

10.3 电源电流特性 - 3.3 V 电源

VDD1 = VDD2 = 3.3 V, T_A= -40 to 125 $^{\circ}\mathrm{C}$ $_{\circ}$

表 8. 电源电流特性 - 3.3 V 电源

参数	符号	典型值	最大值	单位
CMT8266W0				
电源电流	I _{DD1}	1.02		mA
V _{IN} =0 V	I _{DD2}	2.87		mA
电源电流: 。	I _{DD1}	7.4		mA
V _{IN} =VDDI,	I _{DD2}	2.95		mA
电源电流: 16 Kbps 方波时钟输入 AC 信号	I _{DD1}	4.3		mA
所有通道开关信号为 16 Kbps 方波输入, $C_L = 15 pF$	I _{DD2}	2.85		mA
电源电流: 1 Mbps 方波时钟输入 AC 信号	I _{DD1}	4.35		mA
所有通道开关信号为 1 Mbps 方波输入,CL = 15 pF	I _{DD2}	2.9		mA

表 9. 电源电流特性 - 3.3V 电源

参数	符号	条件	最小	典型	最大	单位
数据率	DR		0	150		Mbps
最小脉冲宽度	PW	详见图 6,C _L = 15pF		5		ns
上升沿传播延时	t _{PLH}	详见图 6,C _L = 15pF		9		ns
下降沿传播延时	t _{PHL}	详见图 6,C _L = 15pF		12		ns
脉宽失真 tphl - tplh	PWD	详见图 6,C _L = 15pF		2.2		ns
上升时间	tr	详见图 6,C _L = 15pF		0.6		ns
下降时间	tf	详见图 6,C _L = 15pF		0.7		ns
眼图抖动峰值	t _{JIT} (PK)			400		ps
通道间延时偏差	t _{SK} (c2c)			0.5		ns

参数	符号	条件	最小	典型	最大	単位
芯片间延时偏差	t _{SK} (p2p)					ns

10.4 电源电流特性 - 2.5 V 电源

VDD1 = VDD2 = 2.5 V, $T_{A}\text{= -40 to 125}~^{\circ}\text{C}_{~\circ}$

表 10. 电源电流特性 - 2.5 V 电源

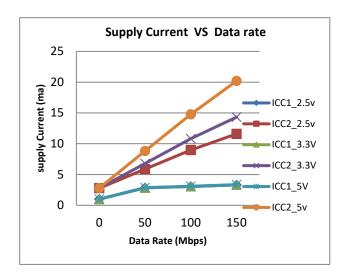

参数	符号	典型值	最大值	单位
CMT8266W0				
电源电流	I _{DD1}	1.0	\	mA
$V_{IN}=0 V$	I _{DD2}	2.85	X	mA
电源电流:	I _{DD1}	7.3		mA
$V_{IN} = VDDI$,	I _{DD2}	2.93		mA
电源电流: 16 Kbps 方波时钟输入 AC 信号。	I _{DD1}	4.15		mA
所有通道开关信号为 16 Kbps 方波输入, $C_L = 15 pF$ 。	I _{DD2}	2.9		mA
电源电流: 1 Mbps 方波时钟输入 AC 信号。	I _{DD1}	4.3		mA
所有通道开关信号为 1 Mbps 方波输入, $C_L = 15 pF$ 。	I _{DD2}	2.9		mA

表 11. 电源电流特性 - 2.5V 电源(CMT8266W0共同特性)

参数	符号	条件	最小	典型	最大	单位
数据率	DR		0	150		Mbps
最小脉冲宽度	PW	详见图 6, CL = 15pF		5		ns
上升沿传播延时	t _{PLH}	详见图 6,CL = 15pF		10		ns
下降沿传播延时	t _{PHL}	详见图 6,CL = 15pF		12.5		ns
脉宽失真 t PHL - t PLH	PWD	详见图 6,CL = 15pF		2		ns
上升时间	tr	详见图 6,CL = 15pF		0.6		ns
下降时间	tf	详见图 6,CL = 15pF		0.7		ns
眼图抖动峰值	t _{JIT} (PK)			400		ps
通道间延时偏差	t _{SK} (c2c)			0.7		ns
芯片间延时偏差	t _{SK} (p2p)			0		ns

