COEVER CONNALOG

General Description

The EA3327 is a dual channel power management IC. It integrates two synchronous buck converters and can provide high efficiency. The internal compensation architecture simplifies the application circuit design and the independent enable control makes the designer have the greatest flexibility to optimize timing for power sequencing purposes. All converters feature complete protection functions, including cycle-by-cycle current limit, short circuit protection, OTP and UVLO protection. The EA3327 is available in a tiny 12 pin DFN 3x3 package and can save the PCB area.

Features

- 1CH DC/DC Buck Converter (CH1) 5V to 40V Input Voltage Range Fixed 3.3V Output Voltage Fixed 700KHz Switching Frequency PWM Mode at Light Load Operation 1A Continuous Load Current Internal Soft Start Function Independent Enable Control Cycle-by-Cycle Current Limit Input UVLO Hiccup Mode Short Circuit Protection
- 1CH DC/DC Buck Converter (CH2)
 2.7V to 5.5V Input Voltage Range
 Fixed 1.4MHz Switching Frequency
 High Efficiency at Light Load Operation
 1A Continuous Load Current
 100% Duty Cycle Low Dropout Operation
 Internal Soft Start Function
 Independent Enable Control
 Cycle-by-Cycle Current Limit
 Short Circuit Protection
 Input UVLO
- Auto Recovery OTP Protection
- Reducing the External Components
- Available in 12-pin 3mm x 3mm DFN Package

Applications

- Smart Meters
- VRs CVRs
- Netcom Products
- Video Doorbell

5. Contro

EVER ANALOG

Datasheet

Dual Channel PMIC

LX1 PGND1 FB1 AGND EN2 VIN2	2 3 4 5 6 11 10 EN1 FB2 7 LX2 DFN 3x3-12	2
Pin Desci Pin Name	Function Description	Pin No.
LX1	Internal MOSFET switching output of CH1. Connect LX1 pin with a low pass filter circuit to obtain a stable DC output voltage.	1 1
PGND1	Power ground pin of CH1.	2
FB1	Feedback input of CH1. Connect FB1 pin to the output node.	3
AGND	Analog ground pin.	4
EN2	CH2 turns on/turns off control input. Don't leave this pin floating.	5
VIN2	Power input pin of CH2. Recommended to use a 10uF MLCC capacitor between VIN2 pin and PGND2 pin.	6
LX2	Internal MOSFET switching output of CH2. Connect LX2 pin with a low pass filter circuit to obtain a stable DC output voltage.	7
PGND2	Power ground pin of CH2.	8
FB2	Feedback input of CH2. Connect to output voltage with a resistor divider.	9
EN1	CH1 turns on/turns off control input. Leave this pin floating will turn off the device automatically.	10
BOOT1	The power input of the internal high side N-MOSFET gate driver of CH1. Connect a 100nF ceramic capacitor from BOOT1 pin to LX1 pin.	11
VIN1	Power input pin of CH1. Recommended to use a 10uF MLCC capacitor between VIN1 pin and PGND pin.	12
Exposed Pad	The Exposed Pad must be soldered to a large PCB copper plane and connected to GND for appropriate dissipation.	13

EA3327 Dual Channel PMIC

Function Block Diagram

Dual Channel PMIC

Datasheet

Absolute Maximum Ratings

Parameter	Value
CH1 Input Voltage (V _{VIN1})	-0.3V to +42V
CH1 EN Pin Voltage (V _{EN1})	-0.3V to +42V
CH1 LX Pin Voltage (V _{LX1})	-0.3V to V_{VIN1} +0.3V
CH1 BOOT Pin Voltage (V _{BOOT1})	V _{LX1} -0.3V to V _{LX1} +6V
CH2 Input Voltage (V _{VIN2})	-0.3V to +6.5V
CH2 EN Pin Voltage (V _{EN2})	-0,3V to +6.5V
CH2 LX Pin Voltage (V _{LX2})	-0.3V to V_{VIN2} +0.3V
All Other Pins Voltage	-0.3V to +6.5V
Ambient Temperature operating Range (T _A)	-40°C to +85°C
Maximum Junction Temperature (T _{Jmax})	+150°C
Lead Temperature (Soldering, 10 sec)	+260°C
Storage Temperature Range (T _s)	-65°C to +150°C
Note (1):Stresses beyond those listed under "Absolute Maximum F	Patings" may cause permanent damage to the device

Note (1):Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Exposure to "Absolute Maximum Ratings" conditions for extended periods may affect device reliability and lifetime.

