

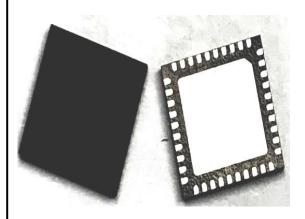
multiprotocol transceiver

GENERAL DESCRIPTION

The WS330E is an advanced multiprotocol transceiver supporting RS-232, RS-485, and RS-422 serial standards in a 40 pin QFN package. Integrated cable termination and four configuration modes allow all three protocols to be used interchangeably over a single cable or connector with no additional switching components. Full operation requires only four external charge pump capacitors.

The RS-485/422 modes feature one drivers and one receivers (1TX/1RX) in both half and full duplex configurations. The RS-232 mode (2TX/2RX) provides signals commonly used with the DB9 RS-232 connector. A dedicated diagnostic loopback mode is also provided.

The high speed drivers operate up to 20Mbps in RS-485/422 modes, and up to 1Mbps in RS-232 mode. All drivers can be slew limited to 250kbps in any mode to minimize electromagnetic interference (EMI).


All transmitter outputs and receiver inputs feature robust electrostatic discharge (ESD) protection to ±15kV IEC-61000-4-2 Air Gap, ±8kV IEC-61000-4-2 Contact, and ±15kV Human Body Model (HBM). Each receiver output has full fail-safe protection to avoid system lockup, oscillation, or indeterminate states by defaulting to logic-high output level when the inputs are open, shorted, or terminated but undriven.

The RS-232 receiver inputs include a $5k\Omega$ pull-down to ground. The RS-485/422 receiver inputs are high impedance (>96k Ω), allowing up to 256 devices on a single communication bus (1/8th unit load).

The WS330E operates from a single power supply, either 3.3V or 5V, with low idle current (2mA typical in all modes). The shutdown mode consumes less than $10\mu\text{A}$ for low power standby operation.

WS330E

3.3V or 5V Single Supply Operation RS232/RS485/RS422 multiprotocol

FEATURES

- Need external resistors required for RS485/RS422 termination and biasing
- Max Data Rate up to 20Mbps in RS-485/422 modes, and up to 1Mbps in RS-232 mode.
- Pin selectable 250Kbps Slew Limiting
- 2 Drivers,2 Receivers RS232/V.28
- 1 Drivers,1 Receivers RS485/422
- RS485/422 enhanced failsafe for open, shorted, or terminated but idle/undriven.
- Robust ESD protection on bus pins
 ±15kV IEC-61000-4-2 Air Gap
 ±15kV Human Body Model(HBM)
 ±8kV IEC-61000-4-2 Contact

APPLICATIONS

- Industrial Computers
- Networking Equipment
- HVAC Controls Equipment
- Dual Protocol Serial Ports

China·Nanjing City ·No.166 Middle Zhengfang Road 68005835

Email: support@njgwdz.net

Tel: +86-25-68005828 Fax

Fax: +86-25-

multiprotocol transceiver

ORDERING INFORMATION

PART NUMBER	PACKAGE	OPERATING TEMPERATURE RANGE	DEVICE STATUS
WS330EER1	40-pin QFN	-40°C to +85°C	Active

ABSOLUTE MAXIMUM RATINGS

These are stress ratings only and functional operation of the device at these ratings or any other above those indicated in the operation sections to the specifications below is not implied. Exposure to absolute maximum rating conditions for extended periods of time may affect reliability and cause permanent damage to the device.

Supply Voltage V _{CC}	-0.3V to +6.0V
Receiver Input Voltage (from Ground)	±18V
Driver Output Voltage (from Ground)	±18V
Short Circuit Duration, TX out to Ground	Continuous
Voltage at TTL Input Pins	-0.3V to (V _{CC} + 0.5V)
Storage Temperature Range	-65°C to +150°C
Lead Temperature (soldering, 10s)	+300°C
Power Dissipation 40-pin QFN (derate 17mW/°C above +70°C)	500mW

CAUTION:

ESD (Electro Static Discharge) sensitive device. Permanent damage may occur on unconnected devices subject to high energy electrostatic fields. Unused devices must be stored in conductive foam or shunts. Personnel should be properly grounded prior to handling this device. The protective foam should be discharged to the destination socket before devices are removed.

ESD PROTECTION

		Min.	TYP.	Max.	Units	
	R1-R4 Tx Output & Rx Input Pins		±15		kV	Human Body Model (HBM)
R1-R4			±8		kV	IEC 61000-4-2 (Contact)
			±15		kV	IEC 61000-4-2 (Air Gap)
	All Other Pins		±2		kV	Human Body Model (HBM)

China Nanjing City No.166 Middle Zhengfang Road Tel: +86-25-68005828 Fax: +86-25-

68005835

PIN DESCRIPTIONS BY MODE (MODE1, MODE0)

