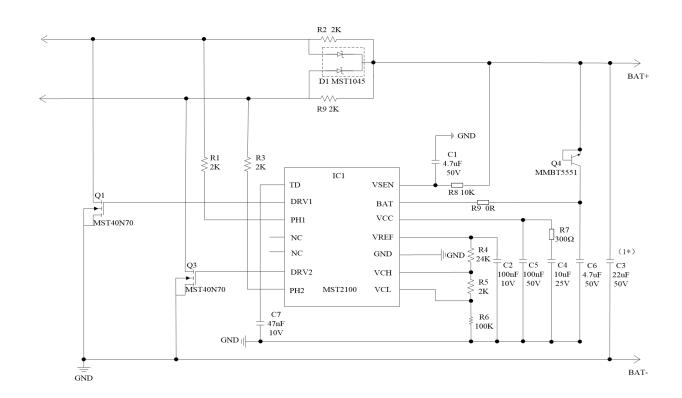


摩托车单相磁电机调压器控制芯片

特点

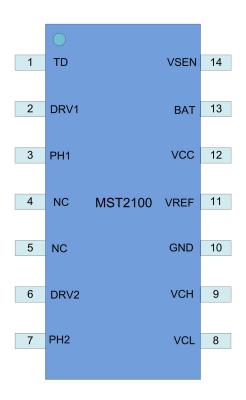
- 采用过零调压模式
- 过压时及时调压
- 均匀分配各相功率
- 自带内置 LDO 供电,无需外加电源
- 热插拔保护
- 电源调制电压可调
- 超低静态电流
- 简洁的应用方案
- 可用封装: SOP14

应用


● 摩托车单相磁电机调压器的控制 IC

典型应用电路

描述


MST2100KD 是一款用于摩托车单相磁电机调压器的控制 IC。内置多重保护机制。在电瓶断开情况下,能够保护负载免受高压冲击。采用过零调压的方式,可抑制系统的电磁干扰,减少调压器热负荷。

MST2100KD 通过内部时序管理,均匀分配各相的功率,避免了单一相功率集中的现象,控制调压器平稳有序工作,保障摩托车充电系统可靠耐用。采用集成IC,可减小电瓶的静态电流消耗,延长电瓶使用寿命。

封装形式及引脚分布

引脚编号	引脚名称	引脚功能描述		
1	TD	检测磁电机是否工作,接一个47nF的电容到地		
2	DRV1	第一相调制开关驱动,接N型MOSFET栅极		
3	PH1	第一相电压采样端,通过一个2kΩ的电阻接到磁电机第一相输出		
4, 5	NC	空脚,未打线		
6	DRV2	第二相调制开关驱动,接N型MOSFET栅极		
7	PH2	第二相电压采样端,通过一个2kΩ的电阻接到磁电机第三相输出		
8	VCL	设置调整电压下限		
9	VCH	设置调整电压上限		
10	GND	芯片地		
11	VREF	2.5V参考电压,外接100nF电容		
12	VCC	芯片内部电源输出端		
13	BAT	电瓶连接端		
14	VSEN	电瓶电压检测端		

绝对最大额定参数

符号	参数名称	测试条件	最小	最大	单位
PH1	第1相采样端		-0.3	30	V
PH2	第2相采样端		-0.3	30	V
DRV1	第1相MOS驱动端		-0.3	20	V
DRV2	第2相MOS驱动端		-0.3	20	V
BAT	电瓶连接端		-0.3	40	V
VCC	芯片内部电源输出端		-0.3	20	V
TD	启动检测端		-0.3	5	V
VCH	设置调整电压上限		-0.3	5	V
VCL	设置调整电压下限		-0.3	5	V
VSEN	电瓶电压检测端		-0.3	40	V
TA	环境温度		-40	125	°C
Tstr	存储温度		-40	150	°C