Package Thermal Characteristics

Parameter	Value
DFN 3x3-12 Thermal Resistance (θ _{μc})	15°C/W
DFN 3x3-12 Thermal Resistance (θ _{JA})	70°C/W
DFN 3x3-12 Power Dissipation at $T_A=25$ °C (P_{Dmax})	1.79W

Note (1): P_{Dmax} is calculated according to the formula: $P_{DMAX}=(T_{JMAX}-T_A)/\theta_{JA}$.

Recommended Operating Conditions

Parameter	Value
CH1 Input Voltage (V _{VIN1})	-0.3V to +40V
CH2 Input Voltage (V _{VIN2})	-0.3V to +5.5V
Junction Temperature Range (T _J)	-40°C to +125°C

EA3327 Dual Channel PMIC

Electrical Characteristics

 V_{VIN1} =12V, V_{VIN2} =3.3V, T_A =25°C, unless otherwise noted

Buck Converter 1 5 40 V Input Voltage V_{UVLO1} 4.5 4.7 5 V Input UVLO Threshold V_{UVLO1} 4.5 4.7 5 V Input UVLO Hysteresis $V_{UVLHYST}$ 0.3 V V Shutdown Supply Current Ispn VEIN1 = 0V 0.1 1 VA Quiescent Current Ion VEIN1 = 3.5V, VRIEP2 = 0.7V, No Load 500 VA V Switching Frequency Fswit Iourn = 200mA 525 700 875 KHz High Side MOSFET On-Resistance RDS(ON)HAM 500 V mQ mQ Low Side MOSFET On-Resistance RDS(ON)HAM 1.5 2 A Minimum On Time TONUMINI 1.5 2 A Minimum On Time TONUMINI 1.00 ns S Enable Pin Input Low VEIN-L 2.5 V V Notage VUVLO2 2.3 2.5 V V	Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Input UVLO Threshold VUVLO1 4.5 4.7 5 V Input UVLO Threshold VUVLO1 4.5 4.7 5 V Input UVLO Threshold VUVLO1 VENT 0.3 4.5 4.7 5 V Shutdown Supply Current Ison VENT 0.1 1 4.4 Quiescent Current Ison VENT 500 .0.1 1 4.4 Quiescent Current Ison VENT 500 .0.1 1 4.4 Quiescent Current Ison VENT 60V 3.3 3.85 3.4 V Switching Frequency Fswit Iourt = 200mA 525 700 875 KHz High Side MOSFET On-Resistance Ros(ON)1-HM 1.5 2 A A High Side MOSFET Current Limit ILIM-HM 1.5 2 A A Minimum On Time Ton(MIN01 100 ns S V A Enable Pin Input Low VEN1-	Buck Converter 1						
$\begin{array}{ c c c c c c } \hline Input UVLO Hysteresis & V_{UV1-HYST} & 0.3 \\ \hline Shutdown Supply Current & I_{SD1} & V_{EN1} = 0V & 0.1 & 1 & UA \\ \hline Quiescent Current & I_{O1} & V_{FB1} = 3.5V, V_{REF2} & 500 & UA \\ \hline Feedback Voltage & V_{FB1} & 5V \leq V_{VIN1} \leq 40V & 3.3 & 3.35 & 3.4 & V \\ \hline Switching Frequency & F_{SW1} & I_{OUT1} = 200mA & 525 & 700 & 875 & KHz \\ \hline High Side MOSFET & R_{DS(ON)1-LM} & 200 & m\Omega \\ \hline On-Resistance & R_{DS(ON)1-LM} & 1.5 & 2 & A \\ \hline Minimum On Time & T_{ON(MIN)1} & 100 & ns \\ \hline Enable Pin Input Low \\ Voltage & V_{EN1-L} & 2.5 & V \\ \hline Netwistance & R_{DS(ON)1-LM} & 2.5 & V \\ \hline Input UVLO Threshold & V_{UNL2} & 2.7 & 5.5 & V \\ \hline Input UVLO Threshold & V_{UVL02} & 2.3 & 2.5 & 2.7 & V \\ \hline Input UVLO Threshold & V_{UVL02} & 