Pin	Name	00 Figure 1	01 Figure 2	10 Figure 3	11 Figure 4				
		D4 0		4	4				
1	L1	R1 U	utput	1	1				
2	L2	R2 O	utput	R1 Output	R1 Output				
3	L3	T1 I	nput	T1 Input	T1 Input				
4	L4	T2 I	nput						
5	NC	This pir	is not used and is	not connected interna	illy				
6	NC	This pir	is not used and is	not connected interna	illy				
7	NC	This pir	This pin is not used and is not connected internally						
8	NC	This pin is not used and is not connected internally							
9	VCC	VCC							
10	GND		GND						
11	SLEW		SLEW=VCC ena	ables 250k bps slew li	miting				
12	DIR1			T1 Enable R1 Disable	T1 Enable				
13	NC	This pir	is not used and is	not connected interna	illy				
14	MODE0	0	1	0	1				
15	MODE1	0	0	1	1				
16	NC	This pin is	not used and is not	connected internally					
17	NC	This pin	is not used and is r	not connected internal	ly				
18	NC	This pin is	not used and is no	t connected internally					
19	ENABLE	ENABLE = VO	CC for operation, EN	NABLE = 0V for shutd	own				
20	VCC			VCC					

China·Nanjing City ·No.166 Middle Zhengfang Road Tel: +86-25-68005828 Fax: +86-25-

multiprotocol transceiver

PIN DESCRIPTIONS BY MODE (MODE2, MODE1, MODE0)

Pin	Name	00 Figure 1	01 Figure 2	10 Figure 3	11 Figure 4			
21	NC	This pir	is not used and is	not connected interna	illy			
22	NC	This pir	is not used and is	not connected interna	lly			
23	GND		GNE)				
24	NC	This pir	is not used and is	not connected interna	illy			
25	NC	This pir	is not used and is	not connected interna	illy			
26	GND		GNE)				
27	R4		T2 Output		R1 Input B			
28	R3		T1 Output		R2 Input A			
29	GND	GND						
30	R2		R2 Input	R1 Input A T1 Out A	T1 Out A			
31	R1		R1 Input	R1 Input B T1 Out B	T1 Out B			
32	VCC		VCC					
33	V-	V- Char	ge pump negative s	supply, 0.1uF from gro	ound			
34	C2-	C2+	Charge pump cap	2 negative lead				
35	C1-	C1-	Charge pump cap	1 negative lead				
36	GND			GND				
37	C1+	C1+ Cha	rge pump cap 1 pos	sitive lead, 0.1uF				
38	VCC		\	/CC				
39	C2+	C2+ C	charge pump cap 2	positive lead, 0.1uF				
40	V+	V+ Charg	e pump positive sup	oply, 0.1uF to ground				

China·Nanjing City ·No.166 Middle Zhengfang Road Tel: +86-25-68005828 Fax: +86-25-68005835

multiprotocol transceiver

SUGGESTED DB9 CONNECTOR PINOUT

DB9 Pin	RS-232	RS-485/422 Full Duplex	RS-485 Half Duplex
1	DCD	TX-	Data-
2	RXD	TX+	Data+
3	TXD	RX+	
4	DTR	RX-	
5		Ground	
6			
7			
8			
9			

China·Nanjing City ·No.166 Middle Zhengfang Road Tel: +86-25-68005828 Fax: +86-25-

multiprotocol transceiver

ELECTRICAL CHARACTERISTICS

UNLESS OTHERWISE NOTED:

VCC = ± 3.3 V $\pm 5\%$ or $\pm 5\%$, C1-C4 = 0.1μ F; TA = T_{MIN} to T_{MAX}. Typical values are at VCC = 3.3V, TA = ± 25 °C.

SYMBOL	PARAMETERS	MIN.	TYP.	Max.	Units	Conditions
DC CHARAC	CTERISTICS					
I _{CC}	Supply Current (RS-232)		2	8	mA	No load, idle inputs
I _{CC}	Supply Current (RS-485)		2	8	mA	No load, idle inputs
I _{CC}	Vcc Shutdown Current		1	10	μΑ	ENABLE = 0V
TRANSMITT	ER and LOGIC INPUT PINS: Pins 3, 4,	11,12,14	,15,17-1	9		
V _{IH}	Logic Input Voltage High	2.0			V	V _{CC} = 3.3V
V _{IH}	Logic Input Voltage High	2.4			V	V _{CC} = 5.0V
V _{IL}	Logic Input Voltage Low			0.8	V	
I _{IL}	Logic Input Leakage Current Low			1	μΑ	Input Low (V _{IN} = 0V)
l _{IH}	Logic Input Leakage Current High			1	μA	Input High (V _{IN} = V _{CC}), pins 3, 4
I _{PD}	Logic Input Pull-down Current			50	μA	Input High (V _{IN} = V _{CC}), pins 11,12,14,15,17-19
V _{HYS}	Logic Input Hysteresis		200		mV	
RECEIVER (OUTPUTS: Pins 1, 2					
V _{OH}	Receiver Output Voltage High	V _{CC} -0.6			V	I _{OUT} = -1.5mA
V _{OL}	Receiver Output Voltage Low			0.4	V	I _{OUT} = 2.5mA
I _{OSS}	Receiver Output Short Circuit Current		±20	±60	mA	0 < V _O < V _{CC}
I _{OZ}	Receiver Output Leakage Current		±0.1	±1	μA	0 < V _O < V _{CC} , Receivers disabled

China·Nanjing City ·No.166 Middle Zhengfang Road Tel: +86-25-68005828 Fax: +86-25-68005835

multiprotocol transceiver

ELECTRICAL CHARACTERISTICS (Continued)

UNLESS OTHERWISE NOTED:

VCC = ± 3.3 V $\pm 5\%$ or ± 5.0 V $\pm 5\%$, C1-C4 = 0.1μ F; TA = T_{MIN} to T_{MAX}. Typical values are at VCC = 3.3V, TA = ± 25 °C.