Rev 0.2 | 12/27 www.hoperf.cn

10.5 典型性能

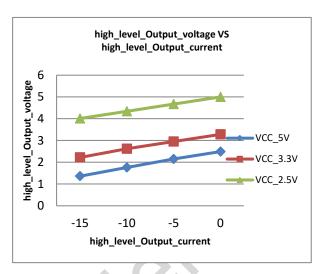
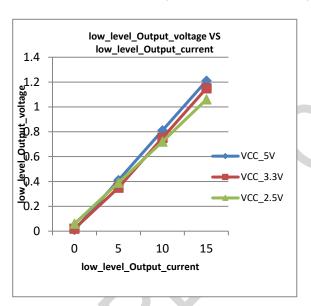



图 8.电源电流 vs.数据率 (15-pF 负载) T_A=25℃ C_L=15pF 图 9. 高电平输出电压 vs.高电平输出电流 (T_A=25℃)

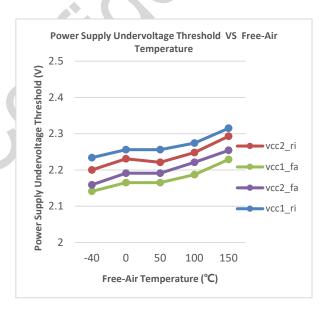


图 10. 低电平输出电压 vs.低电平输出电流(T_A=25℃)

图 11. 电源欠压阈值 vs.大气温度

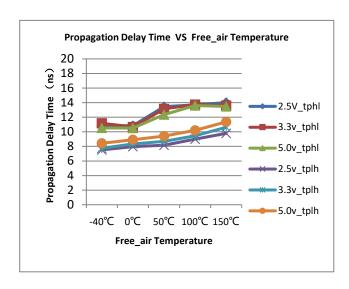


图 12. 传播延时 vs.大气温度

10.6 隔离特性

表 12 隔离特性

会业	符号 测试条件			单位	
参数	付与	测试条件 	NBSOIC-16	WB SOIC-16	平 仏
外部间隙[1]	CLR	输入端至输出端隔空最短距离	4.0	8.0	mm
外部爬电距离[1]	CRP	输入端至输出端沿壳体最短距离	4.0	8.0	mm
隔离距离	DTI	最小内部间隙	32	32	um
相对漏电指数	CTI	DIN EN 60112 (VDE 0303-11);IEC 60112	> 400	>600	V
材料组	-		1	1	-
		额定电源电压≤ 300 V _{RMS}	I	I	-
过电压等级 (按 IEC 60664-1 标准)	-	额定电源电压≤ 600 V _{RMS}	I-IV	I-IV	-
(15, 120, 0000 1 1 //////////		额定电源电压≤ 1000 V _{RMS}	1-111	1-111	-
DIN VDE V 0884-11:2017-01 ^[2]					
最大工作绝缘电压(峰值)	Viorm		565	2121	V_{pk}
最大工作绝缘电压 (有效值)	V _{IOWM}	交流电压 (正弦波);介质层时变击穿(TDDB)测试	400	1500	V _{RMS}
(1776)	1000	直流电压		2121	V_{DC}
具十勝太耐口	VIOTM	VTEST = VIOTM t= 60 s;	5300	8000	V .
最大瞬态耐压	VIOTIVI	VTEST =1.2* VIOTM t= 1 s (100%量产)	5300	8000	V_{pk}
最大浪涌隔离耐压[3]	Viosm	按 IEC60065 方法测试, 1.2/50 us 波形, V _{TEST} = 1.6 x V _{IOSM}	5300	8000	V_{pk}
表观电荷[4]	q _{pd}	方法 a: 在 I/O 安全测试分组 2/3 之后, V_{ini} = V_{IOTM} , t_{ini} = 60 s; $V_{\text{pd(m)}}$ = 1.2 × V_{IORM} , t_{m} = 10 s		<5	рC