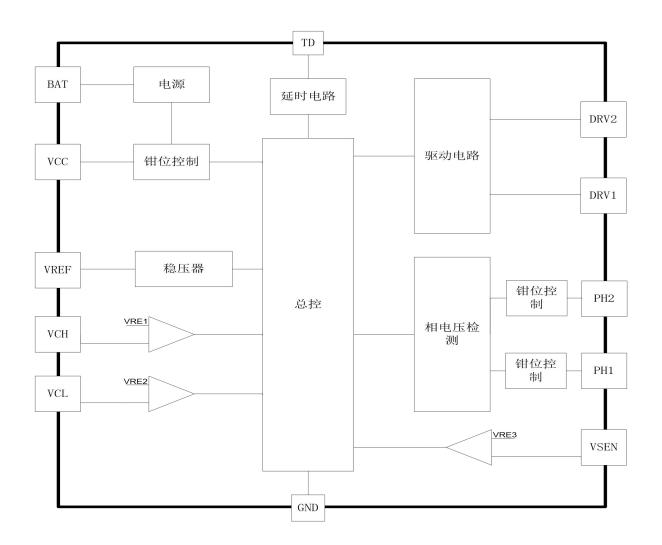
注:超过额定参数规定的范围,会造成芯片的损坏,不能保证超过额定参数范围的芯片的工作状态。暴露在额定参数之外将影响芯片的可靠性。

ESD 参数

参数	描述	参数范围	单位
V_{ESD}	人体模式(HBM)	2	KV

注:超过额定参数规定的范围,会造成芯片的损坏,不能保证超过额定参数范围的芯片的工作状态。暴露在额定参数之外将影响芯片的可靠性。

www.mst-ic.com Page 3-13 Rev.1-0 Jul. 2023



电气参数

(除特殊说明外,以下参数均在 $T_A=25$ °C, VBAT=12V 条件下测试)

特性	符号	测试条件	最小值	典型值	最大值	单位
调压器输出电压	V_{BAT}	接电瓶情况下	14	14.5	15	V
休眠电流	I _{SLEEP}	磁电机停止工作	1	50	-	μА
静态工作电流	I_Q	PH1=PH2=0	-	750	1000	μΑ
VCC工作电压	V _{CC_MAX}	$PH1=PH2=0 \ V_{BAT}=7V \sim 15V$	4		15	V
VREF电压 (A)		PH1=PH2=0 V _{BAT} =7V to 15V	2.475	2.5	2.525	V
VREF电压 (B)	$ m V_{REF}$		2.425	2.45	2.475	V
VREF电压 (C)			2.525	2.55	2.575	V
相电压负到正过零点	$V_{\rm ZERO_P}$		3	5	7	mV
相电压正到负过零点	V _{ZERO_N}		-7	-5	-3	mV
过压保护电压	V_{OVP}	空载情况下	20	21	22	V
驱动电流	I			30		mA

逻辑框图

概述

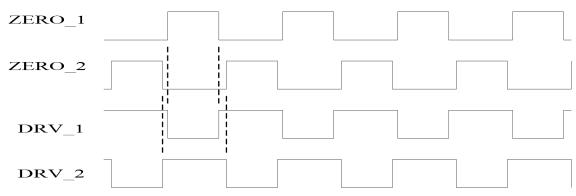
MST2100KD 是一款用于摩托车单相磁电机调压器的控制 IC。内置多重保护机制。在电瓶断开情况下,能够保护负载免受高压冲击。采用过零调压的方式,可抑制系统的电磁干扰,减少调压器热负荷。通过内部时序管理,均匀分配各相的功率,避免了单一相功率集中的现象,控制调压器平稳有序工作,保障摩托车充电系统可靠耐用。采用集成 IC,可减小电瓶的静态电流消耗,延长电瓶使用寿命。

TD引脚电容

该引脚端若采用过小容值的电容,当磁电机处于低转速时,会造成TD引脚电压不稳定,使芯片不能正常工作;若采用过大容值的电容,又会影响系统热插拔保护的反应速度。推荐采用47nF。

VSEN引脚电容

VSEN引脚的主要功能是:检测输出电压。改变该引脚电容的容值会影响到内部的采样频率,推荐使用4.7uF。


VREF引脚电容

VREF引脚电容的主要功能是:稳定VREF电压。如果VREF引脚端采用了容值较小的电容,那么该引脚纹波会比较大,将会影响到系统内部基准电压;如果VREF引脚端采用的电容容值过大,那么将会影响到系统响应速度。推荐采用100nF。