SYMBOL	PARAMETERS	MIN.	TYP.	MAX.	Units	Conditions
SINGLE-EN	DED RECEIVER INPUTS (RS-232)					
V _{IN}	Input Voltage Range	-15		+15	V	
V _{IL}	Input Throshold Low	0.6	1.2		V	V _{CC} = 3.3V
۷IL	Input Threshold Low	0.8	1.5		V	V _{CC} = 5.0V
V _{IH}	Input Threshold High		1.5	2.0	V	V _{CC} = 3.3V
ΥIH	Input Theshold High		1.8	2.4	V	V _{CC} = 5.0V
V _{HYS}	Input Hysteresis		0.3		V	
R _{IN}	Input Resistance	3	5	7	kΩ	-15V <v<sub>IN <+15V</v<sub>
SINGLE-EN	DED DRIVER OUTPUTS (RS-232)	,				
Vo	Output Voltage Swing	±5.0	±5.5		V	Output loaded with 3kΩ to Gnd
	Output voltage owing			±7.0	V	No load output
I _{SC}	Short Circuit Current			±60	mA	V _O = 0V
R _{OFF}	Power Off Impedance	300	10M		Ω	$V_{CC} = 0V, V_O = \pm 2V$

China·Nanjing City ·No.166 Middle Zhengfang Road Tel: +86-25-68005828 Fax: +86-25-

68005835

multiprotocol transceiver

ELECTRICAL CHARACTERISTICS (Continued)

UNLESS OTHERWISE NOTED:

VCC = ± 3.3 V $\pm 5\%$ or ± 5.0 V $\pm 5\%$, C1-C4 = 0.1μ F; TA = T_{MIN} to T_{MAX} . Typical values are at VCC = 3.3V, TA = ± 25 °C.

SYMBOL	PARAMETERS	Min.	TYP.	Max.	Units	Conditions
DIFFERENT	IAL RECEIVER INPUTS (RS-485 / RS-4	22)				
R_{IN}	Receiver Input Resistance	96			kΩ	-7V <v<sub>IN< +12V</v<sub>
V _{TH}	Receiver Differential Threshold Voltage	-200	-125	-50	mV	
$\triangle V_{TH}$	Receiver Input Hysteresis		25		mV	V _{CM} = 0V
I _{IN}	Receiver Input Current			125	μΑ	V _{IN} = +12V
'IN	Neceiver input current			-100	μA	V _{IN} = -7V
DIFFERENT	IAL DRIVER OUTPUTS (RS-485 / RS-42	22)				
		2		V _{CC}	V	$R_L = 100\Omega$ (RS-422), Figure 5
V _{OD}	Differential Driver Output	1.5		V _{CC}	V	$R_L = 54\Omega$ (RS-485), Figure 5
VOD	Differential Driver Output	1.5		V _{CC}	V	-7V <v<sub>CM<+12V, Figure 6</v<sub>
				V _{CC}	V	No Load
$\triangle V_{\sf OD}$	Change In Magnitude of Differential Output Voltage	-0.2		+0.2	V	R_L = 54Ω or 100Ω, Figure 5
V _{CM}	Driver Common Mode Output Voltage			3	V	R_L = 54Ω or 100Ω, Figure 5
$\triangle V_{CM}$	Change In Magnitude of Common Mode Output Voltage			0.2	V	R_L = 54Ω or 100Ω, Figure 5
I _{OSD}	Driver Output Short Circuit Current	-250		250	mA	-7V< V _O < +12V, Figure 7
I _O	Driver Output Leakage Current			100	μA	ENABLE = 0V, or DIR1 = 0V and DIR2 = 0V in full duplex modes, V _O = +12V, V _{CC} = 0V or 5.25V
		-100			μΑ	ENABLE = 0V, or DIR1 = 0V and DIR2 = 0V in full duplex modes, V _O = -7V, V _{CC} = 0V or 5.25V

China·Nanjing City ·No.166 Middle Zhengfang Road Tel: +86-25-68005828 Fax: +86-25-

multiprotocol transceiver

TIMING CHARACTERISTICS

UNLESS OTHERWISE NOTED:

VCC = +3.3V ±5% or +5.0V ±5%, C1-C4 = 0.1 μ F; TA = TMIN to TMAX. Typical values are at VCC = 3.3V, TA = +25°C.