参数	姓旦	符号 测试条件		值		
少 数	117 2	侧风宋什	NBSOIC-16	WB SOIC-16	単位	
		方法 a: 在环境测试分组 1 之后, V _{ini} = V _{IOTM} , t _{ini} = 60 s; V _{pd(m)} = 1.6 × V _{IORM} , t _m = 10 s		< 5		
		方法 b1: 例行测试(100%量产) 和预处理 (类型测试) V _{ini} = V _{IOTM} , t _{ini} = 1 s; V _{Pd(m)} = 1.875 × V _{IORM} , t _m = 1 s		< 5		
隔离电容,输入到输出 [5]	C _{IO}	V _{IO} = 0.4 x sin (2πft), f = 1 MHz	1.2	1.2	pF	
隔离电阻,输入到输出[5]	R _{IO}	V _{IO} = 500 V	>1010	>1010	Ω	
UL 1577			X			
隔离耐压	V _{ISO}	V _{TEST} = V _{ISO} , t = 60 s (认证); V _{TEST} = 1.2 × V _{ISO} , t = 1 s (100%量产)	3750	5700	V _{RMS}	

备注:

- [1]. 应根据应用的设备隔离标准采纳相应的爬电距离和间隙需求标准。PCB设计中应注意保持爬电距离和间隙距离,确保板上隔离器的安装垫不会导致相应距离减少。某些情况下,PCB板上的爬电距离和间隙是相等的。在PCB板上加凹槽和/助条设计有助于改善该指标。
- [2]. 该隔离器仅适用于安全额定值范围内的安全电气绝缘。应通过适当的保护电路确保符合安全额定值。
- [3]. 在空气或油中进行测试,以确定隔离栅的固有浪涌抗扰度。
- [4]. 表观电荷是由局部放电(pd)引起的放电。
- [5]. 隔离栅两侧的所有管脚连接在一起,形成一个双端装置。

10.7 安规认证

表 7.安规认证

VDE	U	IL	CQC	TUV	
DIN VDE V0884-11:2017-01 认 证	UL 1577 Component Recognition Program	Approved under CSA Component Acceptance Notice 5A	GB 4943.1-2011 认证	EN 61010-1:2010 (3rd Ed) and EN 60950-1:2006/A2: 2013 认证	
iii: 书编写:Dendind			证书编号: CQC11-471543-2022	证书编号:pending	

10.8 安全限定值

设置安全限定值的目的在于: 当输入或输出电路故障时可以尽量减少对隔离栅的可能损坏。I/O 故障可能导致对地或电源的低电阻; 因而,在不限制电流的情况下,过多的功率损耗会导致模具过热并造成隔离栅损坏,从而可能导致系统二次故障。

表 8. 安全限值

参数	符号 测试条件 N		ĺ	単位	
多数			NBSOIC-16	WBSOIC-16	平位
		$R_{\theta JA} = 140 ^{\circ}\text{C/W}, V_{I} = 5.5 \text{V}, \ T_{J} = 125 ^{\circ}\text{C}, T_{A} = 25 ^{\circ}\text{C}$	160		mA
安全输入/输出/电源电流	ls	$R_{\theta JA} = 84 ^{\circ}\text{C/W}, V_{I} = 5.5 V, \ T_{J} = 125 ^{\circ}\text{C}, T_{A} = 25 ^{\circ}\text{C}$		237	mA
25℃下功率总损耗	Ps			1499	W
外壳温度	Ts		125	125	$^{\circ}\!$

Rev 0.2 | 16/27

www.hoperf.cn

10.9 温度特性

表 9. 温度特性

参数	符号	值	单位	
少蚁	NB SOIC-16		WB SOIC-16	平征
结至环境热阻	θја	78.9	78.9	°C/W
结至外壳 (顶部) 热阻	θ _{JC} (top)	41.1	41.6	°C/W
结至板热阻	θјв	49.5	43.6	°C/W

11 功能描述

11.1 功能概述

CMT8266W0 为高性能六通道数字隔离器,通过 UL1577 安全认证,其隔离额定值可达 5700 V_{RMS}。同时在低功耗下提供高电磁抗扰度和低排放。数据速率高达 100Mbps,共模暂态抗扰度(CMTI)高达 250 kV/us。

该器件支持 OOK 调制方案,可以跨二氧化硅隔离栅进行数字数据传输。 发射器通过隔离栅发送高频载波表示一种数字状态,而不发送信号则表示另一种数字状态。 接收器在将信号进行预处理后进行信号解调,并通过缓冲级产生输出。CMT8266W0 还采用了先进的电路技术,以最大限度地提高 CMTI 性能并最大限度地减少由于高频载波和 IO 缓冲器切换引起的辐射。 以下为 OOK 调制方案工作原理示意图。

