概述

SLM485 是一款+5V、半双工,±15KV ESD 保护的 RS-485/RS-422 收发器电路,电路内部包含一路驱动器和一路接收器。

SLM485 可以实现最高 2Mbps 的传输速率。驱动器具有短路电流限制,并可以通过热关断电路将驱动器输出置为高阻状态,以防止过度的功率损耗。接收器输入具有失效保护特性,当输入开路时,可以确保逻辑高电平输出。所有驱动器输出提供±15KV 人体模式 ESD 保护,±15KV IEC 气隙放电模式。采用 8 脚 SO 封装,工作于-40℃至+125℃扩展级温度范围。

特性

RoHS

- 低静态电流
- 三态输出
- 总线允许多达128个收发器
- 半双工工作模式
- 单电源+5V 供电
- 驱动器超载保护:限电流和热待机
- ±15KV ESD保护-人体模式(HBM)

应用

- 低功耗RS-485收发器
- 低功耗RS-422收发器
- 电平变换器
- 防电磁干扰(EMI)的收发器
- 工业控制的局域网

原理框图

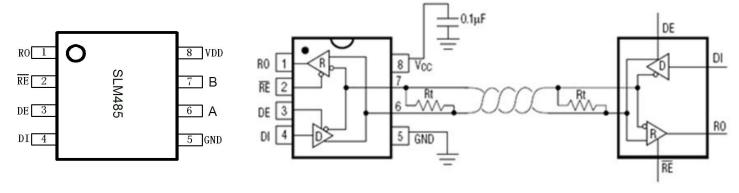


图 1. 管脚定义和典型工作原理图

管脚功能描述

管脚号	名称	功能
1	RO	接收器输出: V(A)-V(B)> 200mV, RO输出为高电平; 如果
•	1.O	V(A)-V(B)< -200mV,RO输出为低电平
		接收器输出使能, \overline{RE} 接低电平时 \overline{RO} 输出有效; \overline{RE} 接高电平
2	\overline{RE}	时,接收器关断。 \overline{RE} 采用热插拔输入结构。 \overline{RE} 为高电平,
		DE为低电平,整个芯片处于关断状态。
		驱动器输出使能,DE 置为高电平时,驱动器使能;DE 置为低
3	DE	电平时,驱动器关断,驱动器输出为高阻态。 RE 为高电平,
		DE 为低电平,整个芯片处于关断状态。
		驱动器输入,DI为低电平时强制同相输出为低电平,反相输出
4	DI	为高电平; DI为高电平时强制同相输出为高电平,反相输出为
		低电平。DI采用热插拔输入结构。
5	GND	地
6	Α	接收器同相输入和驱动器同相输出
7	В	接收器反相输入和驱动器反相输出
8	VCC	正电源, V _{CC} =+5V±5%, 采用一只 0.1μF 电容旁路 V _{CC} 至 GND

最大额定值

参数	额定值
供电电压 (VCC)	12V
控制输入电压 (\overline{RE} , DE)	-0.5V 到 (VCC + 0.5V)
驱动器输入电压 (DI)	-0.5V 到 (VCC + 0.5V)
驱动器输出电压 (A, B)	0V 到 +5V
接收器输入电压 (A, B)	0V 到 +5V
接收器输出电压 (RO)	-0.5V 到 (VCC + 0.5V)
持续工作功耗 (TA = +70°C)	
DIP-8	727mW
SOP-8	471mW
工作温度范围	-40°C 到 +85°C
存贮温度范围	-65°C 到 +160°C
焊接温度 (焊接, 10 秒)	+300°C

