CL1680

低功耗单通道 16 位 1MSPS SAR ADC

概述

CL1680 是一款 16 位电荷再分配逐次逼近型寄存器(SAR)型模数转换器(ADC),采用单电源供电。它内置一个低功耗、高速、16 位采样 ADC 和一个多功能串行接口端口。在 CNV 上升沿,该器件对 IN+与 IN-之间的模拟输入电压差进行采样,范围从 0V 至 REF。基准电压(REF)由外部提供,并且可以独立于电源电压(VDD)。功耗和吞吐速率呈线性变化关系。

SPI 兼容串行接口还能够利用 SDI 输入,将几个 ADC 以菊花链形式连接到一条三线式总线上,并提供可选的繁忙指示。采用独立电源 VIO 时,它与 1.8V、2.5V、3.3V 和 5V 逻辑兼容。

CL1680 采用 10 引脚 DFN 封装, 工作温度范围为-40°C 至+85°C。

特性

• 吞吐速度: 1MSPS

• 16 位分辨率,无失码

• 微分非线性: ±0.8LSB

积分非线性: ±2.0LSB

• 信噪失真比: 86dB @1KHz

总谐波失真: -100dB @1KHz

• 外部基准: 2.5V-5V 可选

• 单模拟电源供电 VDD: 2.5V

• 逻辑接口供电, VIO: 1.8V~5.5V

• 无流水线延迟

• 可配制输入模式

• 单端输入

• 伪差分输入

• 真全差分输入

• 单极性输入

• 双极性输入

• SPI 串行接口

• 10 引脚 3mmX3mm DFN 封装

• 功耗: 7.7mW @ Fs=1MSPS

• 待机电流: 50nA

应用

电池供电设备

通信

• 自动测试设备

• 数据采集

• 医疗仪器

功能框图

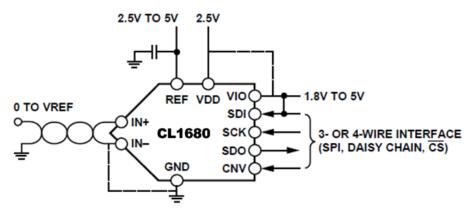


图 1 功能框图

目录

送	1
·	
用	
··· 能框图	
术规格	
序规格	
脚配置和功能描述	
:出码值和理想输入电压	
型连接图	
· 形尺寸	
がた。 : : : : : : : : : : : : :	

版本历史

2020年12月14日: Rev 1.0 2021年3月29日: Rev 1.1 2021年8月25日: Rev 1.2 2021年10月20日: Rev 1.3 2022年5月6日: Rev 1.4

技术规格

除非特殊说明 VDD=2.4V至2.6V, VIO=1.8V至5V, VREF=5V, TA = -40℃ to +85℃

表格 1 技术规格

参数	测试条件	最小值	典型值	最大值	单位
分辨率		16			Bits
模拟输入					
	单极性模式	0		+V _{REF}	٧
电压范围	双极性模式	-V _{REF} /2		+V _{REF} /2	٧
	正输入	-0.1		V _{REF} + 0.1	٧
绝对输入电压	负输入/COM 输入(单极性模式)	-0.1		0.1	٧
	负输入/COM 输入(双极性模式)	V _{REF} /2 - 0.1	V _{REF} /2	V _{REF} /2 + 0.1	V
吞吐速率					
全带宽		0		1	MSPS
直流精度					
无失码		16			Bits
微分非线性误差(DNL)			±0.8		LSB
积分非线性误差(INL)			±2.0		LSB
增益误差			±2		LSB
失调误差			±2		LSB
交流精度					
信噪比(SNR)	f _{IN} = 1 kHz		86		dB
信噪失真比(SNDR)	f _{IN} = 1 kHz		85		dB
总谐波失真(THD)	f _{IN} = 1 kHz		-98		dB
无杂散动态范围(SFDR)	f _{IN} = 1 kHz		100		dB
采样动态性能					
-3dB 输入带宽	全带宽		12		MHz
孔径延迟	VDD = 2.5 V		1.5		ns
外部基准源					
电压范围	REF 输入	2.5		5.5	٧
数字输入					
输入电压					
Low (VIL)		-0.3		0.3 ×VIO	٧

High (VIH)		0.7 ×VIO		VIO+0.3	V
输入电流					
Low (IIL)		-1		+1	μA
High (IIH)		-1		+1	μA
数字输出					
Low (VIL)					
VoL	Sink current = 500 μA			0.4	٧
VoH	Source current = -500 μA	VIO -0.3			٧
电源					
VDD		2.4		2.6	V
VIO		1.8		5.5	V
待机电流	@ 25°C		50.0		nA
功耗					
	VDD=2.5V, @Fs=1MSPS		4.4		mW
	VIO=3.3V, @Fs=1MSPS		3.3		mW
	总功耗,@Fs=1MSPS		7.7		mW
温度范围		-40		85	°C