当输入功率丢失时,CMT8266W0的默认输出为低电平,以防止在上电阶段 IPM 切换。CMT8266W0 宽电源电压支持与大多数数字接口直接连接,易于电平转换。高系统级电磁兼容性能,提高了使用的可靠性和稳定性。

如表 16 所示,CMT8266W0 在 VDDIN 未准备和 VDDOUT 准备时具有默认输出状态,这有助于在发射机侧缺电时进行诊断。其他输出分别上电后与输入 A 保持相同状态。

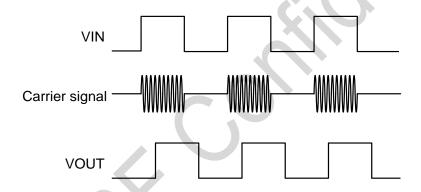


图 13. OOK 调制机制

表 16. 输出状态 vs 电源状态

XH_IN	XL_IN	VDD1 状态	VDD2 状态	XH_OUT	XL_OUT	描述
Н	Н	Ready	Ready	L	L	
L or NC	Н	Ready	Ready	L	Н	常规运行
Н	L or NC	Ready	Ready	Н	L	
L or NC	L or NC	Ready	Ready	L	L	
X	х	Unready	Ready	L	L	输入侧 VDD1 上电后输出正常
Х	Х	Ready	Unready	Х	Х	输出侧 VDD2 上电后输出正常

Rev 0.2 | 18/27

注:

H = 逻辑高电平;L = 逻辑低电平;X = 逻辑低电平或逻辑高电平

VDD1 为输入侧电源;VDD2 为外电源。

11.2 绝缘寿命

绝缘寿命预测数据采用行业标准的介质层时变击穿(TDDB) 测试方法收集。 在此测试中,隔离栅每一侧的所有引脚都连接在一起,形成一个双端设备,并在两侧之间施加高电压; TDDB 测试设置请参见下图。 绝缘击穿数据是在过温情况下施加不同高压并以 60 Hz 频率切换时收集的。对于加强绝缘,VDE 标准要求使用故障率低于百万分之一 (ppm) 的 TDDB 投影线。 尽管在指定的工作隔离电压下预期的最短绝缘寿命为 20 年,但 VDE 加强认证要求额外的工作电压安全余量为 20%,寿命余量为 87.5%,这意味着在工作电压比规定值高 20%情况下要求达到最低 37.5 年的绝缘寿命。

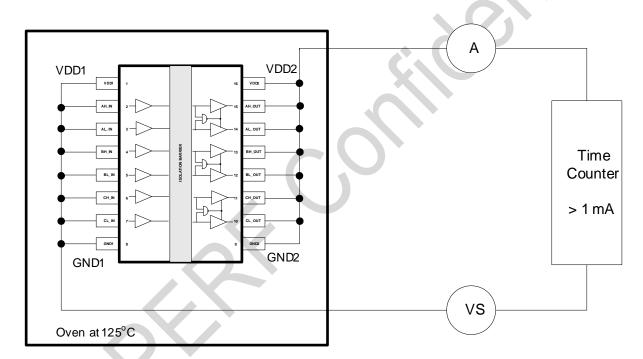


图 14.绝缘寿命测试方式

12 封装外形

CMT8266W0 SOIC16 封装信息如下图所示。

12.1 CMT8266W0 窄体 SOIC-16 封装

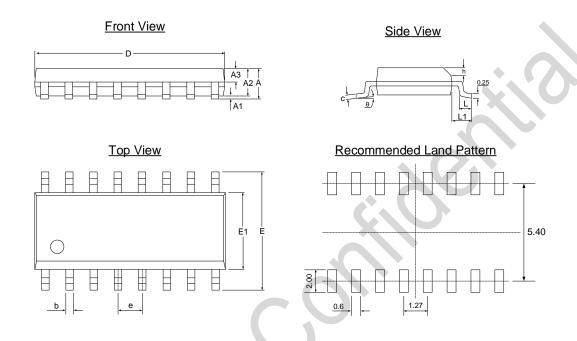


图 1. SOIC-16 窄体封装

表 17. SOIC-16 窄体封装尺寸

符号		尺寸 (毫米 mm)	
<u>गि</u> च	最小值	典型值	最大值
Α	-	-	1.75
A1	0.10	-	0.25
b	0.36	-	0.49
C	0.19	-	0.25
D	9.80	9.90	10.0
E	5.80	-	6.20
E1	3.80	3.90	4.00
е		1.27	
L	0.40	-	1.00
L1		1.05	
θ	0	-	8°