2.3 & 2.5 & 2.7 & V \\ \hline Shutdown Supply Current & I_{SO2} & V_{EN2} = 0V & 0.1 & 1 & uA \\ \hline Reference Voltage & V_{KH2} & 0.588 & 0.6 & 0.612 & V \\ \hline Shutdown Supply Current & I_{SO2} & V_{EN2} = 0.588 & 0.6 & 0.612 & V \\ \hline Shutdown Supply Current & I_{SO2} & V_{EN2} = 0.588 & 0.6 & 0.612 & V \\ \hline Shutdown Supply Current & I_{SO2} & V_{EN2} = 200MA & 1.05 & 1.4 & 1.75 & MHz \\ \hline P-MOS On-Resistance & R_{DS(ON)2-P} & 250 & m\Omega \\ \hline P-MOS Current Limit & I_{UM2-P} & 1.5 & 2 & A \\ \hline \ P-MOS Current Limit & I_{UM2-P} & 1.5 & 2 & A \\ \hline \ \ \end{tabular}$	Input Voltage	V _{VIN1}		5		40	V
Shutdown Supply CurrentIIVENT = 0V0.11UAQuiescent CurrentIIVFB1 = 3.5V, VREF2 = 0.7V, No Load500uAFeedback VoltageVVFB1 = 5.5V, VNO Load500uAFeedback VoltageVFSW1I500875KHzHigh Side MOSFET On-ResistanceRNot No Load525700875KHzHigh Side MOSFET On-ResistanceRR200mQLow Side MOSFET On-ResistanceR1.52AMinimum On TimeTI1.52AMinimum On TimeT0.4VVEnable Pin Input Low VoltageVEN1-L2.5VNessistanceREN950KQBuck Converter 2Input VUO ThresholdVUVL022.32.52.7Input VUO ThresholdVUVL022.32.52.7VInput VUO HysteresisVUV2+HYST0.11uAReference VoltageVIso2VEN2 = 0.5880.60.612VShutdown Supply CurrentIso2VEN2 = 0.5880.60.612VShutdown Supply CurrentIso2VEN2 = 200MA1.051.41.75MHzP-MOS On-ResistanceRRSU(M2-P)250mQNOP-MOS On-ResistanceRRSU(M2-P)1.52AP-MOS On-ResistanceRRSU(M2-P)1.52A	Input UVLO Threshold	V _{UVLO1}		4.5	4.7	5	V
Quiescent Current I_{O1} $V_{FB1} = 3.5V, V_{PEF2} = 0.7V, No Load$ 500 uA Feedback Voltage V_{FB1} $5V \le V_{VIN1} \le 40V$ 3.3 3.35 3.4 V Switching Frequency F_{SW1} $I_{OUT1} = 200mA$ 525 700 875 KHz High Side MOSFET On-Resistance $R_{DS(ON)1-HM}$ 200 $m\Omega$ Low Side MOSFET On-Resistance $R_{DS(ON)1-LM}$ 200 $m\Omega$ Low Side MOSFET On-Resistance $I_{LIM1-HM}$ 1.5 2 A Minimum On Time Voltage $T_{ON(MIN)1}$ 100 ns Enable Pin Input Low Voltage V_{EN1-L} 0.4 V Enable Pin Input High Voltage V_{EN1-L} 2.5 V Input Voltage V_{VIN2} 2.7 5.5 V Input Voltage V_{VIN2} 2.3 2.5 2.7 V Input VVLO Threshold $V_{UV2-HYST}$ 0.1 V V Input UVLO Threshold $V_{UV2-HYST}$ 0.1 1.4 1.75 MHz P-MOS On-Resistance $R_{DS(ON)2-N}$ 250 $m\Omega$ M P-MOS On-Resistance $R_{DS(ON)2-N}$ 250 $m\Omega$ P-MOS Current Limit I_{LM2-P} 1.5 2 A	Input UVLO Hysteresis	V _{UV1-HYST}			0.3		V
Cubescent Current Tot = 0.7V, No Load S00 UA Feedback Voltage V_{B1} $5V \le V_{VIN1} \le 40V$ 3.3 3.85 3.4 V Switching Frequency F_{SW1} $I_{OUT1} = 200mA$ 525 700 875 KHz High Side MOSFET On-Resistance $R_{DS(ON)1-HM}$ 200 mQ Low Side MOSFET On-Resistance $R_{DS(ON)1-HM}$ 1.5 2 A Minimum On Time $T_{ON(MIN)1}$ 1.5 2 A Minimum On Time $T_{ON(MIN)1}$ 100 ns Enable Pin Input Low Voltage V_{EN1-L} 2.5 V Prable Pin Pull-Low Resistance R_{EN1} 2.5 V Input Voltage V_{VIN2} 2.7 5.5 V Input UVLO Threshold	Shutdown Supply Current	I _{SD1}	$V_{EN1} = 0V$		0.1	1	νuΑ