时序规格

除非特殊说明 VDD=2.5V, VIO=3.3V, VREF=5V, TA = -40° C to $+85^{\circ}$ C。

表格 2 时序规格

参数 ¹	符号	最小值	典型值	最大值	单位
转换时间: CNV 上升沿至数据有效	tconv		0.7	0.74	μs
采样时间	tacq	0.26	0.3		μs
转换间隔时间	tcyc	1.0			μs
SCK					ns
周期	tscк	12			ns
下降沿到数据仍然有效	thspo	3			ns
下降沿到数据有效延迟时间	tospo			11	ns
CNV					
脉冲宽度	tcnvh	100			ns
低电平至 SDO D15 最高位有效	ten			10	ns

高电平或最后一个 SCK 下降沿至 SDO 高阻	tois		20	ns
CNV 上升沿至 SDI 有效建立时间	tssdicnv	5		ns
CNV 上升沿至 SDI 有效保持时间	t _{HSDICNV}	2		ns

¹SDO 负载为 5pF。

CS 模式 (三线式且无繁忙指示)

在将单个 CL1680 连接到兼容 SPI 的数字控制器主机时,通常会使用此模式,相应的时序如图 2 所示。将 SDI 连接到 VIO 时,CNV 上的上升沿启动转换,选择 CS 模式,并强制 SDO 进入高阻态。在最小转换时间逝去前,CNV 必须保持高电平,接着在最大转换时间内保持高电平,以避免生成繁忙信号指示。转换完成后,CL1680 进入采集阶段并关断。

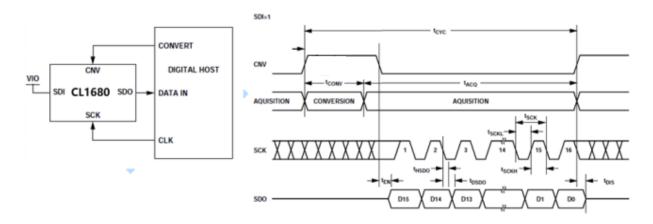


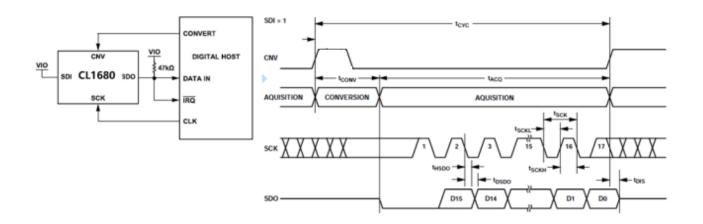
图 2 CS 模式(三线式且无繁忙指示)串行接口时序(SDI 高电平)

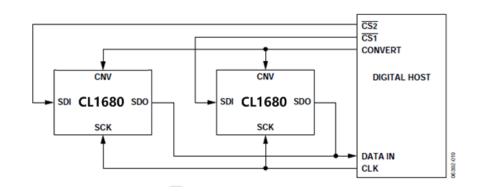
CS 模式 (三线式且有繁忙指示)

在将单个 CL1680 连接到具有中断输入的兼容 SPI 的数字控制器主机时,通常会使用此模式,相应的时序如图 3 所示。将 SDI 连接到 VIO 时,CNV 上的上升沿启动转换,选择 CS 模式,并强制 SDO 进入高阻态。 CNV 必须在最小转换时间逝去前保持低电平,接着在最大转换时间内保持低电平,以保证生成繁忙信号指示。转换完成时,SDO 从高阻态变为低阻态。结合 SDO 线路上的上拉,此转换可用作中断信号,以启动由数字主机控制的数据读取。CL1680 接着进入采集阶段并关断。数据位则在随

后的 SCK 下降沿逐个输出,MSB 优先。数据在 SCK 的上升沿和下降沿均有效。虽然上升沿可以用于捕捉数据,但使用 SCK 下降沿的数字主机能实现更快的读取速率,只要它具有合理的保持时间。在可选的第 17 个 SCK 下降沿之后,或者当 CNV 变为高电平时(以最先出现者为准),SDO 返回高阻态。

如果同时选择多个 CL1680, SDO 输出引脚可在不造成损坏或引起闩锁的情况下处理此竞争。同时,建议此竞争尽可能短暂,以限制额外功耗。




图 3 CS 模式 (三线式且有繁忙指示)