过零点检测

过零点检测功能如图 1 所示。当相电压信号由负压上升至 5mV 时,判断为对应相的输出电流由负到正过零,该相控制对应相 MOS 关断,为电瓶充电;同理,当相电压信号由正下降至-5mV 时,判断对应相的输出电流由正到负过零,该相控制对应相 MOS 导通,停止为电瓶充电。若 N 型 MOS 导通阻抗为 $10m\Omega$,那么在磁电机输出电流由负向电流上升至 0.5A 时,判断为该相由负到正过零;在磁电机输出电流由正向电流下降至-0.5A 时,判断为该相由正到负过零。

www.mst-ic.com Page 6-13 Rev.1-0 Jul. 2023

备注:

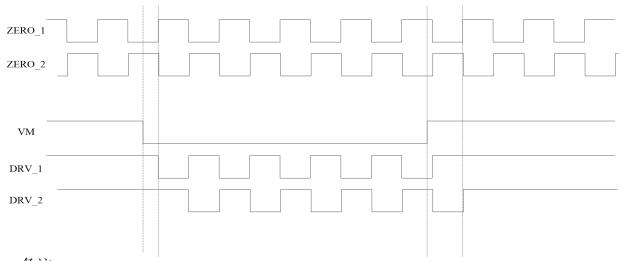
- 1. ZERO_1、ZERO_2分别为各相电压过零点检测信号。 2. DRV_1、DRV_2分别为各相的驱动输出信号。

调压模式

MST2100KD 可同通过设定电瓶的上限电压和下限电压来设置调制电压。 调整电压上下限的设定公式为

$$V_{ADJ_L} = \frac{R_6}{R_4 + R_5 + R_6} \times 2.5V \times 7.25 V$$

$$V_{ADJ_H} = \frac{R_5 + R_6}{R_4 + R_5 + R_6} \times 2.5 \times 7.25 V$$


调整电压中心值的设定公式为

$$V_{ADJ} = \frac{R_5 + 2R_6}{2 (R_4 + R_5 + R_6)} \times 2.5 \times 7.25 V$$

调整电压峰峰值差的设定公式为

$$V_{ADJ} = \frac{R_5}{R_4 + R_5 + R_6} \times 2.5 \times 7.25 V$$

调压模式工作原理如图 2 所示。通过对电瓶电压采样,当采样电压低于预设下限电压,调压器 在各相的正半周期关断对应相的 MOS 管,对电瓶或负载充电。同理,当采样电压高于预设的上限 电压值,调压器系统在各相的正半周期导通对应相的 MOS 管,停止对电瓶或负载充电。

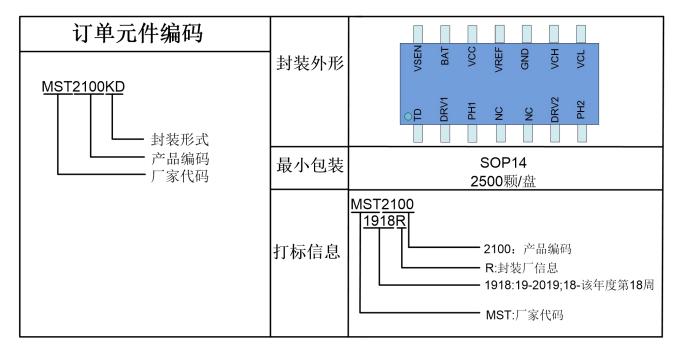
- 备注:
- 1. ZERO_1、ZERO_2分别为各相电压过零点检测信号。
- 2. VM为调整电压检测信号。
- 3. DRV_1、DRV_2分别为各相的驱动输出信号。