Switching Frequency F_{SW1} $I_{OUT1} = 200mA$ 525 700 875 KHzHigh Side MOSFET On-Resistance $R_{DS(ON)1-HM}$ 500 $m\Omega$ Low Side MOSFET On-Resistance $R_{DS(ON)1-HM}$ 200 $m\Omega$ High Side MOSFET Current Limit $I_{LIM1-HM}$ 1.5 2 A Minimum On Time $T_{ON(MIN)1}$ 100 ns Enable Pin Input Low Voltage V_{EM1-L} 2.5 V Enable Pin Input High Voltage V_{EM1-L} 2.5 V Enable Pin Pull-Low Resistance B_{EM1} 2.5 V Input Voltage V_{VIN2} 2.7 5.5 V Input Voltage V_{VIN2} 2.3 2.5 2.7 V Input Voltage V_{UVLO2} 2.3 2.5 2.7 V Input UVLO Priveshold $V_{UV2HYST}$ 0.1 V V Shutdown Supply Current I_{SD2} $V_{EM2} = 0V$ 0.1 1 uA Reference Voltage V_{REF2} 0.588 0.6 0.612 V Switching Frequency F_{SW2} $I_{OUT2} = 200mA$ 1.05 1.4 1.75 MHz P-MOS On-Resistance $R_{DS(ON)2-N}$ 250 $m\Omega$ P P-MOS Current Limit I_{LM2-P} 1.5 2 A	Quiescent Current	I _{Q1}			500	XY	uA
High Side MOSFET On-Resistance $R_{DS(ON)1-HM}$ 500 $m\Omega$ Low Side MOSFET On-Resistance $R_{DS(ON)1-LM}$ 200 $m\Omega$ High Side MOSFET Current Limit $I_{LIM1-HM}$ 1.5 2 A Minimum On Time $T_{ON(MIN)1}$ 100 ns Enable Pin Input Low Voltage V_{EN1-L} 0.4 V Enable Pin Input High Voltage V_{EN1-L} 0.4 V Enable Pin Input High Voltage V_{EN1-L} 950 $K\Omega$ Buck Converter 2 $PEN1$ 2.7 5.5 V Input Voltage V_{VINZ} 2.7 5.5 V Input UVLO Threshold V_{UVLO2} 2.3 2.5 2.7 V Shutdown Supply Current I_{SD2} $V_{EN2} = 0V$ 0.1 1 uA Reference Voltage V_{REF2} 0.588 0.6 0.612 V Switching Frequency F_{SW2} $l_{OUT2} = 200mA$ 1.05 1.4 1.75 MHz P-MOS On-Resistance $R_{DS(ON)2-N}$ 250 $m\Omega$ P-MOS Current Limit I_{LIM2-P} 1.5 2 A	Feedback Voltage	V_{FB1}	$5V \le V_{VIN1} \le 40V$	3.3	3.35	3.4	V
On-ResistanceRDS(ON)1-HMSUUHIL2Low Side MOSFET On-ResistanceRDS(ON)1-LM200mQHigh Side MOSFET Current Limit $I_{LIM1-HM}$ 1.52AMinimum On TimeTON(MIN)1100nsEnable Pin Input Low VoltageVEN1-L2.5VEnable Pin Input High VoltageVEN1-L2.5VEnable Pin Pull-Low ResistanceREN1950KQBuck Converter 22.75.5VInput VoltageVUVL022.32.52.7Input UVLO ThresholdVUV2-HYST0.1VShutdown Supply CurrentIsp2VEN2 = 0V0.11Reference VoltageVREF20.5880.60.612VSwitching FrequencyFSW2Ioutz = 200mA1.051.41.75MHzP-MOS On-ResistanceRDS(ON)2-N250mQN-MOSN-MOSN-MOSP-MOS Current LimitILIM2-P1.52AA	Switching Frequency	F _{SW1}	$I_{OUT1} = 200 \text{mA}$	525	700	875	KHz
