

PB7200V1 简要说明

版本: V1.0.7

版本历史

日期	描述
	初版
2022/04/02	整理 1-8 章初稿
2022/8/31	增加诊断章节的内容
2022/12/17	修改 9、10.2、10.7、10.9,优化修改寄存器名
2023/08/23	量产版本更新
2023/11/16	更新 7.3,统一通讯引脚命名
2023/12/08	更新 7.3,12.2,修正寄存器地址
2024/1/8	更新 5.2、7.3、10、11.2、12.2,修正部分寄存器名称
	及功能描述
2024/4/1	更新 10 章节部分功能描述
2024/5/23	修改电芯电压最小值
2024/6/18	修改部分指标描述
2024/7/23	修正部分指标描述
	2022/04/02 2022/8/31 2022/12/17 2023/08/23 2023/11/16 2023/12/08 2024/1/8 2024/4/1 2024/5/23 2024/6/18

目 录

1		功能	简介			
2		京田	绮埔	÷		
3						
4		产品	信息			
5		管胠	定义	,		
	5.1	l	脚位	图		
	5.2	2				
6		内剖	7.杆图			
7		电气				
	7.1	l				
	7.2					
	7.3					12
8		典型	⊻工作	:特性		17
9					<u> </u>	18
	9.1	L 9.1.1		.切换 `二 炒 .##- 		18
		9.1.2				
		9.1.2				
		9.1.3			电器唤醒流程	
	9.2					
	9.3				X-X	
4						
10	J	Ŋ	り形推	还		
1:	L	봌	存器	列表及定义	ζ	22
12	2	应	Z用指	引	<u> </u>	23
	12	.1	典型	」应用电路		23
		/ ~				
		12.2	2.2	模式说明.		24
		12.2	2.3	寄存器操作	作模式	25
		12.2	2.4	保护系统.		26
		12.2	2.5	中断系统		29
	12	.3	减少	电芯串联数	女量应用规则	30
		12.3	3.1	高串短接		30
		12.3	3.2	铜排跳串		32
	12	.4	注意	事项		32

1	2.5	PCB 布线指引	31
13		包装	33
1	3.1	器件和包装机械尺寸	33
1	3.2	器件焊盘设计推荐	34
14		订货信息	35

1 功能简介

工作电压范围: 12-95V: PB7200 工作温度范围: -40°C~+125°C

- 关机模式功耗: 2µA

- 睡眠模式功耗: 5μA (数据保持) - 工作模式功耗: 50-150μA

支持 5-20 串电芯, 10 个用于热敏电阻或外部 电压测量的辅助模拟输入

电压和快速电流高精度测量:

16bit VADC

- +/-3mV @ 25°C, Vcell=3.6V

- +/-7mV @-20~85°C

- +/-10mV @-40~125°C

16bit 电流积分 CADC

- 62.5mS/125mS/250mS 库仑计电流测量

- +/-8uV @ 25°C 丰富的均衡功能

- 基于电芯单元压差的自动均衡策略 DSG, CHG, PCHG, PDSG 独立驱动 自动保护恢复策略 自动预充预放策略 充电器检测功能, 负载检测功能 支持 AFE 独立保护模式 支持静置状态下低功耗保护策略

小电流唤醒和充电器插入唤醒 最快 2M 的 SPI 通信, 独立中断引脚

菊花链级联支持 开启调度自动进行数据测量 系统保护

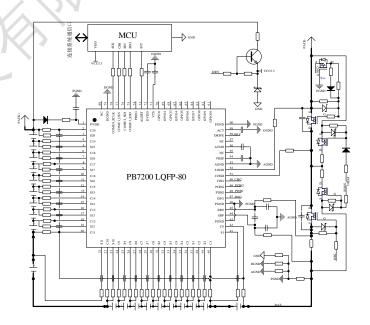
- 电芯过压保护和锁定、欠压保护

- 充电高低温保护
- 放电高低温保护
- MOS 高温保护
- 充电过流保护
- 放电过流一级、二级、三级保护和锁定
- 放电短路保护、锁定
- 看门狗保护 系统故障检测
- 电芯高低电压二次保护
- 测量线开路检测
- MOS 故障检测
- 电池包电压压差过大检测

2 应用领域

PB7200 是一款应用于锂电池管理系统 (battery management system, BMS) 的高精度模拟前端 (Analog front end, AFE) 芯片,可进行低成本级联,可广泛应用于电动自行车、电动摩托车、电动工具、通信、家庭和风光储能等 5~20 串锂电芯 BMS

系统中。


3 产品描述

PB7200 为多串锂电池管理芯片,可支持 5~20 串电芯应用。用于执行电池组的测量(单元电压,电流,电池组温度),保护(控制充放电 MOS)和均衡功能。单节电芯单元电压测量范围 0-5V,适用于大多数锂电池。

内置 VADC 模块,提供电压、温度和快速电流测量。内置 CADC 模块用于采集电流,用于库仑计方式的高精度 SOC 计量。同时提供多种电流,电压,温度,充放电保护,提供 4 个充放电 MOS 控制引脚。

支持 MCU 直连的菊花链连接通讯模式, 最多 32 组器件链接, 可直接使用高压电容进行 AFE 级联。

系统内部提供强大的自动调度系统,包含了配置定时测量和实时保护,通过中断引脚上报 MCU,可极大的节省系统资源和功耗。提供多种低功耗睡眠模式。静置调度下,过流、短路保护等功能继续工作,可自动检测电流和充电器/负载插入,退出静置调度,进入正常工作模式。深睡眠模式下,可做到极低功耗的系统状态保持。

4 产品信息

产品编号	封装	最小包装
PB7200	LQFP80	

5 管脚定义

5.1 脚位图

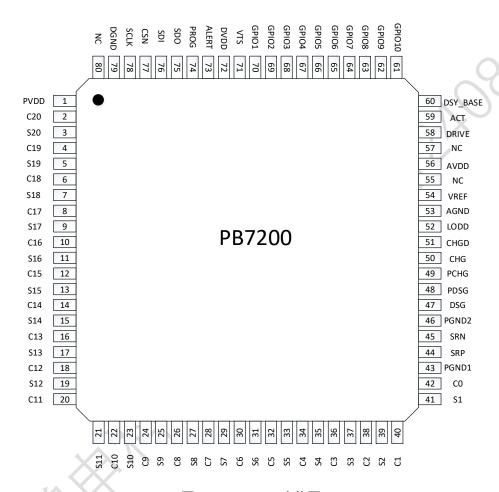


图 5.1-1 PB7200 脚位图

PB7200 采用 LQFP80 封装, 脚 1 为 PVDD 为电源引脚, PGND, AGND, DGND 为芯片电源地, AVDD, DVDD, VREF 为内部电源和基准, 外接退耦电容。Cn 为各电芯单元连接接口, Sn 为外置均衡引脚。GPIO1-10 可复用为外部温敏检测信号或外部电压测量信号输入端, 可由 VTS 提供外挂电阻的供电。SRP 和 SRN 引脚为电流检测电阻的接入端点。DSG, PDSG, PCHG, CHG 为充放电 MOS 及预充预放电 MOS 的驱动引脚,可提供 10V 驱动电压。LODD 为负载检测输入引脚, CHGD 为外部充电器检测输入引脚。

DRIVE 引脚提供 4/5.7V 电压,可经外部 NPN 管为外部其他模块提供 3.3/5V 供电。SDO, SDI, CSN, SCLK 为 SPI 通讯或菊花链通讯的接口。ALERT 为 AFE 中断输出引脚,同时兼作外部保护输入引脚。

5.2 脚位功能描述

引脚定义列表如下:

PB7200	引脚名	功能	描述
1	PVDD	Power	高压直流供电正输入管脚,连接所测量电芯的最高电压点
2	C20	Input	电芯单元 20 的正极连接端口
3	S20	Output	电芯单元 20 的放电开关端口
4	C19	Input	电芯单元 19 的正极连接端口,电芯单元 20 的负极连接端口
5	S19	Output	电芯单元 19 的放电开关端口
6	C18	Input	电芯单元 18 的正极连接端口,电芯单元 19 的负极连接端口
7	S18	Output	电芯单元 18 的放电开关端口
8	C17	Input	电芯单元 17 的正极连接端口,电芯单元 18 的负极连接端口
9	S17	Output	电芯单元 17 的放电开关端口
10	C16	Input	电芯单元 16 的正极连接端口,电芯单元 17 的负极连接端口
11	S16	Output	电芯单元 16 的放电开关端口
12	C15	Input	电芯单元 15 的正极连接端口,电芯单元 16 的负极连接端口
13	S15	Output	电芯单元 15 的放电开关端口
14	C14	Input	电芯单元 14 的正极连接端口,电芯单元 15 的负极连接端口
15	S14	Output	电芯单元 14 的放电开关端口
16	C13	Input	电芯单元 13 的正极连接端口,电芯单元 14 的负极连接端口
17	S13	Output	电芯单元 13 的放电开关端口
18	C12	Input	电芯单元 12 的正极连接端口,电芯单元 13 的负极连接端口
19	S12	Output	电芯单元 12 的放电开关端口
20	C11	Input	电芯单元 11 的正极连接端口,电芯单元 12 的负极连接端口
21	S11	Output	电芯单元 11 的放电开关端口
22	C10	Input	电芯单元 10 的正极连接端口,电芯单元 11 的负极连接端口
23	S10	Output	电芯单元 10 的放电开关端口
24	C9	Input	电芯单元 9 的正极连接端口,电芯单元 10 的负极连接端口
25	S9	Output	电芯单元9的放电开关端口
26	C8	Input	电芯单元8的正极连接端口,电芯单元9的负极连接端口
27	S8	Output	电芯单元 8 的放电开关端口
28	C7	Input	电芯单元7的正极连接端口,电芯单元8的负极连接端口
29	S7	Output	电芯单元7的放电开关端口
30	C6	Input	电芯单元 6 的正极连接端口,电芯单元 7 的负极连接端口
31	S6	Output	电芯单元 6 的放电开关端口
32	C5	Input	电芯单元 5 的正极连接端口,电芯单元 6 的负极连接端口
33	S5	Output	电芯单元 5 的放电开关端口
34	C4	Input	电芯单元 4 的正极连接端口,电芯单元 5 的负极连接端口
35	S4	Output	电芯单元 4 的放电开关端口
36	C3	Input	电芯单元3的正极连接端口,电芯单元4的负极连接端口
37	S3	Output	电芯单元3的放电开关端口
38	C2	Input	电芯单元 2 的正极连接端口,电芯单元 3 的负极连接端口
39	S2	Output	电芯单元 2 的放电开关端口
40	C1	Input	电芯单元1的正极连接端口,电芯单元2的负极连接端口

43 P 44 Sl 45 Sl	CO CGND CRP	Output Input	电芯单元1的放电开关端口 电芯单元1的负极连接端口
43 P 44 Sl 45 Sl	GND		电心里元 的贝极连接端口
44 SI 45 SI	-	L'accessed	
45 SI	RP	Ground	高压直流供电负输入,连接所测量电芯最低电压点
		Input	电流检测传感器正端(接 PGND)
146 I P	RN	Input	电流检测传感器负端
	GND	Ground	高压直流供电负输入,连接所测量电芯最低电压点
	OSG	Output	放电 MOS 驱动
	DSG	Output	预放电 MOS 驱动
-	CHG	Output	预充电 MOS 驱动
	CHG	Output	充电 MOS 驱动
51 C	CHGD	Input	充电器检测输入引脚
52 L0	ODD	Input	负载检测输入引脚
53 A	AGND	Ground	内部模拟电源地
	/REF	Output	基准电压端口,需要外接退耦电容到 AGND
55 N	1C		浮空不接
56 A	AVDD	Power	模拟电源输出引脚,需要外接退耦电容到 AGND
57 N	1C		浮空不接
58 D	PRIVE	Output	外部线性稳压三极管驱动电压, Vbe + 3.3V 电压输出, 连接 NPN
			三极管的基极,可以在发射极获得 3.3V/5V 电压。可采用 DRIVE 连
			接外部线性稳压器的方法来获得更大的驱动电流
59 A	ACT	Input	芯片激活引脚,高电平激活,外界需要接电容到地,内部有 8MΩ
			上拉电阻。可短接到地进入超低功耗的关机模式
60 D	OSY_BASE	Output	拉高-BASE,拉低-STACK(仅用于菊花链模式)
61 G	SPIO10	Input/Output	通用输入输出引脚 10
62 G	SPIO9	Input/Output	通用输入输出引脚 9
63 G	SPIO8	Input/Output	通用输入输出引脚 8
64 G	SPIO7	Input/Output	通用输入输出引脚 7
65 G	SPIO6	Input/Output	通用输入输出引脚 6
66 G	SPIO5	Input/Output	通用输入输出引脚 5
67 G	SPIO4	Input/Output	通用输入输出引脚 4
68 G	SPIO3	Input/Output	通用输入输出引脚 3
69 G	SPIO2	Input/Output	通用输入输出引脚 2
70 G	SPIO1	Input/Output	通用输入输出引脚1
71 V	/TS	Output	外部测量输出电源,可用于给热敏电阻的分压网络供电
72 D	OVDD	Power	数字电源输出引脚,需外接退耦电容到 DGND
73 A	ALERT	Output	中断输出引脚间作外部保护引脚输入
74 P	ROG		芯片预留引脚,建议通过下拉电阻接 DGND
75 SI	DO	Output	SPI 直连时用作 AFE 输出信号端 SDO, 菊花链时作为 STACK 的
			LUART_N 端,BASE 的 L_RXD 端
76 SI	DI	Input	SPI 直连时用作 AFE 输入信号端 SDI, 菊花链时作为 STACK 的
			LUART_P 端,BASE 的 L_TXD 端

77	CSN	Input	SPI 直连时用作片选信号接收端 CSN,菊花链时作为 HUART_N 端。
78	SCLK	Input	SPI 直连时用作时钟信号接收端 SCLK, 用作菊花链的 HUART_P 端。
79	DGND	Ground	数字电源地
80	NC		浮空不接

6 内部框图

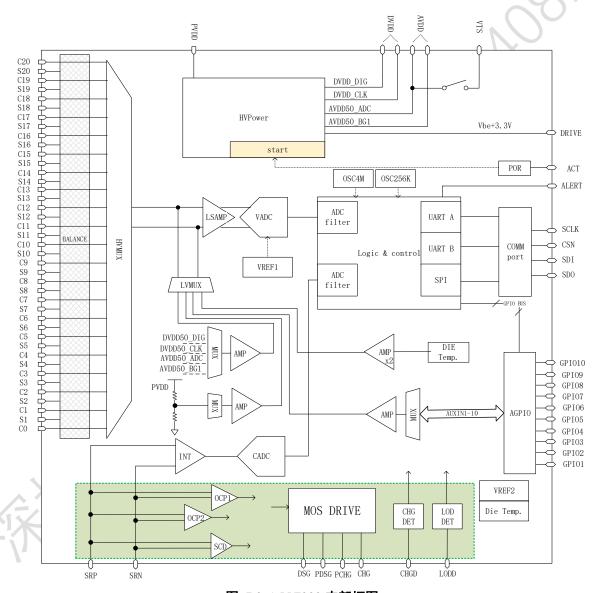


图 5.2-1 PB7200 内部框图

7 电气参数规格

极限电气参数 7.1

端口	说明	最小值	最大值	单位
PVDD	V _{PVDD} -V _{PGND}	-0.5	95	V
C _N	V _{Cn} - V _{Cn-1} , n=1-20	-0.5	10	V
Sn	V _{Sn} -V _{Cn-1} , n=1-20	-0.5	10	V
AUXIN 输入电压	V _{AUXIN} - V _{AGND}	-0.5	5.5	V
电流采样电压	$V_{SRP} - V_{SRN}$	-500	500	mV
MOS 驱动输出	CHG, DSG, PCHG,PDSG	-0.5	20	V
DRIVE 输出		-0.5	10	V
数字信号	CSN, SDI, SDO, SCLK, ALERT	-0.5	5.5	V
	GPIO1~GPIO10, PROG			
模拟端口	CHGD	-2	5.5	V
		KYL"		
其它端口	DVDD, AVDD, ACT, VTS, VREF,	-0.5	5.5	V
	LODD, SPR, SRN			
工作温度	Y. IX	-40	125	°C
存储温度	X.XL	-65	150	°C
焊接温度	持续时间 10S		300	°C
ESD HBM	\ \ -\\		1	kV
ESD CDM	, –),		500	V

推荐工作范围 7.2

信号	说明	最小值	最大值	单位
总电源电压	V _{PVDD} - V _{PGND}	12	95	V
电芯单元电压	V _{Cn} -V _{Cn-1} , n=1-20	-0.5	5	V
AUXIN 输入电压	V _{AUXIN} – V _{AGND}	0.5	3.3	V
电流输入	$V_{\text{SRP}} - V_{\text{SRN}}$	-230	230	mV
MOS 驱动输出	CHG, DSG, PCHG,PDSG	0	13	V
DRIVE 输出	可配置 4V	0	4	V
数字信号输入	CSN, SDI, SCLK, ALERT	0	3.6	V
数字信号输出	SDO, GPIOn, ALERT	0	3.6	V
工作温度		-20	85	°C