同时,MST2100KD 内置自动均衡逻辑,保障调压过程中各相输出相等的周期数,避免单一相平均电流太大而导致的个别元件发热问题。

过电压模式

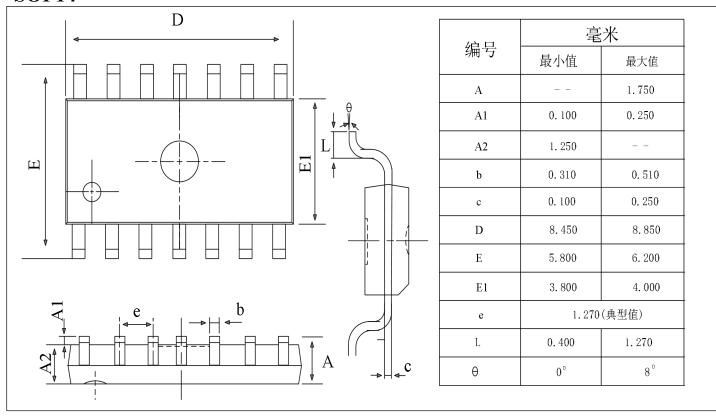
通过对相电压进行采样,当相电压高于过压保护电压 21V 时,使对应相的 MOS 管立刻导通,相电压被拉低,直到下一周期正向过零时再恢复正常输出。

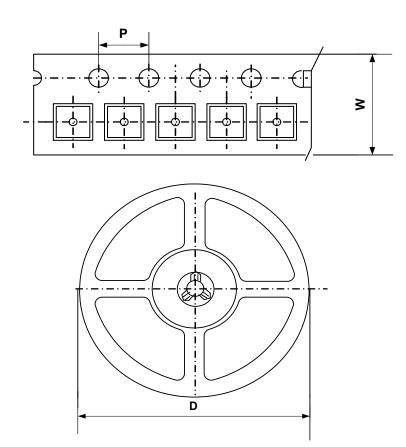
热插拔保护


磁电机工作时,因某种原因可能会导致调压器的突然接入或断开,此时整个芯片的供电系统尚未建立,而磁电机输出电压较高,可能会损坏调压器。针对这一异常使用情况,在芯片中增加独立的热插拔保护功能,在调压器与磁电机连接的瞬间,如果相电压高于 35V,则立刻强制导通对应相的 MOS 管,以此避免热插拔对调压器的损害,保障系统安全可靠。由于该种保护模式会使对应相 MOS 管处于半导通状态,所以该种保护为短暂性保护,应调节外围电路使系统尽快正常工作,尽快退出该保护模式。

停机状态

当磁电机停止工作时,MST2100KD会进入休眠态,几乎不再消耗电瓶电能。


订购标信息



封装外形及尺寸

SOP14

卷盘编带规格

封装	W(mm)	P(mm)	D(mm)	最小包装
SOP14	16.0mm	4.0mm	330.0mm	2500 颗

www.mst-ic.com Page 11-13 Rev.1-0 Jul. 2023

修订历史记录和检查表

版本	日期	修订项目	修改人	函数和 规范检查	包和 磁带检查
1-0	2023-7-6		邢晓林	邢晓林	邢晓林

www.mst-ic.com Page 12-13 Rev.1-0 Jul. 2023

重要通知

MST 不对本文件作出任何类型的明示或默示保证,包括但不限于对适销性和特定用途适用性的默示保证(以及任何司法管辖区法律下的同等保证)

MST 保留修改、增强、改进、更正或其他变更的权利,无需另行通知本文件和本文所述的任何产品。 MST 不承担因应用或使用本文件或本文所述任何产品而产生的任何责任; MST 既不转让其专利权 或商标权下的任何许可,也不转让其他人的权利。本文件或本申请中所述产品的任何客户或用户应 承担使用本文件或产品的所有风险,并同意使 MST 和其产品在 MST 网站上的所有公司免受任何损 害。

MST 不对通过未经授权的销售渠道购买的任何产品承担任何责任。如果客户购买或使用 MST 产品用于任何意外或未经授权的应用,客户应赔偿并使 MST 及其代表免受直接或间接产生的所有索赔、损害赔偿、费用和律师费,与此类非故意或未经授权的应用相关的任何人身伤害或死亡索赔。

本文所述产品可能包含在一项或多项美国、国际或外国专利中。此处注明的产品名称和标记也可能包含在一个或多个美国、国际或外国商标中。

www.mst-ic.com Page 13-13 Rev.1-0 Jul. 2023