On-Resistance $R_{DS(ON)1-LM}$ 200 $m\Omega$ High Side MOSFET Current LimitI1.52AMinimum On Time $T_{ON(MIN)1}$ 100nsEnable Pin Input Low Voltage V_{EN1-L} 0.4VEnable Pin Input Low Voltage V_{EN1-L} 2.5VEnable Pin Input Low Voltage V_{EN1-L} 2.5VEnable Pin Input High Voltage V_{EN1-L} 2.5VBuck Converter 2950K Ω Buck Converter 22.75.5VInput UVLO Threshold V_{UVLO2} 2.32.52.7Input UVLO Threshold $V_{UV2-HYST}$ 0.11uAReference Voltage V_{REF2} 0.5880.60.612VShutdown Supply Current I_{SD2} $V_{EN2} = 200mA$ 1.051.41.75MHzP-MOS On-Resistance $R_{DS(ON)2-P}$ 250 $m\Omega$ $m\Omega$ P-MOS Current Limit I_{LM2-P} 1.52A		R _{DS(ON)1-HM}		5	500		mΩ
Current LimitILM1-HM1.52AMinimum On Time $T_{ON(MIN)1}$ 100nsEnable Pin Input Low Voltage V_{EN1-L} 0.4VEnable Pin Input High Voltage V_{EN1-R} 2.5VEnable Pin Pull-Low Resistance R_{EN1} 950K Ω Buck Converter 2 R_{EN1} 950VInput Voltage V_{VIN2} 2.75.5VInput UVLO Threshold V_{UVLO2} 2.32.52.7VInput UVLO Threshold V_{UVLO2} 0.11uAReference Voltage V_{REF2} 0.5880.60.612VShutdown Supply Current I_{SD2} $V_{EN2} = 200MA$ 1.051.41.75MHzP-MOS On-Resistance $R_{DS(ON)2-P}$ 250m Ω N-MOS On-Resistance $R_{DS(ON)2-N}$ 250m Ω P-MOS Current Limit I_{LIM2-P} 1.52A		R _{DS(ON)1-LM}	~		200		mΩ
Enable Pin Input Low Voltage V_{EN1-L} 0.4VEnable Pin Input High Voltage V_{EN1-R} 2.5VEnable Pin Pull-Low Resistance R_{EN1} 950K Ω Buck Converter 2 R_{EN1} 950VInput Voltage V_{VIN2} 2.75.5VInput UVLO Threshold V_{UVLO2} 2.32.52.7VInput UVLO Hysteresis $V_{UV2-HYST}$ 0.1VVShutdown Supply Current I_{SD2} $V_{EN2} = 0V$ 0.11uAReference Voltage V_{REF2} 0.5880.60.612VSwitching Frequency F_{SW2} $I_{OUT2} = 200mA$ 1.051.41.75MHzP-MOS On-Resistance $R_{DS(ON)2-P}$ 250m Ω N-MOS On-Resistance $R_{DS(ON)2-P}$ 250m Ω P-MOS Current Limit I_{LIM2-P} 1.52A		I _{LIM1-HM}	C O'	1.5	2		А
Voltage V_{EN1-L} 0.4 V Enable Pin Input High Voltage V_{EN1-R} 2.5 V Enable Pin Pull-Low Resistance B_{EN1} 950 $K\Omega$ Buck Converter 2 V_{VIN2} 2.7 5.5 V Input Voltage V_{VIN2} 2.3 2.5 2.7 V Input UVLO Threshold V_{UVLO2} 2.3 2.5 2.7 V Input UVLO Hysteresis $V_{UV2-HYST}$ 0.1 V V Shutdown Supply Current I_{SD2} $V_{EN2} = 0V$ 0.1 1 uA Reference Voltage V_{REF2} 0.588 0.6 0.612 V Switching Frequency F_{SW2} $I_{OUT2} = 200mA$ 1.05 1.4 1.75 MHz P-MOS On-Resistance $R_{DS(ON)2-P}$ 250 $m\Omega$ $M\Omega$ N-MOS On-Resistance $R_{DS(ON)2-N}$ 250 $m\Omega$ P-MOS Current Limit I_{LIM2-P} 1.5 2 A	Minimum On Time	T _{ON(MIN)1}			100		ns