7.3 电气参数规格

以下电气特性,均在TA=25°C测量

工作电流	<u> </u>					
参数	说明	测试条件	最小值	典型值	最大值	单位
	运输模式	ACT 引脚拉低		2		μΑ
	工作模式	常规状态: 250mS 测量间隔, CADC		150		μΑ
I_{PVDD}		开启				
		静置状态: 1S 测量间隔, CADC 开启		72	0	μΑ
	睡眠模式	数据保持		5		μΑ
VADC 电	压/外部测量					
参数	说明	测试条件	最小值	典型值	最大值	单位
V_{RANGE}	测量范围		-0.5		5	V
		T _A =25°C Vcell=3.6V	-3		3	mV
$V_{\text{CELL}(\text{ACC1})}$	CELL 测量精度	T _A =-20~ 85°C, 2V < Vcell < 5V	-7		7	m V
		$T_A = -40 \sim 125$ °C, -0.5 V < VceII < 5.5V	-10		10	m V
T _{VADC}	单通道采样时间		V	128		时钟
I VADC		. 45				周期
VADC 快	速电流测量					
参数	说明	测试条件	最小值	典型值	最大值	单位
Crange	测量范围		-300		300	mV
Cacc	测量精度	X			±1	mV
Tc	采样时间	///		128		时钟
		\ \				周期
CADC 电	流积分	<u> </u>				
参数	说明	测试条件	最小值	典型值	最大值	单位
	×0	配置 ADC_MSR [2:1]=00	-250		250	mV
RANGEcc	测量范围	配置 ADC_MSR [2:1]=01	-125		125	mV
		配置 ADC_MSR [2:1]=11	-62.5		62.5	mV
		-62.5mV-62.5mV		1.953		μV
LSBcc	LSB	配置 INCAPSEL =2				
	\times	-125mV-125mV		3.906		μV
47	у	配置 INCAPSEL =1				
二个		-250mV-250mV		7.8125		μV
\'		配置 INCAPSEL =0				
		配置 SIZE_CADC =0		125		mS
T _{cc}	转换时间	配置 SIZE_CADC =1		250		mS
CC_{INL}	积分非线性误差			±2		LSB
芯片内部	·····································					
参数	说明	测试条件	最小值	典型值	最大值	单位

V _{DIE25}	对应温度的电压	T _A =25°C		1977.9		mV
V _{DIEDRIFT}	温度漂移			-5.727		mV/°C
Ттнм_ѕнит	热关断温度			120		°C
T _{THM_RECV}	热恢复温度			110		°C
内外部供				I		
参数	说明	测试条件	最小值	典型值	最大值	单位
V _{DRIVE}	DRIVE 电压	配置 ANA_CTRL(0x44)[4]=0		4		V
		配置 ANA_CTRL(0x44)[4]=1		5.7		V
DRIVE	DRIVE 电流	PVDD=80V			5	mA
		PVDD=12V			30	mA
V_{TS}	VTS 电压			3.3		V
V _{AVDD}	AVDD 电压			5		V
V_{DVDD}	DVDD 电压		_	3.3		V
MOSFET	驱动				l	I
参数	说明	测试条件	最小值	典型值	最大值	单位
V _{MOS_ON}	MOS 驱动电压	CHG, DSG, PDSG,PCHG	8	10	13	V
T _{MOS_ON}	上拉开启时间	负载电容 20nF	17	25		μS
T _{MOS_OFF}	下拉关闭时间	负载电容 20nF	V	25		μS
R _{CHG_OFF}	CHG 关闭阻抗			130		Ω
R _{DSG_OFF}	DSG 关闭阻抗	XA		130		Ω
过压保护	1			l .	I.	
参数	说明	测试条件	最小值	典型值	最大值	单位
Vov	过压保护阈值	配置 THR_OV_SET [9:0]	0	4.2	5	V
Vovr	过压恢复阈值=	配置 HYS_OV [7:0]配置过压保护迟滞	0	0.2	4.0	V
	过压保护阈值-	(**/				
	过压保护迟滞	X = X 1				
Nov	过压保护延迟计	配置 PRT_DLY_OV [2:0]	1	3	15	次
	数					
Novr	过压保护恢复延	配置 REC_DLY_OV [2:0]	1	3	15	次
	迟计数	·				
欠压保护						
参数	说明	测试条件	最小值	典型值	最大值	单位
Vuv	欠压保护阈值	配置 THR_UV_SET [9:0]	0	2.8	5	V
Vuvr	欠压恢复阈值=	配置 HYS_UV [7:0] 配置欠压保护迟	0	0.2	4.0	V
-(1)	欠压保护阈值+	滞				
\"	欠压保护迟滞					
Nuv	欠压保护延迟计	配置 PRT_DLY_UV [2:0]	1	3	15	次
	数					
Novr	欠压保护恢复延	配置 REC_DLY_UV [2:0]	1	3	15	次
	迟计数					
放电过流	· · · · · · · · · · · · · · · · · · ·		•			•
参数	说明	测试条件	最小值	典型值	最大值	单位

Vocd1	放电过流保护阈	配置 CUR_CTRL3[15]=0	4	28	124	mV
	值 1	配置 CUR_CTRL3[14:10]				
V_{OCD2}	放电过流保护阈	配置 CUR_CTRL3[15]=0	10	80	200	mV
	值 2	配置 CUR_CTRL3[9:5]				
V_{OCD3}	放电过流保护阈	配置 CUR_CTRL3[15]=0	10	100	200	mV
	值 3	配置 CUR_CTRL3[4:0]				
V_{OCD1}	放电过流保护阈	配置 CUR_CTRL3[15]=1	4	28	124	mV
	值 1	配置 CUR_CTRL3[14:10]				X
V_{OCD2}	放电过流保护阈	配置 CUR_CTRL3[15]=1	5	40	100	mV
	值 2	配置 CUR_CTRL3[9:5]			5	
V_{OCD3}	放电过流保护阈	配置 CUR_CTRL3[15]=1	5	50	100	mV
	值 3	配置 CUR_CTRL3[4:0]				
T_{OCD1}	放电过流保护延	配置 DLY_OCD1[2:0]	250	1750	63750	mS
	迟时间1					
T_{OCD2}	放电过流保护延	配置 DLY_OCD2[2:0]	10	40	1280	mS
	迟时间 2	4				
T_{OCD3}	放电过流保护延	配置 DLY_OCD3[2:0]	10	40	1280	mS
	迟时间3		V			
放电短路	各保护					
参数	说明	测试条件	最小值	典型值	最大值	单位
V_{SCD}	放电短路保护阈	配置 CUR_CTRL3[15]=0	20	200	400	mV
	值	配置 CUR_CTRL2[4:0]				
V_{SCD}	放电短路保护阈	配置 CUR_CTRL3[15]=1	10	100	200	mV
	值	配置 CUR_CTRL2[4:0]				
T_{SCD}	短路保护延迟时	配置 DLY_SCD [5:0]	0	256	1008	μS
	间	, - \ / \				
充电过流	流保护	X-/\				
参数	说明	测试条件	最小值	典型值	最大值	单位
V_{OCC}	充电过流保护阈	配置 CUR_CTRL3[15]=0	10	40	200	mV
	值	配置 CUR_CTRL2[9:5]				
Vocc	充电过流保护阈	配置 CUR_CTRL3[15]=1	5	20	100	mV
	值	配置 CUR_CTRL2[9:5]				
Tocc	充电过流保护延	配置 DLY_OCC [2:0]	10	40	1280	mS
45	迟时间					
放电过流	流锁定					
参数	说明	测试条件	最小值	典型值	最大值	单位
Nocdl	放电过流锁定触	配置 OCDL_LMT[4:0],	1	5	63	次
	发计数次数					
Tocdlr	放电过流锁定报	配置 OCDL_DEC[6:0]	2	20	256	S
	警恢复延时					
故由结果						
双电应的	各锁定					