SYMBOL	PARAMETERS	MIN.	TYP.	MAX.	UNITS	CONDITIONS
ALL MODES						
t _{ENABLE}	Enable from Shutdown		1000		ns	
t _{SHUTDOWN}	Enable to Shutdown		1000		ns	
RS-232, DAT	A RATE = 250kbps (SLEW = Vcc), ON	NE TRAN	SMITTER	R SWITC	HING	
	Maximum Data Rate	250			kbps	$R_L = 3k\Omega, C_L = 1000pF$
t _{RHL} , t _{RLH}	Receiver Propagation Delay		100		ns	C ₁ = 150pF, Figure 8
t _{RHL} -t _{RLH}	Receiver Propagation Delay Skew			100	ns	- C _L = 130βF, Figure 0
t _{DHL} , t _{DLH}	Driver Propagation Delay		1400		ns	$R_L = 3k\Omega, C_L = 2500pF,$
t _{DHL} -t _{DLH}	Driver Propagation Delay Skew			600	ns	Figure 9
			1		1	
t _{SHL,} t _{SLH}	Transition Region Slew Rate from +3.0V to -3.0V or -3.0V to +3.0V	4		30	V/µs	V_{CC} = 3.3V, R_L = 3k Ω to 7k Ω , C_L = 150pF to 2500pF, Figure 9
t _{SHL,} t _{SLH}	Transition Region Slew Rate from +3.0V to -3.0V or -3.0V to +3.0V	6		30	V/µs	V_{CC} = 3.3V, R_L = 3k Ω to 7k Ω , C_L = 150pF to 2500pF, T_A = 25°C, Figure 9
RS-232, DAT	A RATE = 1Mbps (SLEW = 0V), ONE To Maximum Data Rate	TRANSM 1	ITTER S	WITCHI	MG Mbps	$R_L = 3k\Omega, C_L = 250pF$
t _{RHL} , t _{RLH}	Receiver Propagation Delay		100		ns	
t _{RHL} -t _{RLH}	Receiver Propagation Delay Skew			100	ns	C _L = 150pF, Figure 8
t _{DHL} , t _{DLH}	Driver Propagation Delay		300		ns	$R_L = 3k\Omega, C_L = 1000pF,$
t _{DHL} -t _{DLH}	Driver Propagation Delay Skew			150	ns	Figure 9
	I.		1	l	1	1
t _{SHL,} t _{SLH}	Transition Region Slew Rate from +3.0V to -3.0V or -3.0V to +3.0V	15		150	V/µs	V_{CC} = 3.3V, R _L = 3kΩto 7kΩ, C _L = 150pF to 1000pF, Figure 9
t _{SHL,} t _{SLH}	Transition Region Slew Rate from +3.0V to -3.0V or -3.0V to +3.0V	24		150	V/µs	V_{CC} = 3.3V, R _L = 3kΩto 7kΩ, C _L = 150pF to 1000pF, T _A = 25°C, Figure 9

China·Nanjing City ·No.166 Middle Zhengfang Road 68005835

Email: support@njgwdz.net

_9

Tel: +86-25-68005828

multiprotocol transceiver

TIMING CHARACTERISTICS (Continued)

UNLESS OTHERWISE NOTED:

 V_{CC} = +3.3V ±5% or +5.0V ±5%, C1-C4 = 0.1µF; TA = T_{MIN} to T_{MAX}. Typical values are at V_{CC} = 3.3V, TA = +25°C.

SYMBOL	PARAMETERS	MIN.	TYP.	Max.	Units	CONDITIONS
RS-485/RS-42	2, DATA RATE = 250kbps (SLEW =	Vcc), ON	E TRAN	SMITTER	RSWITC	CHING
	Maximum Data Rate	250			kbps	$R_L = 54\Omega$, $C_L = 50pF$
t _{RPHL} , t _{RPLH}	Receiver Propagation Delay		150	200	ns	C _L = 15pF, Figure 10
t _{RPHL} -t _{RPLH}	Receiver Propagation Delay Skew			20	ns	OL - TOPT, Tiguic To
t _{DPHL} , t _{DPLH}	Driver Propagation Delay		500	1000	ns	D 540 0 50 5
t _{DPHL} -t _{DPLH}	Driver Propagation Delay Skew			100	ns	R_L = 54Ω, C_L = 50pF, Figure 11
t _{DR,} t _{DF}	Driver Rise and Fall Time	300	650	1200	ns	
	,	'	1	1	1	
t_{RZH} , t_{RZL}	Receiver Output Enable Time			200	ns	C _L = 15pF, Figure 12
t _{RHZ} , t _{RLZ}	Receiver Output Disable Time			200	ns	oc ropr, rigare 12
t _{DZH} , t _{DZL}	Driver Output Enable Time			1000	ns	$R_L = 500\Omega$, $C_L = 50pF$,
t_{DHZ}, t_{DLZ}	Driver Output Disable Time			1800	ns	Figure 13
RS-485/RS-42	2, DATA RATE = 20Mbps (SLEW = 0	0V), ONE	TRANSI	MITTER S	SWITCH	HING
	Maximum Data Rate	20			Mbps	$R_L = 54\Omega$, $C_L = 50pF$
t_{RPHL} , t_{RPLH}	Receiver Propagation Delay		150	200	ns	C _L = 15pF, Figure 10
t _{RPHL} -t _{RPLH}	Receiver Propagation Delay Skew			50	ns	Sc ropr, riguio io
t _{DPHL} , t _{DPLH}	Driver Propagation Delay		30	100	ns	D 540 0 50 F
t _{DPHL} -t _{DPLH}	Driver Propagation Delay Skew			20	ns	$R_L = 54\Omega$, $C_L = 50pF$, Figure 11
$t_{DR,} t_{DF}$	Driver Rise and Fall Time		10	20	ns	
t _{RZH} , t _{RZL}	Receiver Output Enable Time			200	ns	C _I = 15pF, Figure 12
t _{RHZ} , t _{RLZ}	Receiver Output Disable Time			200	ns	J CL TOPT, TISUTO 12
	Daines Outset Facility Times			200	ns	D 5000 0 50 5
t_{DZH}, t_{DZL}	Driver Output Enable Time			200	113	$R_L = 500\Omega, C_L = 50pF,$