VoltageVEN1-R2.5VEnable Pin Pull-Low Resistance R_{EN1} 950K Ω Buck Converter 22.75.5VInput Voltage V_{VIN2} 2.32.52.7VInput UVLO Threshold V_{UVLO2} 2.32.52.7VInput UVLO Hysteresis $V_{UV2-HYST}$ 0.1VVShutdown Supply Current I_{SD2} $V_{EN2} = 0V$ 0.11uAReference Voltage V_{REF2} 0.5880.60.612VSwitching Frequency F_{SW2} $I_{OUT2} = 200mA$ 1.051.41.75MHzP-MOS On-Resistance $R_{DS(ON)2-P}$ 250m Ω N-MOS On-Resistance $R_{DS(ON)2-P}$ 250m Ω P-MOS Current Limit I_{LIM2-P} 1.52A	•	V _{EN1-L}	6			0.4	V
Resistance $PEN1$ 950 $K\Omega$ Buck Converter 2Input Voltage V_{VIN2} 2.7 5.5 V Input UVLO Threshold V_{UVLO2} 2.3 2.5 2.7 V Input UVLO Hysteresis $V_{UV2-HYST}$ 0.1 V Shutdown Supply Current I_{SD2} $V_{EN2} = 0V$ 0.1 1 uA Reference Voltage V_{REF2} 0.0012 1.05 1.4 1.75 MHz P-MOS On-Resistance $R_{DS(ON)2-P}$ 250 $m\Omega$ N-MOS On-Resistance $R_{DS(ON)2-N}$ 250 $m\Omega$ P-MOS Current Limit I_{LIM2-P} 1.5 2 A		N _{EN1-H}		2.5			V
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		R _{EN1}			950		KΩ
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Buck Converter 2						
Input UVLO Hysteresis $V_{UV2-HYST}$ 0.1VShutdown Supply Current I_{SD2} $V_{EN2} = 0V$ 0.11uAReference Voltage V_{REF2} 0.5880.60.612VSwitching Frequency F_{SW2} $I_{OUT2} = 200$ mA1.051.41.75MHzP-MOS On-Resistance $R_{DS(ON)2-P}$ 250mQN-MOS On-Resistance $R_{DS(ON)2-N}$ 250mQP-MOS Current Limit I_{LIM2-P} 1.52A	Input Voltage	V_{VIN2}		2.7		5.5	V
Shutdown Supply Current I _{SD2} $V_{EN2} = 0V$ 0.1 1 uA Reference Voltage V_{REF2} 0.588 0.6 0.612 V Switching Frequency F_{SW2} $I_{OUT2} = 200$ mA 1.05 1.4 1.75 MHz P-MOS On-Resistance $R_{DS(ON)2-P}$ 250 mΩ N-MOS On-Resistance $R_{DS(ON)2-N}$ 250 mΩ P-MOS Current Limit I_{LIM2-P} 1.5 2 A	Input UVLO Threshold	$V_{\rm UVLO2}$		2.3	2.5	2.7	V
Reference Voltage V_{REF2} 0.588 0.6 0.612 V Switching Frequency F_{SW2} $I_{OUT2} = 200 \text{mA}$ 1.05 1.4 1.75 MHz P-MOS On-Resistance $R_{DS(ON)2-P}$ 250 mQ N-MOS On-Resistance $R_{DS(ON)2-N}$ 250 mQ P-MOS Current Limit I_{LIM2-P} 1.5 2 A	Input UVLO Hysteresis	$V_{\text{UV2-HYST}}$			0.1		V
Switching Frequency F_{SW2} $I_{OUT2} = 200 \text{mA}$ 1.05 1.4 1.75 MHz P-MOS On-Resistance $R_{DS(ON)2-P}$ 250 m Ω N-MOS On-Resistance $R_{DS(ON)2-N}$ 250 m Ω P-MOS Current Limit I_{LIM2-P} 1.5 2 A	Shutdown Supply Current	I _{SD2}	$V_{EN2} = 0V$		0.1	1	uA
P-MOS On-ResistanceRDS(ON)2-P250mΩN-MOS On-ResistanceRDS(ON)2-N250mΩP-MOS Current LimitILIM2-P1.52A	Reference Voltage	V _{REF2}		0.588	0.6	0.612	V
N-MOS On-ResistanceR DS(ON)2-N250mΩP-MOS Current LimitI LIM2-P1.52A	Switching Frequency	F _{SW2}	I _{OUT2} = 200mA	1.05	1.4	1.75	MHz
P-MOS Current Limit I _{LIM2-P} 1.5 2 A	P-MOS On-Resistance	R _{DS(ON)2-P}			250		mΩ
	N-MOS On-Resistance	R _{DS(ON)2-N}			250		mΩ
Maximum Duty CycleD_MAX2100%	P-MOS Current Limit	I _{LIM2-P}		1.5	2		А
	Maximum Duty Cycle	D_{MAX2}		100			%