Nscdl	放电短路锁定触	配置 SCDL_LMT[4:0],	1	5	63	次
I N SCDL	发计数次数	間直 3CDL_LIVIT[4.0],	1	3	03	<i></i>
T _{SCDLR}	放电短路锁定报 警恢复延时	配置 SCDL_DEC[6:0],	2	28	256	S
过压锁足	È		•	•	•	•
参数	说明	测试条件	最小值	典型值	最大值	单位
Novl	过压锁定触发计	配置 OVL_LMT[2:0],	1	5	15	次
	数次数					
Novlr	过压锁定报警恢	配置 OVL_DEC[3:0],	1	5	31	次
	复计数				29h	
高电压	二次保护					
参数	说明	测试条件	最小值	典型值	最大值	单位
V _{HVD}	高压二次过压阈	配置 VOL_CTRL7[9:5],	0	0.2	1.6	٧
	值 V _{HV}					
	$V_{HV} = V_{OV} + V_{HVD}$			· >		
	V _{HVD} =					
	VOL_CTRL7[9:5]*	^	\7			
	51.2mV	(A)	V			
低电压	二次保护 			1	1	1
V_{LVD}	低压二次过压阈	配置 VOL_CTRL7[4:0]	0	1.28	1.6	V
	值 V _{LV}					
	$V_{LV} = V_{OV} - V_{LVD}$	××××××××××××××××××××××××××××××××××××××				
	V _{LVD} =					
	VOL_CTRL7[4:0]*	X = X')'				
77->	51.2mV	(X)				
预充电流	1	State N. Es. (2)		# ######		¥ /\
参数	说明	测试条件	最小值	典型值	最大值	单位
РСНБ	预充电流阈值	配置 CUR_CTRL3[15]=0	0.25	1	1.6	mV
	75	配置 CUR_CTRL2[15:10]	0.405	0.5	0.0	.,
PCHG	预充电流阈值	配置 CUR_CTRL3[15]=1	0.125	0.5	0.8	mV
\ /	(阈值减半)	配置 CUR_CTRL2[15:10]		0.0	1.0	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
V _{PCHGD}	预充电压阈值 	配置 VOL_CTRL7[14:10]	0	0.8	1.6	V
	V _{PCHG}					
-117	V _{PCHGD} = V _{UV} -V _{PCHGD} V _{PCHGD} =					
- ()	VPCHGD— VOL_CTRL7[14:1					
1,	0]*51.2mV					
负载移网	1 -			<u> </u>	<u> </u>	<u> </u>
参数	说明	测试条件	最小值	典型值	最大值	单位
少奴 T _{LOADR}		水瓜ボド RECV_DLY_LOAD[1:0]	1	2	8 8	于 S
LUADR	2^(N)s	RUEL NEGY_DET_EOMD[I.U]		_		٦
由流保地				<u> </u>	<u> </u>	<u> </u>
し // (小)	/ //文本町					

参数	说明	测试条件	最小值	典型值	最大值	单位
T _{CR}	用于 SCD OCD3	配置 RECV_DLY[2:0]为 N	1	2	64	S
	OCD2 OCC 保护					
	恢复 2 ^N					
	用于 OCD1 保护	配置 RECV_DLY_OCD1[2:0]为 N	0.25	15.75	127.75	S
	恢复					
低电压睡	眠					
参数	说明	测试条件	最小值	典型值	最大值	单位
V _{LVPD}	低电压睡眠阈值	VOL_CTRL3[11:7]	0	0.2	1.6	V
	V_{LVP}				YO'	
	V _{LVP} = V _{UV} - V _{LVPD}					
	V _{LVPD} =					
	VOL_CTRL3[11:7]					
	*51.2mV			\V		
温度保护			'/	> /	T	
T _{INTH}	芯片内部高温阈	THR_TINTH [5:0]	1000	1716.8	2612.8	mV
	值	配置值*25.6+1000mV	17			
T _{INTL}	芯片内部低温阈	THR_TINTL [5:0]	1000	2305.6	2612.8	mV
	值	配置值*25.6+1000mV				
T _{OTD}	电池放电高温阈	配置 THR_OTD [7:0]	0	0.7424	3.264	V
	值					
Тотс	电池充电高温阈	配置 THR_OTC [7:0]	0	0.9472	3.264	V
	值		_			
Титс	电池放电低温阈	配置 THR_UTC [7:0]	0	2.4192	3.264	V
	值	F7 W TUD UTD 17 01	0	0.4400	0.004	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Титс	电池充电低温阈	配置 THR_UTD [7:0]	0	2.4192	3.264	V
	值	FIRTUD OTEIZ 01	0	0.4600	0.004	\ /
Total	MOS 高低温保护	配置 THR_OTF[7:0]	0	0.4608	3.264	V
ALERT 引	· · · · · · · · · · · · · · · · · · ·	河上夕小	旦小坊	出 和 左	旦十店	出心
参数	说明	测试条件	最小值	典型值	最大值	単位
Valert_OH	ALERT 输出高	ALERT 外部上拉	2.5	1	0.6	V
Valert_ol	ALERT 输出低	IoL = 1mA, ALERT 外部上拉	2.5		0.6 3.6	V
V _{ALERT_IH}	ALERT 输入高 ALERT 输入低	ALERT 外部下拉		1		V
V _{ALERT_IL}	0: 1ms 低脉冲		-0.5	0	0.6	V
中断类型	1: 持续低电平	INT_TYPE		U		
	1. 抒狭心电平 \置 ALERT 上拉电源	 				
		七 瓜				
	负载/小电流检测 「滋服	测计タル	是小店	曲刑店	早十店	A A:
参数	说明 CLICD thille E	测试条件 CUC NET	最小值	典型值	最大值	单位
V _{CHGD}	CHGD 检测电压	CHG 断开	-950	-500	1.7	mV
VLODD	LODD 检测电压	DSG 断开		1	1.7	V
Rchgd	CHGD 内部下拉			5M		Ω

	电阻					
R _{LODD}	LODD 内部下拉			10M		Ω
112000	电阻					
VIDET	小电流检测电压	PROT_AUTO [1:0]=3		2		mV
均衡						
参数	说明	测试条件	最小值	典型值	最大值	单位
R _{BL}	均衡内阻	内部均衡 MOS 的 Rds_on		5		Ω
T _{BL}	手动均衡定时时	配置 BLSW_DISC_CNT[7:0]	0	0	17	min
	间					
V _{RBLS}	静置状态均衡停	配置 BLSW_CTRL2[15:11]	0	0.2	0.4	V
	止压差					
V _{RBLMIN}	静置状态均衡开	配置 BLSW_CTRL2[10:6]	2.0	4.0	5.2	V
	启最小电压					
V_{RBLD}	静置状态均衡开	配置 BLSW_CTRL2[5:0]	0	0.4	0.8	V
	启压差			. >		
V_{CBLS}	充电模式停止均	配置 BLSW_CTRL0[15:11]	0	0.2	0.4	V
	衡电压=均衡开		\>			
	启电压-	1	V			
	N*12.8mV					
VCBLMIN	充电状态均衡开	配置 BLSW_CTRL0[10:6]	2.0	3.8	5.2	V
	启最小电压					
V_{CBLD}	充电模式均衡开	配置 BLSW_CTRL0[5:0]	0	0.4	0.8	V
	启压差	X				
X_{BL}	PWM 放电占空	配置 BLSW_PWM_DUTY[2:0]	50	50	93.75	%
	比 0 -> 1/2,	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\				
	1->9/16	7 - 1				
	7->15/16	X-/\				
工作模式	切换		T	T	T	1
参数	说明	测试条件	最小值	典型值	最大值	单位
V_{POR}	上电电压	PVDD 对 PGND	12			V
V_{ACT}	激活电压	ACT 对 AGND 关机模式切换到工作	2.5			V
_	11/1/1/1/1/	模式				
V_{SD}	关机电压	ACT 对 AGND 工作模式切换到关机			0.6	V
(1)	у	模式				
二、木	睡眠模式唤醒时	SLEEP_CTRL [1] = 1	0.9	1	1.1	mS
Twakup	间	睡眠模式切换到工作模式				
数字输入	输出					
参数	说明	测试条件	最小值	典型值	最大值	单位
VIL	输入低电平	CSN, SCLK, SDI,ALERT,PROG			0.6	V
V_{IH}	输入高电平	CSN, SCLK, SDI,ALERT,PROG	2		4	V
V_{OL}	输出低电平	GPIOn,SDO,ALERT			0.4	V
V_{OH}	输出高电平	GPIOn,SDO,ALERT	2.8		3.6	V

Іон	拉电流				16	mA
I _{OL}	灌电流				16	mA
SPI 通信						
参数	说明	测试条件	最小值	典型值	最大值	单位
Tclk	时钟周期		500		8000	nS
Tcs_pre	CSN 提前时间		20			nS
Tcs_po	CSN 延后时间		50		1	nS
st						X
Thold	输入数据		20			nS
	保持时间				5	
Tsu	输入数据		20			nS
	建立时间					
Tdata	数据输出延迟				80	nS