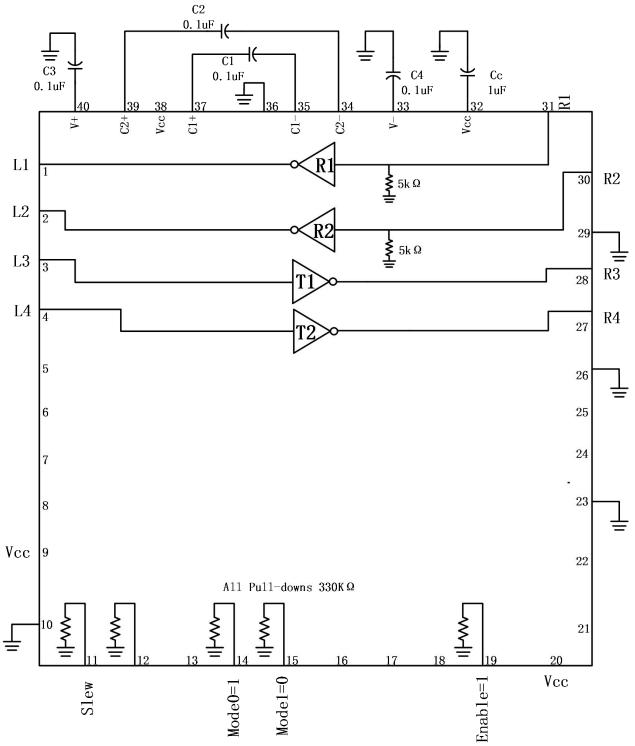
China·Nanjing City ·No.166 Middle Zhengfang Road Tel: +86-25-68005828 Fax: +86-25-


68005835

multiprotocol transceiver

BLOCK DIAGRAM BY MODE (MODE1, MODE0)