CS 模式 (四线式且无繁忙指示)

在将多个 CL1680 连接到 SPI 兼容数字主机时,通常会使用此模式。使用两个 CL1680 的连接图和相应的时序如图 4 所示。将 SDI 置为高电平时,CNV 上的上升沿启动转换,选择 CS 模式,并强制 SDO 进入高阻态。此模式下,CNV 在转换阶段和随后的数据回读期间必须保持高电平。(如果 SDI 和 CNV 为低电平,SDO 变为低电平)。最小转换时间之前,SDI 可用于选择其它 SPI 器件,如模拟多路复用器,但 SDI 必须在最小转换时间逝去前返回高电平,接着在最大转换时间内保持高电平,以避免生成繁忙信号指示。

转换完成后, CL1680 进入采集阶段并关断。每个 ADC 结果可通过将 SDI 输入拉低来读取, 从而将 MSB 输出至 SDO。剩余数据位则在随后的 SCK 下降沿逐个输出。数据在 SCK 的上升沿和下降沿均有效。虽然上升沿可以用于捕捉数据, 但使用 SCK 下降沿的数字主机能实现更快的读取速率, 只要它具有合理的保持时

间。在第 16 个 SCK 下降沿之后,或者当 SDI 变为高电平时(以最先出现者为准),SDO 返回高阻态,可读取另一个 CL1680。

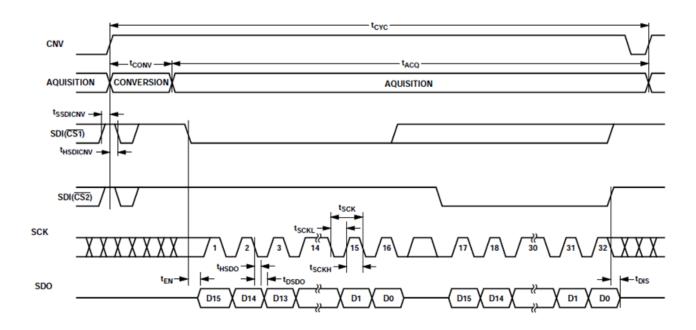


图 4 CS 模式 (四线式且无繁忙指示)

CS 模式 (四线式且有繁忙指示)

在将单个 CL1680 连接到具有中断输入的 SPI 兼容数字主机时,以及用于采样模拟输入的 CNV 与用于选择数据读取的信号需要相互保持独立时,通常会使用此模式。该要求在需要 CNV 低抖动的应用中尤其重要,相应的时序如图 5 所示。将 SDI 置为高电平时,CNV 上的上升沿启动转换,选择 CS 模式,并强制 SDO进入高阻态。此模式下,CNV 在转换阶段和随后的数据回读期间必须保持高电平。(如果 SDI 和 CNV 为低电

平, SDO 变为低电平。)最小转换时间之前, SDI 可用于选择其它 SPI 器件, 如模拟多路复用器, 但 SDI 必须在最小转换时间逝去前返回低电平,接着在最大转换时间内保持低电平,以保证生成繁忙信号指示。转换完成时, SDO 从高阻态变为低阻态。

结合 SDO 线路上的上拉,此转换可用作中断信号,以启动由数字主机控制的数据回读。CL1680 接着进入采集阶段并关断。数据位则在随后的 SCK 下降沿逐个输出,MSB 优先。数据在 SCK 的上升沿和下降沿均有效。虽然上升沿可以用于捕捉数据,但使用 SCK 下降沿的数字主机能实现更快的读取速率,只要它具有合理的保持时间。在可选的第 17 个 SCK 下降沿之后,或者当 SDI 变为高电平时(以最先出现者为准),SDO 返回高阻态。

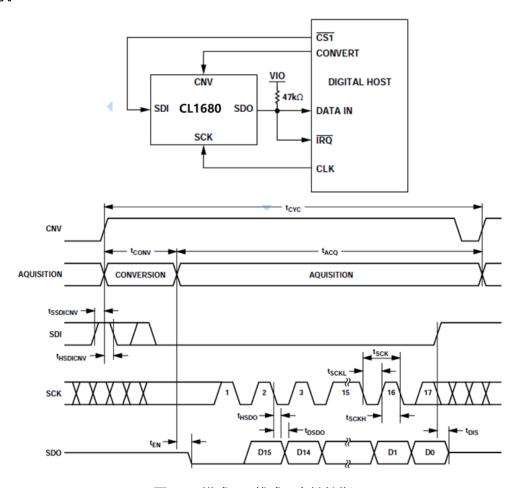
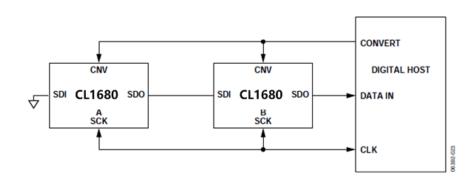