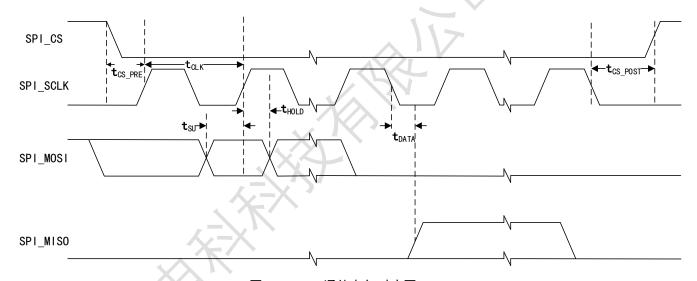


图 7.3-1 SPI 通信电气时序图

注1: 测量绝对精度与外电路有关,提供手动修调方案。

8 典型工作特性

TBD

9 运行模式

9.1 模式切换

PB7200 共有以下三种工作状态:运输模式、工作模式、和睡眠模式,各模式之间切换如图 9.1-1 所示。

图 9.1-1 模式切换

*注: wakup 指令: 对寄存器 FUNC_CMD[15:0] 写 0x8899, 芯片经过 1ms 后, 由睡眠模式进入工作模式。 睡眠指令: 对寄存器 FUNC_CMD[15:0] 写 0xE483, 芯片由工作模式进入睡眠模式。

	工作模式	睡眠模式	运输模式
CADC	可选	关	关
VADC	可选	关	关
电流保护	可选	关	关
SPI	开	可读	关
均衡	可选	关	关
小电流唤醒	可选	关	关
充电器唤醒	可选	可选	关
MOS 驱动	可选	关	关
DRIVE	可选	可选	关
功耗	50-150uA	5uA	2uA

9.1.1 运输模式

PB7200 提供了一种极低功耗的运输模式,便捷用于电池系统的长期存储、运输或者其它应用场景。 运输模式由外部 ACT 引脚下拉来进入,系统检测到 ACT 引脚的低电压,将依次关闭 AFE 内部的各个功能模块,关闭时钟与电源,仅保留最少供电。

ACT 引脚上拉或者浮空,系统将退出运输模式,依次开启 AFE 内部的各个功能模块、电源与时钟,进入工作模式。ACT 引脚浮空时,内部提供了弱上拉,可缓慢使得系统启动退出运输模式。

9.1.2 工作模式

PB7200 上电默认为工作模式,可正常通讯,可进行电压电流温度测量以及调度控制等指令执行。系统由睡眠模式退出时候也会直接进入工作模式。

基于低功耗的需求,工作模式下可采用一个静置状态,采用较长时间间隔静置状态的调度测量来获得低功耗。调度功能可参考章节 10.2、对应低功耗的静置状态参考 10.2.4。

9.1.3 睡眠模式

PB7200 共有三种进入睡眠模式的方式:

- a) 检测到故障, PF 故障保护发生。
- b) 单体电压过低,并且不处于充电状态,触发低电压睡眠。
- c) 收到睡眠命令(对配置 FUNC_CMD (0x17) 写入 0xE483)。

PB7200 进入睡眠模式时将关闭 AFE 的基本功能模块,保留电源和寄存器配置信息,DRIVE 模块功能和充电器唤醒功能。睡眠模式退出可由向芯片写入唤醒指令或者充电器接入来触发。

睡眠指令或低电压进入睡眠后退出睡眠模式,系统将继续执行睡眠前的配置和操作。如果由于 PF 故障保护进入的睡眠模式,在退出睡眠模式后,系统会先进行软复位,执行开机流程,加载 MTP 配置,进行开机诊断,确认没有异常后开始工作,如果软复位和诊断过程中系统异常,芯片将再次进入睡眠模式。

睡眠模式有以下三种唤醒方式、充电器插入、负载插入以及指令唤醒方式。

9.1.3.1 PF 故障充电器唤醒流程:

PB7200 发生 PF 故障进入睡眠模式后,在收到 Wakup 指令或者充电器唤醒信号后,会先启动系统进行软复位,加载 MTP,在加载完成时发出 RST 中断,并进行开机诊断,确认无异常后开始工作。 具体流程图如下所示:

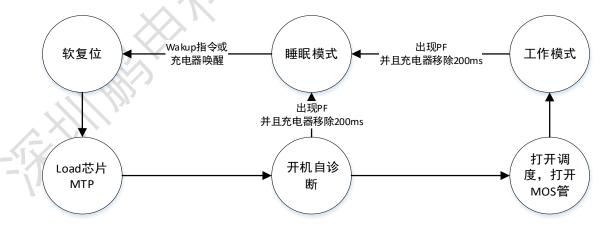


图 9.1-2 PF 故障后 AFE 唤醒流程图

9.1.3.2 低电压睡眠唤醒流程

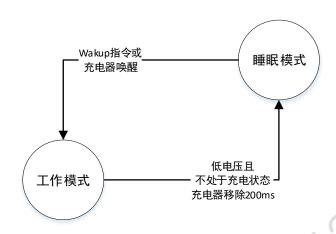


图 9.1-3 低电压睡眠唤醒

当电池严重亏电时,会触发低电压保护,AFE 进入睡眠模式,实现最低功耗。

低电压保护的触发条件为,电芯电压低于低电压睡眠阈值,并且不处于充电状态,连续发生4次后,系 统会进入睡眠模式。对于 AFE,低电压保护进入睡眠模式后,可通过 Wakup 指令或者接入充电器唤醒,退 出睡眠模式后, 芯片将继续原来的工作。

9.1.3.3 负载唤醒

用负载唤醒睡眠模式下的芯片可以在进入睡眠模式前,配置 SLEEP_LOAD_WAKUP_EN 为 1,即可使用 负载唤醒睡眠模式下的 AFE。为了能在睡眠模式下唤醒芯片,进入睡眠模式前,配置 LOAD DET FORCE EN 为 1、LOAD DET EN 为 1、将负载检测模块强制打开。

9.1.3.4 唤醒指令

AFE 在睡眠模式下,可采用 Wakup 指令或者插入充电器唤醒,唤醒指令 Wakup 的具体操作为,对寄存 器 FUNC CMD[15:0] 写 0x8899, AFE 接收到唤醒指令后, 经过 1ms, 可由睡眠模式进入工作模式。插入充 电器唤醒,需要提前配置充电器检测模块功能为使能状态,否则无法检测充电器接入。

9.2 软硬件方式

PB7200 还提供硬件保护的工作配置,通过提前烧写 MTP 寄存器对应的 HW_MODE 为 1。AFE 再次上 电后,将自动进入硬件方式。如果烧写 HW MODE 为 0,上电后,AFE 进入软件方式,由 MCU 来具体配置 相关参数。

芯片上电复位后,先加载 MTP,判断软硬件工作方式,再按配置的工作方式开始工作。

PB7200 硬件方式下,不需要 MCU 支持, AFE 进入自主管理, 可以独立完成电池系统的测量、充放电管 理(包含预充预放策略)、保护、以及保护恢复。

PB7200 软件方式下,由 MCU 来控制和处理 AFE 的功能模块,提升充放电管理、保护、保护恢复等的 灵活度,以及 SOC 算法的精度。

表 9.2-1 为软硬件方式在开机流程、GPIO 口功能、MOS 控制功能上的区别。

表 9.2-1 软硬件方式下功能

	硬件方式	软件方式
开机上电	加载 MTP	加载 MTP
	执行自诊断	等待 MCU 操作
	自动打开 MOS	
GPIO □	测温	测温
	FUSE	FUSE
		中断
		RST (MCU 长时间不通讯,
		AFE 接管控制 MCU 的重置口)
MOS 控制	自动保护	自动保护
	自动恢复	MCU 恢复
	体二极管保护	体二极管保护
	自动预充预放	MCU 控制预充预放