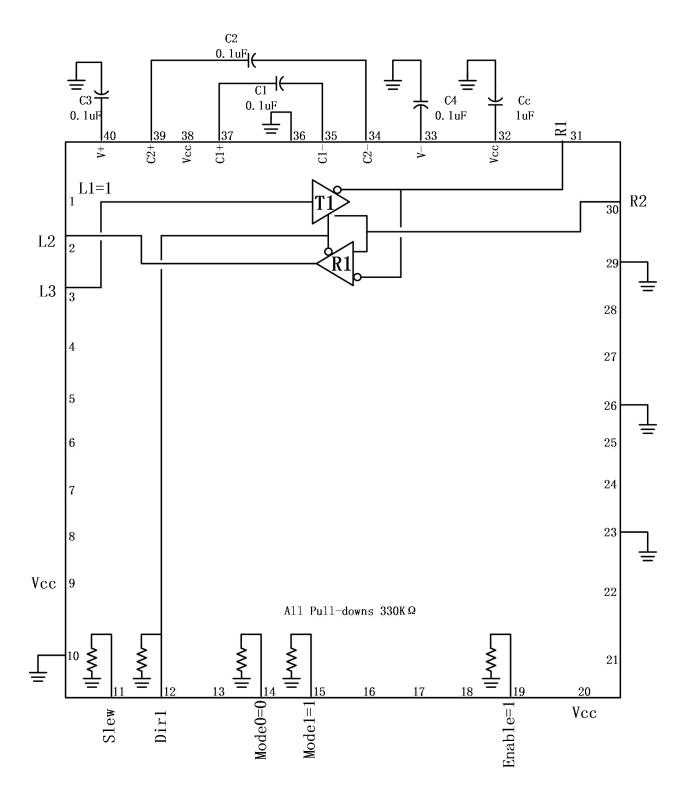
FIGURE 1. MODE 00 - LOOPBACK


China·Nanjing City ·No.166 Middle Zhengfang Road

Email: support@njgwdz.net

multiprotocol transceiver

FIGURE 2. MODE 01 - RS-232

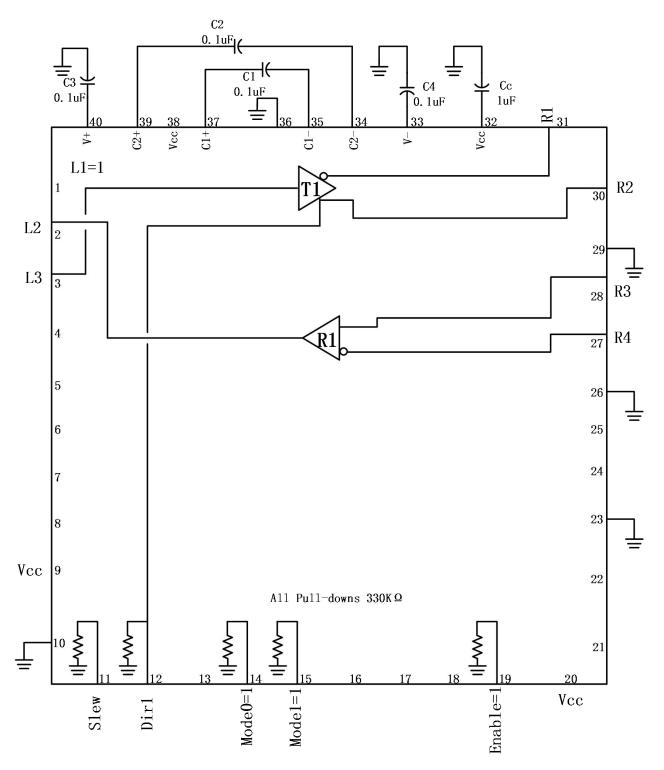


China Nanjing City No.166 Middle Zhengfang Road

Email: support@njgwdz.net

multiprotocol transceiver

FIGURE 3. MODE 10 - RS-485 HALF DUPLEX



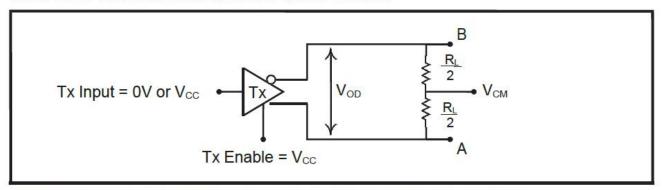
China·Nanjing City ·No.166 Middle Zhengfang Road

Email: support@njgwdz.net

multiprotocol transceiver

FIGURE 4. MODE 11 - RS-485/422 FULL DUPLEX

China Nanjing City No.166 Middle Zhengfang Road


Email: support@njgwdz.net

multiprotocol transceiver

TEST CIRCUITS

FIGURE 5. RS-485/422 DIFFERENTIAL DRIVER OUTPUT VOLTAGE

FIGURE 6. RS-485/422 DIFFERENTIAL DRIVER OUTPUT VOLTAGE OVER COMMON MODE

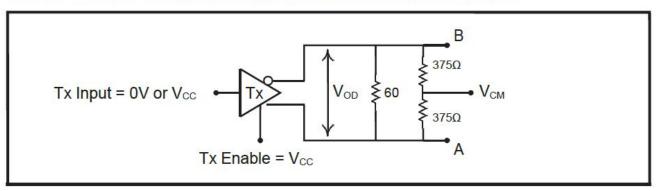
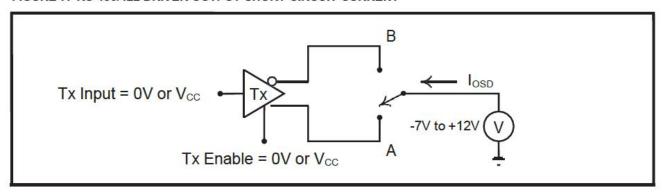



FIGURE 7. RS-485/422 DRIVER OUTPUT SHORT CIRCUIT CURRENT

China·Nanjing City ·No.166 Middle Zhengfang Road Tel: +86-25-68005828 Fax: +86-25-68005835

multiprotocol transceiver

FIGURE 8. RS-232 RECEIVER PROPAGATION DELAY

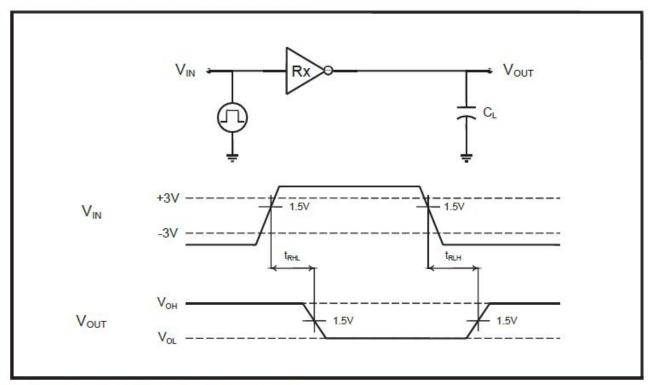
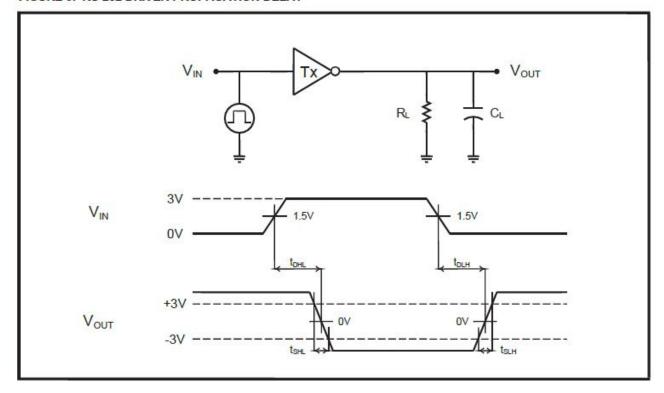