Copyright © 2016 Everanalog Integrated Circuit Limited. All Rights Reserved.

Dual Channel PMIC

EVER ANALOG

Datasheet

Electrical Characteristics

 V_{VIN1} =12V, V_{VIN2} =3.3V, T_A =25°C, unless otherwise noted

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Thermal Shutdown						
Thermal Shutdown Threshold	T _{OTP}			165		°C
Thermal Shutdown Hysteresis	T _{HYST}			45		°C
Note (1): MOSFET on-resistance s (2): Thermal shutdown speci						sis.
	loadono aro guo		le deelgri an			0.01
					Y	
			2			
			\mathcal{C}			
			Y			
		4				
F. J. S. C.						
Y						

EA3327 Dual Channel PMIC

Application Circuit & Power On Sequence Diagram

Ver. 1.0

Dual Channel PMIC

Typical Operating Characteristics

V_{IN1}=12V, V_{OUT2}=1.2V, L1=10uH, L2=2.2uH, C_{OUT1}=22uF, C_{OUT2}=10uF, T_A=25°C, unless otherwise noted

EA3327
Dual Channel PMIC

Datasheet

Dual Channel PMIC

COEVER CONNALOG Datasheet

Functional Description

Overview

The EA3327 is a PMIC which integrates a 40V input voltage range buck regulator (CH1) and a 5.5V input voltage range buck regulator (CH2). The CH1 buck regulator works in PWM mode at whole current range, which can provide the minimum voltage ripple. Each buck regulator has individual protection mechanism which includes cycle-by-cycle current limit, short circuit protection and UVLO.