9.3 自主管理

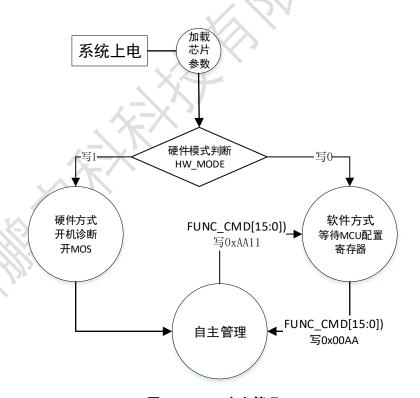


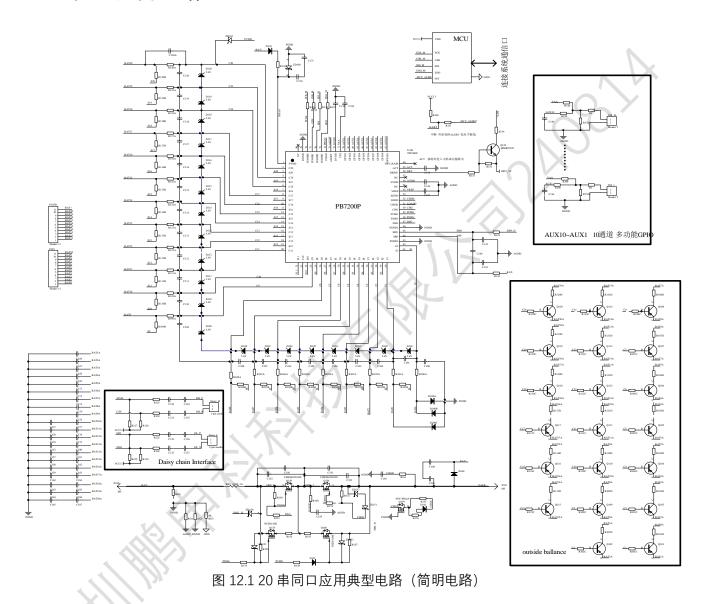
图 9.3-1 AFE 自主管理

AFE 系统在硬件方式下或者软件方式下均可进行自主管理,自主管理工作状态下,AFE 根据相关配置, 开启调度进行数据测量并执行预充预放策略,控制 MOS 进行充放电管理。芯片根据寄存器配置阈值,自动 进行电压、电流和温度等的保护及恢复。

芯片上电复位后,检查寄存器 HW_MODE,如果是 1,则进入硬件方式开机,加载 MTP 执行自诊断等

操作,随后进入自主管理方式。否则,进入软件方式开机,等待 MCU 配置操作,如果 MCU 仅开启调度,那么所有的保护恢复使能寄存器不会生效。软件方式下,系统配置寄存器 FUNC_CMD[15:0]为 0x00AA,进入自主管理。

MCU 对 FUNC_CMD[15:0]写 0xAA11,芯片可从自主管理退回软件方式,转交由 MCU 控制,所有的保护恢复不会生效,需要 MCU 对保护状态位写 1 清除保护状态位,如果 AFE 测量值仍然满足触发保护条件,则会继续触发保护,状态位置 1。


10 功能描述

11 寄存器列表及定义

12 应用指引

12.1 典型应用电路

12.2功能设计

12.2.1 MTP 操作

PB7200 中内置有 MTP, 可以用于储存部分寄存器中的数据, 上电时会自动重新加载。MTP 分为用户配置区和用户校准区, 烧写 MTP 时需配置 FUNC_CMD 0x17 为 0x8888 进入 POWER 模式, 配置 FUNC_CMD 0x17=0x6677 进入 CFG_MODE。以下为用户配置区和用户校准区的具体寄存器配置及指令说明和烧写步骤。一、用户配置区的地址为(0x20-0x48), 配置如何操作对应 MTP 区域的指令寄存器地址为 0x1F, 具体寄存

器配置如表1所示:

指令名称	设定值	寄存器名称
擦除指令	0x0000	ERASE user CFG
烧写指令	0x1111	STORE user CFG
加载指令	0x2222	LOAD user CFG

表 1: 用户配置区寄存器地址

二、用户校准存储部分的地址为(0x50-0x56),配置如何操作对应MTP区域的指令寄存器地址为0x1F,具体寄存器配置如表1所示:

指令名称	设定值	寄存器名称
擦除指令	0x5555	ERASE user trim
烧写指令	0x3333	STORE user trim
加载指令	0x4444	LOAD user trim

表 2: 用户烧写区寄存器地址

三、指令说明

ERASE: 将 MTP 中的数据擦除,不影响当前寄存器值。 STORE: 将区域范围内寄存器的值写入到 MTP 中。

LOAD:将 MTP 中的值加载至寄存器中。

四、烧写步骤

a) 发送 ERASE 指令,等待(ERASE user trim 400ms, ERASE user CFG400ms)。

b) 更改寄存器值。

c) 发送 STORE 指令, 等待 (STORE user trim 400ms, STORE user CFG400ms)。

d) 发送 LOAD 指令, 等待 100ms。

12.2.2 模式说明

PB7200 具有硬件方式、软件方式两种工作方式:

工作模式	是否有 MCU	使用场景
硬件方式	否	芯片在没有 MCU 参与的情况下独立进行电池管理
硬件方式	是	MCU 对芯片采集信息进行上报
		MCU 与芯片共同完成信息采集、保护等功能
软件方式	是	MCU 与芯片共同完成信息采集、保护等功能

PB7200 的工作模式分为软件方式和硬件方式,由上电时自动加载的 HW_MODE 决定,上电时,如果寄存器加载为 1,进入硬件方式,AFE 自动开启调度以及保护故障以及保护恢复等 MOS 逻辑;如果寄存器加载为 0,进入软件方式, AFE 不会自动开启调度,等待 MCU 操作。具体可参考 9.3

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	.5 5 55 41
	软件方式	硬件方式
上电诊断	无	有
上电时根据诊断结果自动操作 MOS	无	有
上电自动进入调度模式	无	有
保护时自动关闭 MOS	有	有
保护恢复后自动打开 MOS	无	有

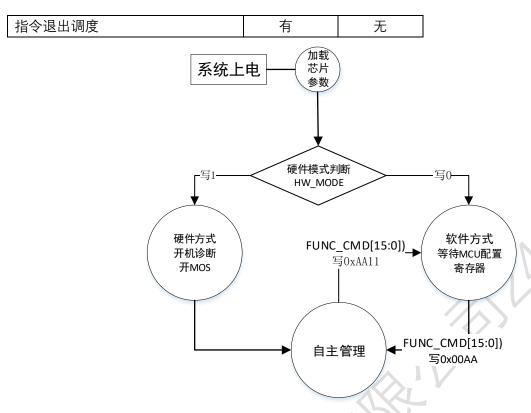


图 12.2-1 软硬件方式框图

硬件方式进入自主管理:

烧写成硬件方式后进入自主管理状态,自主管理状态下,AFE 会自动执行寄存器内的保护,报警,故障一系列设置。

软件方式下向 0x17 写入 0x00AA

软件方式进入方式:

自主管理状态下向 0x17 写入 0xAA11, 退出自动状态, 进入软件方式。

12.2.3 寄存器操作模式

部分寄存器具有写保护功能,寄存器锁默认加锁:

	0x80-0xAD	0x00-0x1	0x20-0x56	0x60-0x68
正常模式	只读	可读可写	只读	只读
配置模式	只读	可读可写	可读可写	只读

配置模式

在进入配置模式时,调度将会自动关闭,在退出配置模式时维持进入配置模式前的调度状态。

进入方式: 向 0x17 写入 0x6677。 退出方式: 向 0x17 写入 0x7766。

正常模式

不处于配置模式时即为正常模式。

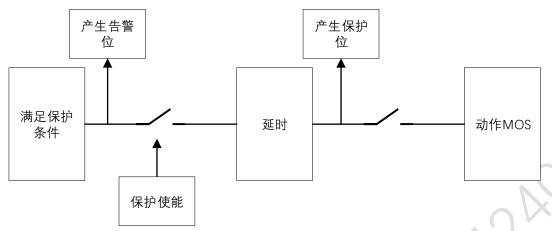
12.2.4 保护系统

PB7200 拥有 15 种保护及 14 种永久故障, 其中每种保护及其恢复、每种永久故障都可以单独使能。在 此基础上, CHG 拥有 13 种保护源头, DSG 拥有 15 种保护源头, 每种保护源头都可以单独使能。

12.2.4.1 保护源头

	充电 MOS 动作源头												
永久 故障	外部 保护	MOS 高温	单体 过压	过压 锁定	充电 过流	充电 高温	充电 低温	放电 短路	短路 锁定	芯片高温	芯片低温	看门 狗溢 出	保护 触发
1	Χ	X	Χ	Χ	Χ	Χ	Χ	Χ	Χ	X	X	X	1
X	1	X	Χ	Χ	Χ	Χ	Χ	Χ	Χ	X	X	Χ	1
X	Χ	1	Χ	Χ	Χ	Χ	Χ	Χ	X	X	Χ	Χ	1
X	Χ	X	1	Χ	Χ	Χ	Χ	Χ	X	X	Χ	Χ	1
									1				
Х	Χ	Χ	Χ	Χ	Χ	Χ	Χ	X	X	Χ	Χ	1	1
0	0	0	0	0	0	0	0	0	0	0	0	0	0