Rev 0.2 | 20/27

12.2 CMT8266W0 宽体 SOIC-16 封装

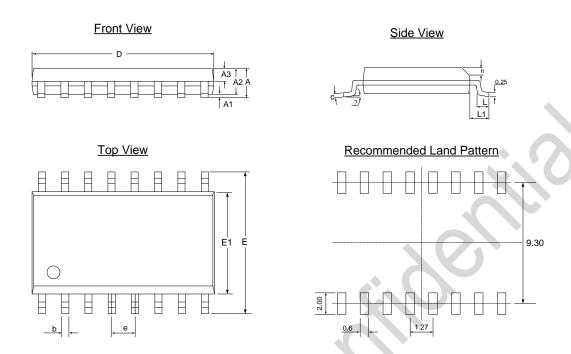
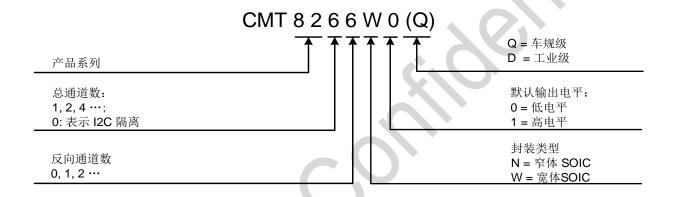


图 16. SOIC-16 宽体封装 表 18. SOIC-16 宽体封装尺寸

		2011							
by I		尺寸 (毫米 mm)							
符号	最小值	典型值	最大值						
А		-	2.65						
A1	0.10	0.20	0.30						
A2	2.25	2.30	2.35						
A3	1.00	1.05	1.10						
b	0.35	0.37	0.43						
С	0.15	0.20	0.30						
D	10.30	10.40	10.50						
E	10.10	10.30	10.50						
E1	7.40	7.50	7.60						
е	1.14	1.27	1.40						
L	0.65	0.70	0.85						
L1		1.40							
θ	0	-	8°						


Rev 0.2 | 21/27

13 订购信息

表 19. 产品订购列表

产品型号	起订量	隔离耐压 (kV)	总通道数	正向通道数	反向通 道数	最大速率 (Mbps)	默认输出 电平	是否 车规	封装	MSL
CMT8266W0	1000	5.7	6	6	0	150	低	否	WB SOIC-16	3
CMT8266N0	1000	3.7	6	6	0	150	低	否	NB SOIC-16	3

产品命名规则:

如需了解更多产品及产品线信息,请访问 <u>www.hoperf.com</u>。

有关采购或价格需求,请联系 sales@hoperf.com 或者当地销售代表。

14 编带信息

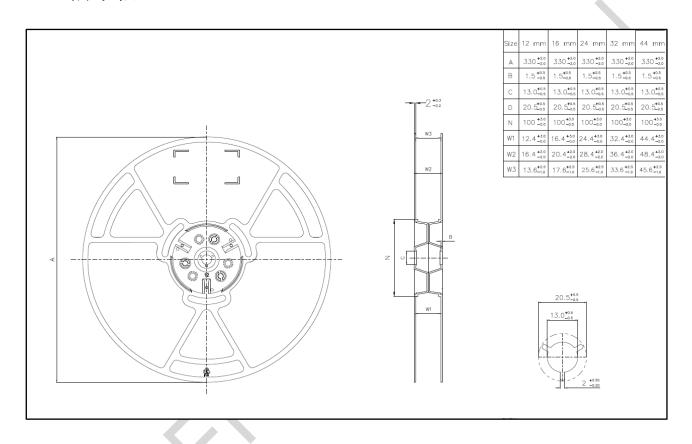


图 17. CMT8266W0 WB SOIC-16 卷带信息

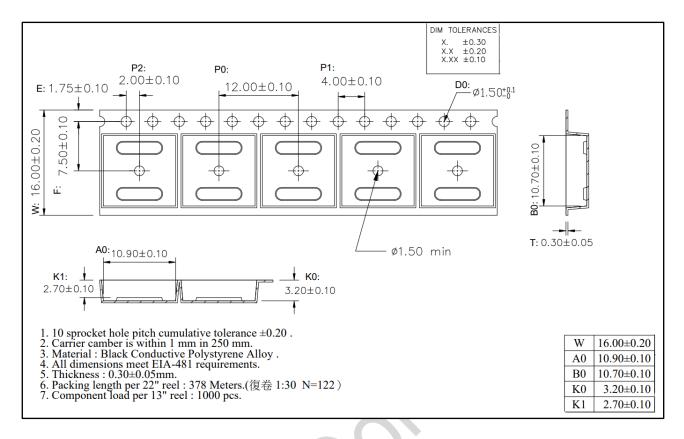


图 18. CMT8266W0 WB SOIC-16 编带信息

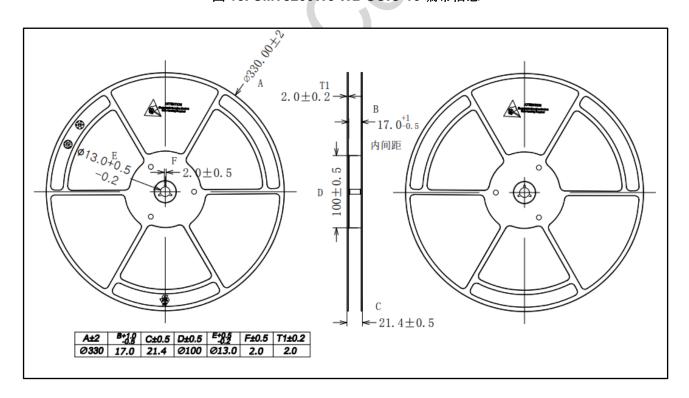


图 19. CMT8266W0 NB SOIC-16 卷带信息

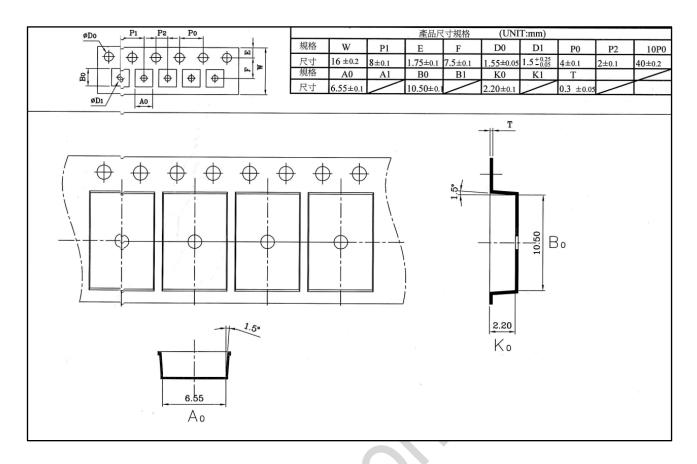


图 20. CMT8266W0 NB SOIC-16 编带信息

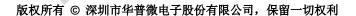
15 文档变更记录

表 20. 文档变更记录

版本号	章节	变更描述	日期
0.1	所有	初始版本	2024/1/25
0.0	55-	修改订购信息	2024/4/30
0.2	所有	订购信息增加 MSL 等级信息	2024/12/3

16 联系方式

深圳市华普微电子股份有限公司


中国广东省深圳市南山区西丽街道万科云城三期 8A 栋 30 层

邮编: 518052

电话: +86 - 755 - 82973805

销售: sales@hoperf.com

网址: www.hoperf.cn

深圳市华普微电子股份有限公司(以下简称: "HOPERF")保留随时更改、更正、增强、修改 HOPERF 产品和/或本文档的权利,恕不另行通知。非经本公司书面许可,任何单位和个人不得擅自摘抄、复制本文档内容的部分或全部,并不得以任何形式传播。由于产品版本升级或其他原因,本文档内容会不定期进行更新。HOPERF 的产品不建议应用于生命相关的设备和系统,在使用该器件中因为设备或系统运转失灵而导致的损失,HOPERF 不承担任何责任。HOPERF 商标为深圳市华普微电子股份有限公司的商标,本文档提及的其他所有商标或注册商标,由各自的所有人拥有。