图 5 CS 模式 (四线式且有繁忙指示)

链模式 (无繁忙指示)

此模式可用于在三线式串行接口上以菊花链形式连接多个 CL1680。这一特性有助于减少器件数量和线路连接;例如在隔离式多转换器应用或接口能力有限的系统中。数据回读与读取移位寄存器相似。使用两个 CL1680 的连接图和相应的时序如图 6 所示。

SDI和CNV为低电平时,SDO变为低电平。将SCK置为低电平时,CNV上的上升沿启动转换,选择链模式,并禁用繁忙指示。此模式下,CNV在转换阶段和随后的数据回读期间保持高电平。转换完成后,MSB输出至SDO,而CL1680进入采集阶段并关断。存储在内部移位寄存器中的剩余数据位则在随后的SCK下降沿逐个输出。对于每个ADC,SDI馈入内部移位寄存器的输入,并通过SCK下降沿逐个输出。链内每个ADC首先输出数据MSB,回读N个ADC需要16×N个时钟。数据在SCK的上升沿和下降沿均有效。虽然上升沿可以用于捕捉数据,但使用SCK下降沿的数字主机能实现更快的读取速率,从而在链中容纳更多CL1680,只要数字主机具有合理的保持时间。最大转换速率可因总回读时间而降低。

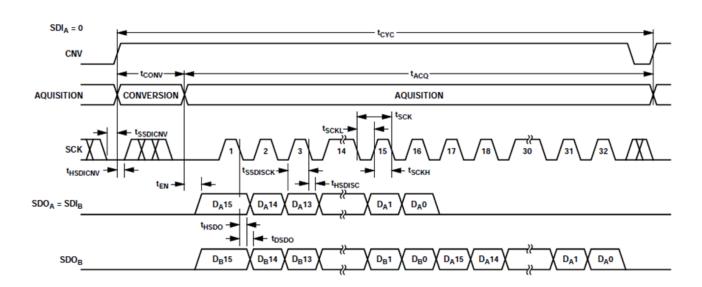
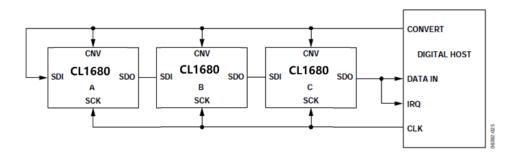



图 6 链模式 (无繁忙指示)

链模式 (有繁忙指示)

此模式也可用于在三线式串行接口上以菊花链形式连接多个 CL1680,同时提供繁忙指示。这一特性有助于减少器件数量和线路连接;例如在隔离式多转换器应用或接口能力有限的系统中。数据回读与读取移位寄存器相似。使用三个 CL1680 的连接图和相应的时序如图 7 所示。

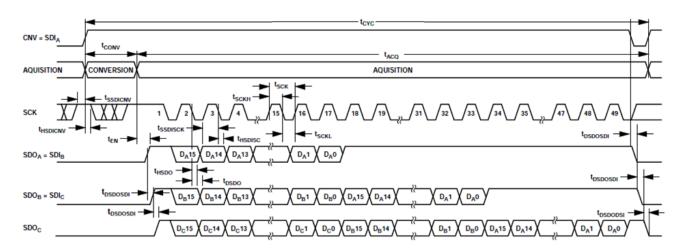


图 7 链模式 (有繁忙指示)

引脚配置和功能描述

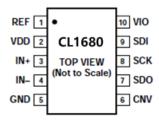
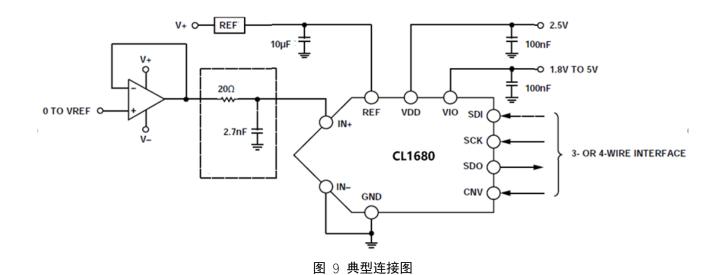