^{*}注:任一保护触发源头出现 1,则保护触发置 1,只有全部保护触发源头均为 0,保护触发才为 0,X 代表 不管是0还是1都可以。


放电 MOS 动作源头

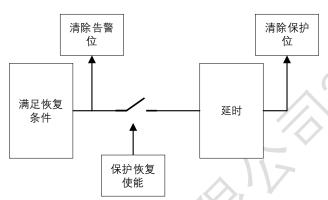
IX I MOS 43 [FIIIX]															
						放电	MOS 렀	作源头	Ξ.						
永久故障	外部保护	MO S高 温	单 体 欠 压	放电高温	放电低温	放电短路	放电 过流 1	放电 过流 2	放电 过流 3	短路锁定	过流锁定	芯片高温	芯片低温	看门 狗溢 出	保护触发
1	Χ	Χ	X	X	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	1
Χ	1	Χ	-X	X	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	1
Χ	Χ	1	X	Х	X	Χ	Χ	X	X	X	X	Χ	X	Χ	1
Χ	X	X	1	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	1
		1:													
X	X	Х	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	1	1
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

^{*}注:任一保护触发源头出现 1,则保护触发置 1,只有全部保护触发源头均为 0,保护触发才为 0,X代表 不管是0还是1都可以。

12.2.4.2 保护生效路径

保护使能	MOS 控制源头	告警位	保护位	MOS 动作
0	X	产生	不产生	不动作
1	0	产生	产生	不动作
1	1	产生	产生	产生

保护路径如上图所示, 当满足保护条件时产生告警位, 如果使能了保护使能位, 在连续多次 (有一次不满足 则计数清零)满足保护条件时产生保护位,如果此时使能了 MOS 控制源头位,则 MOS 会关闭。


保护	阈值	告警位	保护使能	延时	保护位
单体欠压*	THR_UV_SET	ALRT_UV	PROT_EN_UV	PRT_DLY_UV	PROT_ UV
单体过压*	THR_OV_SET	ALRT_OV	PROT_EN_OV	PRT_DLY_OV	PROT_OV
单体过压锁定***	OVL_LMT	ALRT_OVL	PROT_EN_OVL	无	PROT_OVL
放电过流 3****	THR_OCD3	ALRT_OCD3	PROT_EN_OCD3	DLY_OCD3	PROT_OCD3
放电过流 2**	THR_OCD2	ALRT_OCD2	PROT_EN_OCD2	DLY_OCD2	PROT_OCD2
放电过流 1**	THR_OCD1	ALRT_OCD1	PROT_EN_OCD1	DLY_OCD1	PROT_OCD1
放电过流锁定***	OCDL_LMT	ALRT_OCDL	PROT_EN_OCDL	无	PROT_ OCDL
短路**	THR_SCD	ALRT_SCD	PROT_EN_SCD	DLY_SCD	PROT_SCD
短路锁定***	SCDL_LMT	ALRT_SCDL	PROT_EN_SCDL	无	PROT_SCDL
充电过流**	THR_OCC	ALRT_OCC	PROT_EN_OCC	DLY_OCC	PROT_ OCC
放电低温*	THR_UTD	ALRT_UTD	PROT_EN_UTD		PROT_UTD
放电高温*	THR_OTD	ALRT_OTD	PROT_EN_OTD		PROT_OTD
充电低温*	THR_UTC	ALRT_UTC	PROT_EN_UTC	固定为4	PROT_UTC
充电高温*	THR_OTC	ALRT_OTC	PROT_EN_OTC		PROT_OTC
MOS 高温*	THR_OTF	ALRT_OTF	PROT_EN_OTF		PROT_OTF

注: *为 VADC 采样保护,连续多次采集(调度或单次测量)到电压满足阈值条件,连续次数大于延时后产生保护。

- **为比较器保护,连续时间内电流满足阈值条件,持续时间大于延时后产生保护。
- ***为计数器保护,多次触发保护,且两次保护之间时间间隔小于恢复延时,次数大于阈值后产生保护。
- ****为 CADC 保护, 连续多次采集 (调度或单次测量) 到电流满足阈值条件, 连续次数大于延时后产生保护。

12.2.4.3 恢复生效路径

保护恢复路径如上图所示,当满足恢复条件时清除告警位,如果使能了保护恢复使能位,在连续多次(有一次不满足则计数清零)满足保护恢复时清除保护位。在充电 MOS 源头同时为 0 时打开充电 MOS,在放电 MOS 源头同时为 0 时打开放电 MOS。

保护	恢复条件	恢复阈值寄存器	保护恢复使能	延时
单体欠压	迟滞	HYS_UV	RECV_EN_UV	REC_DLY_UV
单体过压	迟滞	HYS_OV_	RECV_EN_OV	REC_DLY_OV
单体过压锁定	延时	REC_DLY_UV	RECV_EN_OVL	无
	充电器移除	_/_/		固定1秒
放电过流 3	延时	无	RECV_EN_OCD3	RECV_DLY
	负载移除			RECV_DLY_LOAD
放电过流 2	延时	无	RECV_EN_OCD2	RECV_DLY
	负载移除			RECV_DLY_LOAD
放电过流 1	延时	无	RECV_EN_OCD1	RECV_DLY_OCD1
	负载移除			RECV_DLY_LOAD
放电过流锁定	延时	OCD_RECV_DLY_EN	RECV_EN_OCDL	无
(E) Y)	负载移除			RECV_DLY_LOAD
短路	延时	无	RECV_EN_SCD	RECV_DLY
	负载移除			RECV_DLY_LOAD
短路锁定	延时	SCD_RECV_DLY_EN	RECV_EN_SCDL	无
	负载移除			RECV_DLY_LOAD
充电过流	延时	无	RECV_EN_OCC	RECV_DLY
	充电器移除			固定1秒
放电低温	迟滞	固定 51.2mV	RECV_EN_UTD	固定为 4
放电高温	迟滞		RECV_EN_OTD	

充电低温	迟滞	RE	ECV_EN_UTC	
充电高温	迟滞	RE	ECV_EN_OTC	
MOS 高温	迟滞	RE	ECV_EN_OTF	

12.2.5 中断系统

PB7200 具有一个外部中断引脚, 以及 12 个可以独立使能的中断源头。中断引脚的状态可通过 USR_CFG (0x48)[6]配置为脉冲中断或者低电平中断, 当 INT_STATUS (0x06)为 0 时, 中断引脚为高电平 (需外加上拉电阻), 当 INT_STATUS (0x06)不为 0 时, 中断引脚产生动作。

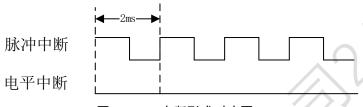
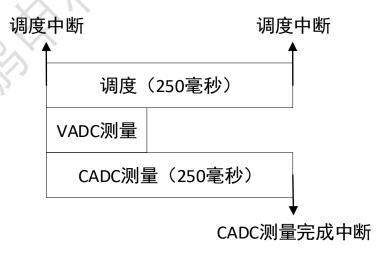
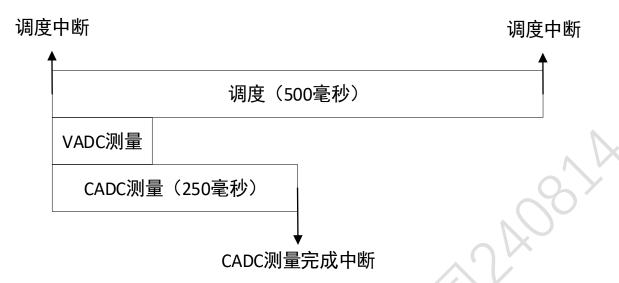


图 12.2-2 中断形式时序图

脉冲中断: 当 INT_STATUS (0x06)不为 0 时,中断引脚输出周期为 2 毫秒,占空比为 50%的 PWM 波。


电平中断: 当 INT_STATUS (0x06)不为 0 时,中断引脚输出低电平。

INT_RAW (0x07)为未经屏蔽的中断状态位,在发生中断事件的同时将会被置位,通过对 INT_STATUS (0x06)的对应位进行写 1 操作,可以同时清除 INT_STATUS (0x06)和 INT_RAW (0x07)寄存器的对应位。 INT_RAW (0x07)的状态不会影响外部中断引脚输出。


INT_STATUS (0x06)为经屏蔽后的中断状态,是由 INT_RAW (0x07)和 INT_EN (0x20)相与产生,并影响外部中断引脚输出。

中断特别说明

对于单次测量完成中断、CADC 测量完成中断、调度中断的产生时机进行如下说明。 在调度过程中,三个中断均有可能触发。一般只选择 VADC 单次测量完成中断进行操作配置。

*注:调度颗粒设置为4,中断颗粒为4,电流积分颗粒度设置为4个,

*注:静置状态 CADC 间歇性开启,上报中断,CADC 中断可以用调度中断来判断,不必单独开启中断。 在使用单次测量指令的场景下,向 MSR_CMD (0x16)写入任何指令都会产生单次测量完成中断,向 FUNC_CMD (0x17))写入 0x3311 会产生 CADC 测量完成中断。