FIGURE 9. RS-232 DRIVER PROPAGATION DELAY

China·Nanjing City ·No.166 Middle Zhengfang Road 68005835

Tel: +86-25-68005828 Fax: +86-25-

multiprotocol transceiver

FIGURE 10. RS-485/422 RECEIVER PROPAGATION DELAY

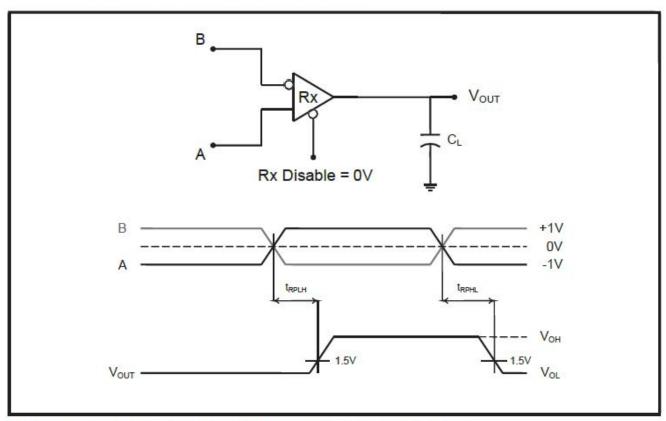
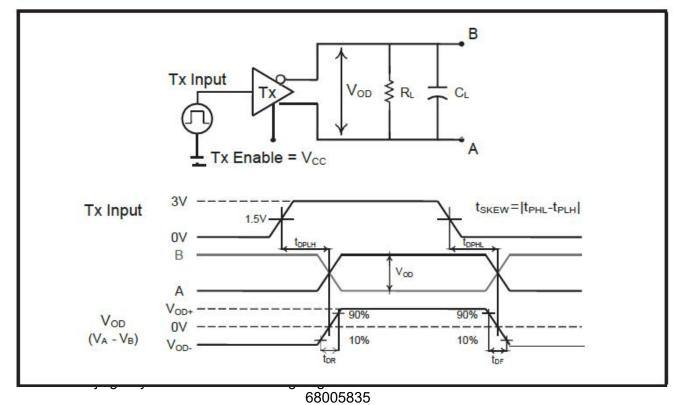
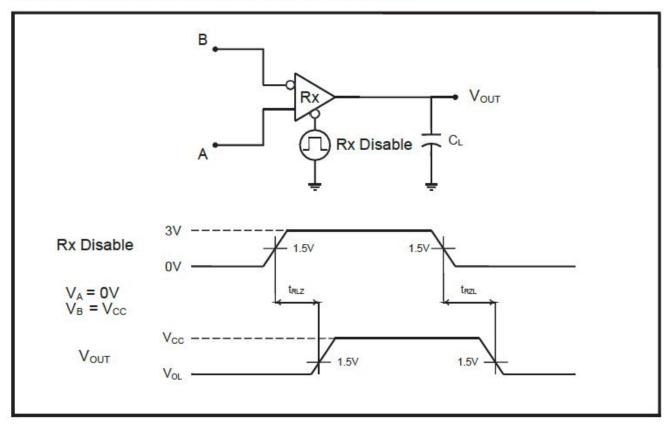




FIGURE 11. RS-485/422 DRIVER PROPAGATION DELAY AND RISE/FALL TIMES

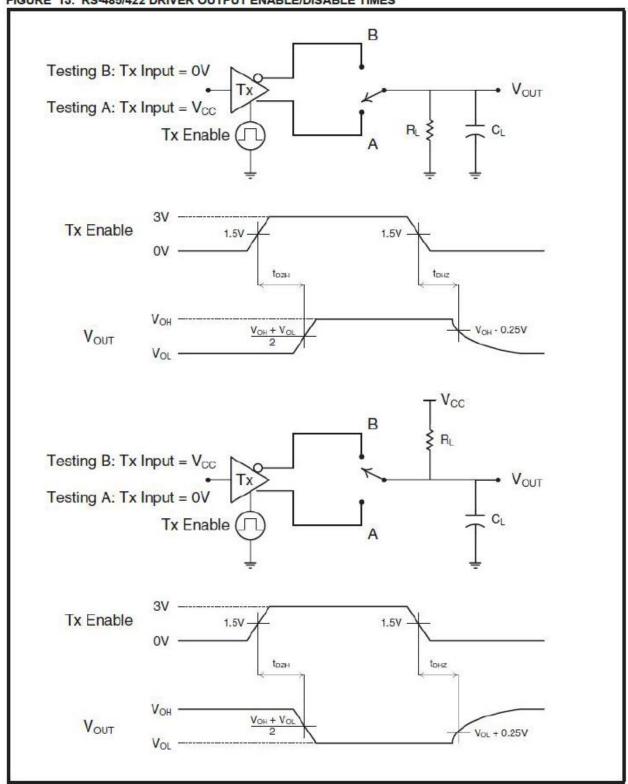
multiprotocol transceiver

FIGURE 12. RS-485/422 RECEIVER OUTPUT ENABLE/DISABLE TIMES

China·Nanjing City ·No.166 Middle Zhengfang Road 68005835

Email: support@njgwdz.net __18

Tel: +86-25-68005828


Fax: +86-25-

multiprotocol transceiver

FIGURE 13. RS-485/422 DRIVER OUTPUT ENABLE/DISABLE TIMES

China·Nanjing City ·No.166 Middle Zhengfang Road 68005835

Email: support@njgwdz.net

Tel: +86-25-68005828 F

Fax: +86-25-

multiprotocol transceiver

PRODUCT SUMMARY

The WS330E is an advanced multiprotocol transceiver supporting RS-232, RS-485, and RS-422 serial standards in a 40 pin QFN package. Integrated four configuration modes allow all three protocols to be used interchangeably over a single cable or connector with no additional switching components. The RS- 485/422 modes feature one driver and one receiver (1TX/1RX) in both half and full duplex configurations. The RS-232 mode (2TX/2RX) provides four signals commonly used with the DB9 RS-232 connector. A dedicated mode is also available for diagnostic loopback testing.