The EA3327 has channel lock mechanism. The CH2 buck regulator will not work unless the CH1 buck regulator turn on firstly. But the CH1 buck regulator can work independently.

		VIN1		
		With Power	Without Power	
VIN2	With Power	CH1 On, CH2 On	CH1 Off, CH2 Off	
VIINZ	Without Power	CH1 On, CH2 Off	CH1 Off, CH2 Off	

Both of the buck regulators are 1A load current spec. If the VIN2 is conected with VOUT1, the CH1 total load current capacity must reduce VIN2 input current, shown as bellow:

Short Circuit Protection

Both of the buck regulators have short circuit protection. The CH1 buck regulator implements hiccup mode short circuit protection and can reduce the short current substantially. The CH2 buck regulator implements frequency reduced short circuit protection. When the VOUT2 short condition happens, the CH2 switching frequency will reduce to 350KHz.

Delayed Start-Up

The EA3327 has internal soft-start and delayed start-up function. The delay time between CH1 power on and CH2 power on is about 1ms.

OTP Protection

The EA3327 implements an internal OTP function. The device will shutdown if the internal junction temperature exceeds 165°C. Once the junction temperature decreases below 120°C, the device will restart automatically.

Application Information

Output Voltage Setting

The EA3327 VOUT1 is fixed 3.3V output. And the VOUT2 output voltage can be set via a resistor divider (R1, R2). The output voltage is calculated by following equation:

$$V_{OUT} = 0.6 \times \frac{R1}{R2} + 0.6 V$$

The following table lists common output voltage and the corresponding R1, R2 resistance value for reference.

CH2 Output Voltage	R1 Resistance	R2 Resistance	Tolerance
1.8V	20ΚΩ	10ΚΩ	1%
1.5V	15ΚΩ	10ΚΩ	1%
1.2V	10ΚΩ	10ΚΩ	1%

Input / Output Capacitors Selection

The input capacitors are used to suppress the noise amplitude of the input voltage and provide a stable and clean DC input to the device. Because the ceramic capacitor has low ESR characteristic, so it is suitable for input capacitor use. It is recommended to use X5R or X7R MLCC capacitors in order to have better temperature performance and smaller capacitance tolerance. In order to suppress the output voltage ripple, the MLCC capacitor is also the best choice.

Output Inductor Selection

The output inductor selection mainly depends on the amount of ripple current through the inductor ΔI_{L} . Large ΔI_{L} will cause larger output voltage ripple and loss, but the user can use a smaller inductor to save cost and space. On the contrary, the larger inductance can get smaller ΔI_{L} and thus the smaller output voltage ripple and loss. But it will increase the space and the cost. The inductor value can be calculated as:

$$L = \frac{V_{PWR} - V_{OUT}}{\Lambda I_{L} \times F_{SW}} \times \frac{V_{OUT}}{V_{PWR}}$$

For most applications, 6.80H to 10uH inductors are suitable for CH1. 1.5uH to 2.2uH inductors are suitable for CH2.

PCB Layout Recommendations

Layout is very critical for PMIC designs. For EA3327 PCB layout considerations, please refer to the following suggestions to get best performance.

- The top layer SMD input and output capacitors ground plane should be connected to the internal ground layer and bottom ground plane individually by using vias.
- The AGND should be connected to inner ground layer directly by using via.
- High current path traces need to be widened.
- Place the input capacitors as close as possible to the VINx pin to reduce noise interference.
- Keep the feedback path (from V_{OUTX} to FBx) away from the noise node (ex. LXx). LXx is a high current noise node. Complete the layout by using short and wide traces.
- The top layer exposed pad ground plane should be connected to the internal ground layer and bottom ground plane by using a number of vias to improve thermal performance.

Dual Channel PMIC

EVER ANALOG

Datasheet