12.3减少电芯串联数量应用规则

12.3.1 高串短接

PB7200 可以支持最少 5 个电芯单元串联使用 (5S), 最多 20 个电芯单元串联使用。5S 到 20S 应用推荐减少电芯串联数量应用的规则如下图所示:

							实际	应用的	电芯串	数						
引脚名	20串	19串	18串	17串	16串	15串	14串	13串	12串	11串	10串	9串	8串	7串	6串	5串
C20	_	•	•	•	•	•	•	-	•	•	•	•	•	•	•	•
C19		-	-	-	-	-	-	•	-	•	+	-	•	•	•	•
C18			-	-	-	-	-	-	-	•	+	•	-	-	-	•
C17				-	-	•	-	-	-	•	-	•	-	-	-	-
C16					-	-	-	•	-	•	+	•	•	-	-	•
C15						-	-	-	-	•	+	•	+	-	-	•
C14				_			ightharpoonup	-	-	-	lack	-	+	-	-	•
C13								-	+	-	+	-	•	•	-	-
C12			_			_			•	-	┿	-	-	-	-	•
C11										-	-	-	-	-	•	•
C10											-	-	•	-	•	-
C9												•	-	-	-	-
C8												·	-	•	-	•
C7														<u> </u>	-	•
C6	_														-	•
C5																•

图 12.3-1 PB7200 减少电芯串联数量短接脚位示意图

PB7200 从 CELL20 (C20 到 C19 短路, S20 悬空) 开始依次连续按需短接, 最多短接到 CELL6 (C6 到 C5 短路, S6 悬空), 分别依次对应 20S~5S 应用。

通过配置相应寄存器关闭减少的相应电芯使能位:

地址	VOL_CTRL5	TEMP_CTRL3
	(0x2E)[15:0]	(0x34)[11:8]
寄存器名称	CELL_ALRT_EN	ALRT_EN20_17
访问权限	读/写	读/写
默认值	0xFFFF	0xF

^{*}注 VOL_CTRL5 (0x2E)[15:0]的 16 位由高位到低位分别代表对应的 CELL16~CELL1 , 例 如 VOL_CTRL5 (0x2E)[2]设置为 1,表示 CELL3 测量后有问题就报警。TEMP_CTRL3 (0x34)[11:8]的四位,分别由高到低一一对应 CELL20-17。

12.3.2 铜排跳串

通过 VOL_CTRL5 (0x2E)[15:0]配置 16-1 串,只测量; 寄存器 0x34 [11:8], 决定 CELL20-17 只进行测量。可以测量-0.5V~5V 范围,实现 busbar 测量功能。

12.4注意事项

PVDD 和最高通道测量线(如 C20)上电需要同步,建议 BAT+和最高通道测量线(BAT20) 之间放置 一个 10R 电阻,以避免上电时序差异过大冲击损坏 AFE 芯片高串测量端口。(参考图 12.3.2 12.1)

必须要 AFE 的 PVDD 上电完成后才能接入负载以避免上电时的大电流对 AFE 芯片 PGND 引脚冲击。

低串应用时,需短路的电芯单元必须在 AFE 的 Cn 处进行,即短路 AFE 端口并联的电容以避免降低 AFE 芯片的测量精度。(参考图 12.1)

低功耗 AFE DRIVE 参与供电方案中,建议在输出位置(DRV_5V)加上合适的稳压管或先经过线性调压器的输入端以避免损坏后端器件。(参考图 12.1)

12.5PCB 布线指引

推荐将 AFE 的 DGND,AGND 单点在 AFE 的 PGND 连接后再单点连接到 BATO 供电端,其余 BMS 器件供电 GND 另单点连接至 BATO 供电端。

注意 BAT+从最高串测量线输入针脚处(如 BAT20)接入,以单独给 PVDD 供电,如果 MOS 驱动需要增加驱动缓冲器,那么 MOS 驱动缓冲器的 BAT+供电需要单独从最高串(如 BAT20)针脚接入处引出,以规避电源交叉干扰。

注意 SRP 和 SRN 引脚串联的电阻 (图 12.1 中的 R143 和 R142) 接电流采样电阻端的走线最好单独连线 到电流采样电阻两端焊盘处 (开尔文接法),严格采用差分线走线。

单元电压测量线尽量平行等长走线(开尔文接法)

MOS 等走功率大电流的线路建议适当开窗喷锡处理以增强散热

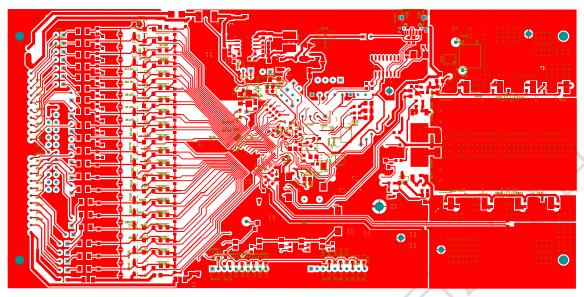
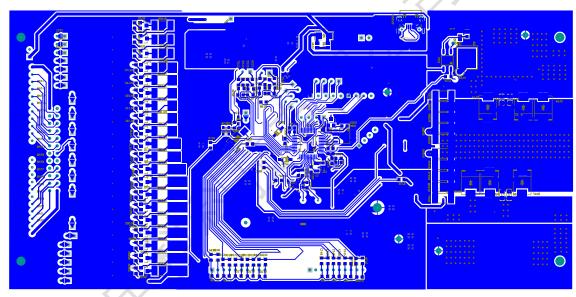
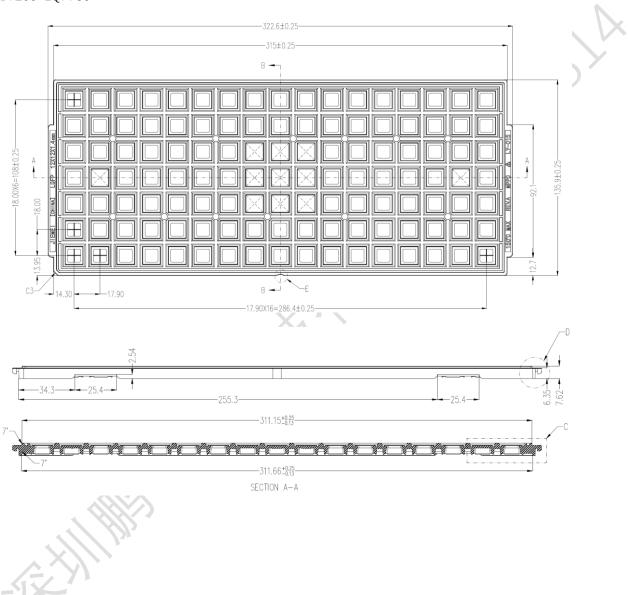


图 12.5-1 20 串应用板(190mmX95mm)顶层布线示例

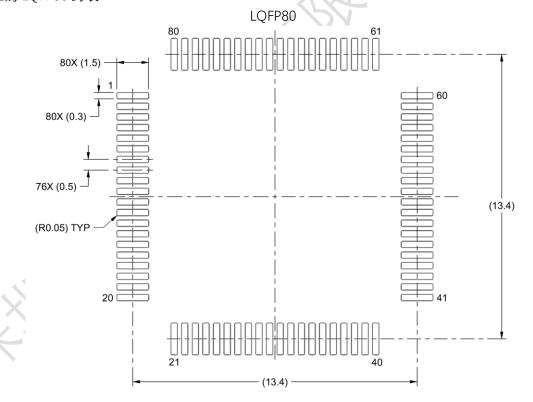



图 12.5-2 20 串应用板(190mmX95mm)底层布线示例

13 包装

13.1器件和包装机械尺寸

PB7200-LQPF80



SYMBOL	MILLIMETER						
SIMBOL	MIN	NOM	MAX				
Α	_	_	1.60				
A1	0.05	-	0.15				
A2	1.35	1.40	1.45				
A3	0.59	0.64	0.69				
b	0.18	_	0.26				
b1	0.17	0.20	0.23 0.17 0.14 14.20				
c	0.13	_					
cl	0.12	0.13					
D	13.80	14.00					
D1	11.90	12.00	12.10				
Е	13.80	14.00	14.20 12.10 13.25				
E1	11.90	12.00					
eВ	13.05	-					
e	0.50BSC						
L	0.45	0.60	0.75				
L1	1.00REF						
θ	0		7°				

13.2 器件焊盘设计推荐

采用标准的 LQFP80 封装:

14 订货信息

TBD