图 8 引脚配置示意图

表格 3 引脚功能描述


管脚编号	管脚名称	类型	描述	
1	REF	模拟输入	基准输入电压。REF 范围为 2.5 或 5V。此引脚参考 GND 引脚,应通过	
			与之靠近的 10uF 电容去耦至 GND 引脚。	
2	VDD	电源	2.5V 电源。	
3	INP	模拟输入	模拟输入正端引脚,参考 INN。电压范围(例如,INP 与 INN 的差值)为	
			0 V 至 REF。	
4	INN	模拟输入	模拟输入负端引脚。	
5	GND	电源	电源地。	
6	CNV	数字输入	转换输入。此输入具有多个功能。在上升沿可启动转换并选择器件的接	
			口模式:链模式或 CS 模式。CS 模式下,CNV 为低电平时 SDO 引脚使	
			能。链模式下,数据应在 CNV 为高电平时读取。	
7	SDO	数字输出	串行数据输出。转换结果通过此引脚输出。它与 SCK 同步。	
8	SCK	数字输入	串行数据时钟输入。器件被选择时,转换结果通过此时钟移出。	
9	SDI	数字输入	串行数据输入。此输入提供多个功能。如下选择 ADC 接口模式:	
			如果 SDI 在 CNV 上升沿期间为低电平,则选择链模式。此模式下,SDI	
			用作数据输入,以将两个或更多 ADC 的转换结果以菊花链方式传输到	
			单一 SDO 线路上。SDI 上的数字数据电平通过 SDO 输出,延迟 16 个	
			SCK 周期。	
			如果 SDI 在 CNV 上升沿期间为高电平,则选择 CS 模式。此模式下,	
			SDI 或 CNV 在低电平时均可使能串行输出信号。当转换完成时,如果	
			SDI 或 CNV 为低电平,繁忙指示功能被使能。	
10	VIO	电源	输入/输出接口数字电源。此引脚的标称电源与主机接口电源相同(1.8	
			V、2.5 V、3.3 V 或 5 V)。	

输出码值和理想输入电压

表格 4 输出码值和理想输入电压

描述	单极性输入 VREF= 5.0V	输出码值
FSR -1 LSB	4.9999237 V	0xFFFF
Midscale + 1 LSB	2.5000763 V	0x8001
Midscale	2.5 V	0x8000
Midscale -1 LSB	2.4999237 V	0x7FFF
-FSR + 1 LSB	76.3 µV	0x0001
-FSR	0 V	0x0000

典型连接图

外形尺寸

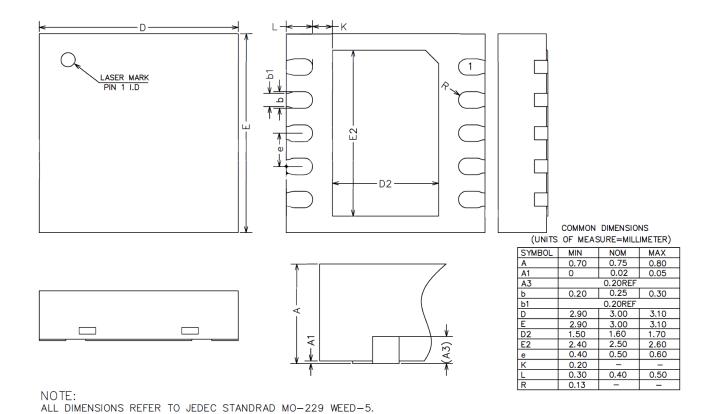


图 11 DFN3x3-10L 封装 单位:mm

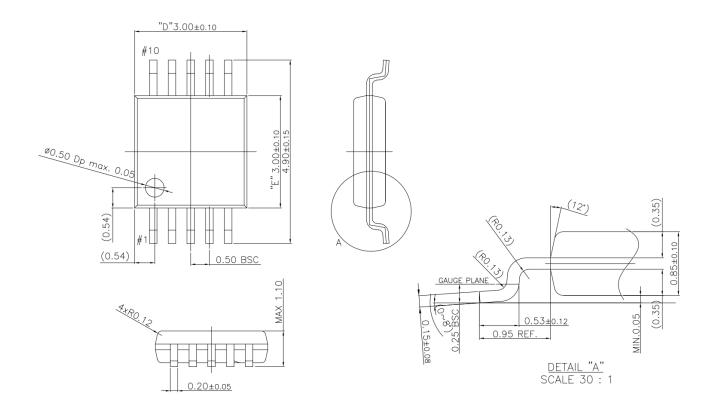


图 12 MSOP3x3-10L 封装 单位:mm

订货信息

表格 5 订货信息

型 号	封装描述	封装	包装
CL1680-DD	10-lead DFN(3mmx3mm)	DFN3x3-10	1000/reel
CL1680-SD	10-lead MSOP(3mmx3mm)	MSOP3x3-10	1000/reel