ENHANCED FAILSAFE

Ordinary RS-485 differential receivers will be in an indeterminate state whenever the data bus is not being actively driven. The enhanced failsafe feature of the WS330E guarantees a logic-high receiver output when the receiver inputs are open, shorted, or terminated but idle/undriven. The enhanced failsafe interprets 0V differential as a logic high with a minimum 50mV noise margin, while maintaining compliance with the EIA/TIA-485 standard of ±200mV. No external biasing resistors are required, further easing the usage of multiple protocols over a single connector.

±15kV ESD PROTECTION

ESD protection structures are incorporated on all pins to protect against electrostatic discharges encountered during handling and assembly. The bus pins (driver outputs and receiver inputs) have extra protection structures, which have been tested up to ±15kV without damage. These structures withstand high ESD in all states: normal operation, shutdown and powered down.

ESD protection is be tested in various ways. Guobo Electronic uses the following methods to qualify the protection structures designed into WS330E:

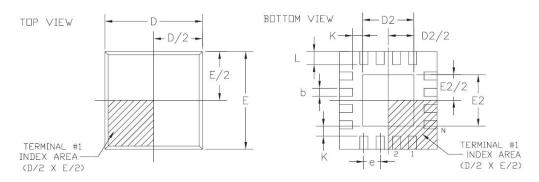
- ±15kV using the Human Body Model (HBM)
- ± 8kV using IEC 61000-4-2 Contact Discharge
- ± 15kV using IEC 61000-4-2 Air Gap Discharge

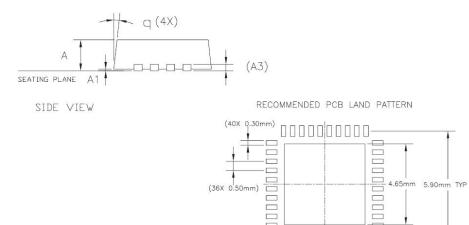
The IEC 61000-4-2 standard is more rigorous than HBM, resulting in lower voltage levels compared with HBM for the same level of ESD protection. Because IEC 61000-4-2 specifies a lower series resistance, the peak current is higher than HBM. The WS330E has passed both HBM and IEC 61000-4-2 testing without damage.

DIAGNOSTIC LOOPBACK MODE

The WS330E includes a diagnostic digital loop back mode for system testing as shown in Figure 1. The loopback mode connects the TTL driver inputs to the TTL receiver outputs, bypassing the analog driver and receiver circuitry. The analog/bus pins are internally disconnected in this mode.

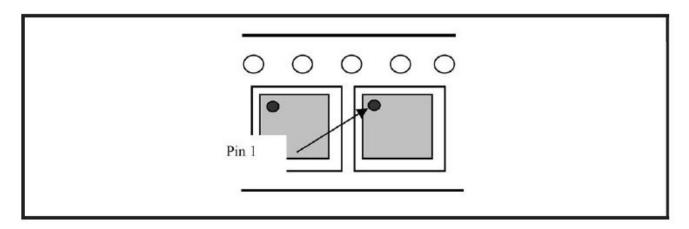
China Nanjing City No.166 Middle Zhengfang Road Tel: +86-25-68005828 Fax: +86-25-


68005835



multiprotocol transceiver

PACKAGE DRAWINGS


FIGURE 14. QFN-40 PACKAGE OUTLINE DRAWING AND RECOMMENDED PCB LAND PATTERN

SYMBOLS		ISIONS I ontrol U		DIMENSIONS IN INCH (Reference Unit)		
	MIN	NOM	MAX	MIN	NOM	MAX
A	0.80	0.90	1.00	0.032	0.035	0.039
A1	0.00	0.02	0.05	0.000	0.001	0.002
A3	(0.20 REF	7		0.008	REF
b	0.18	0.25	0.30	0.007	0.010	0.012
D	6.00 BSC				0	
D2	4.50	4.65	4.80	0.177	0.183	0.189
E		6.00 BS	c	0.236 BSC		
E2	4.50	4.65	4.80	0.177	0.183	0.189
е	(0.50 BS	c	- 1	0.020 BS	C
L	0.35	0.40	0.45	0.014	0.016	0.018
K	0.20	8 <u>—</u> 8	192_94	0.008	-	
q	0,	8-9	14"	0,	87-8	14*
N		40			40	
ND		10			10	
NE		10			10	

FIGURE 15. PIN 1 ORIENTATION IN TAPE

(40X 0.80mm)

China·Nanjing City ·No.166 Middle Zhengfang Road 68005835

Tel: +86-25-68005828

Fax: +86-25-

multiprotocol transceiver

Package Information

Part number	package	MOQ	TAPE SIZE	MSL	Humidity sensitive label	baking time /H	baking temp
WS330EER1	QFN40-6*6	2000	13 INCH	3	Υ	6	125

REVISION HISTORY

DATE	REVISION	DESCRIPTION
April 2023	1.0	Product release

China·Nanjing City ·No.166 Middle Zhengfang Road Tel: +86-25-68005828 Fax: +86-25-68005835