SLM485 失效保护、高速 RS-485/RS-422 收发器

直流电特性

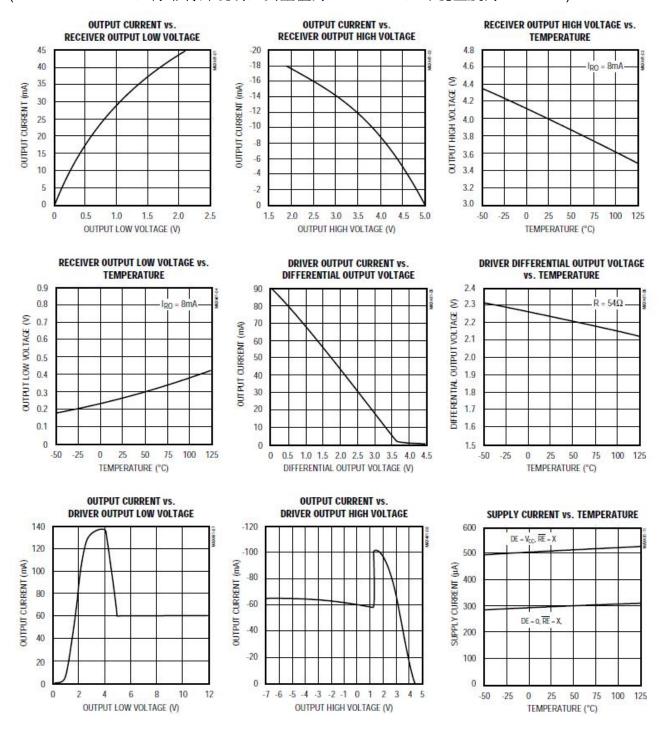
(VCC = +5V ± 5%,除非特殊说明,典型值为VCC= +5V,环境温度为 +25°C.)

参数	符号	条件		最小	典型	最大	単位
	VOD1	无负载				5	V
差分驱动器输出	VOD2	R=50Ω (RS-422)		2			V
	R=27Ω (RS-485), 图2		5),图2	1.5		5	
补偿输出状态时的驱动器差分输出	ΔVOD	R=27 Ω or 50 Ω ,				0.2	٧
电压变化大小	Δ۷ΟΒ	K-2752 01 3052,	図2				
驱动器共模输出电压	Voc	R=27 Ω or 50 Ω ,	图2			3	٧
补偿输出状态时的驱动器共模输出	ΔVOD	R=27 Ω or 50 Ω ,图2				0.2	V
电压变化大小	Δ۷ΟΒ	K-2752 01 3052,	团乙				
输入高电压	VIH	DE, DI,		2.0			V
输入低电压	VIL	DE, DI,				8.0	V
输入电流	liN1	DE, DI,				±2	μΑ
	lin2	DE=0V,	VCM=5V			125	μΑ
输入电流 (A, B)		VCC=0V 或	VcM=0V	-75			μΑ
		5.25V	V CIVI-U V	-75			
接收器差分门槛电压	VTH	0V ≤ VCM ≤ 5V		-0.2		0.2	V
接收器输入滞后电压	ΔV TH	VCM=0V			100		mV
接收器输出高电压	Voh	IO=-4mA, VID=200mV		3.5			V
接收器输出低电压	VOL	IO=-4mA, VID=-200mV				0.4	V
接收器三态(高阻)输出电流	IOZR	0.4V ≤ VO ≤ 2.4V				±1	μΑ
Receiver Input Resistance	RIN	0V ≤ VCM ≤ 5V		12			kΩ
工名 # 供 由 由 法 (注 1)	loo	\overline{RE} =DI=0V 或	DE=Vcc		380	900	μΑ
无负载供电电流(注1)	ICC	VCC	DE=0V		350	500	
关断电流	Ishdn	DE=GND, RE=VCC			12	16	μΑ
驱动器短路电流VO为高电平	lOSD1	0V ≤ VCM ≤ 5V (注2)		35		250	mA
驱动器短路电流VO为低电平	losd2	0V ≤ VCM ≤ 5V (注2)		35		250	mA
接收器短路电流	Iosr	0V ≤ VCM ≤ VC	С	7		95	mA

SLM485 *失效保护、高速 RS-485/RS-422 收发器*

开关特性

(VCC = +5V ± 5%, 除非特殊说明, 典型值为VCC= +5V, 环境温度为 +25°C.)


参数	符号	条件	最小	典型	最大	単位
	tPLH	图4和6,	250	740	1000	
驱动器输入到输出	tPHL	RDIFF=54 Ω ,	250	840	1000	ns
	IPHL	CL1=CL2=100pF	250			
		图4和6,			40	ns
驱动器输出压摆到输出	tskew	RDIFF=54 Ω ,	3	15		
		CL1=CL2=100pF				
 驱动器使能到输出高压	tzh	图5和7,		40	70	ns
地 约爾文化到棚田同立	(ZII	CL=100pF, S2关闭		40		
 驱动器使能到输出低压	tzL	图5和7,		40	70	ns
犯	IZL	CL=100pF, S1关闭				
 驱动器从低电平到无效时间	tLZ	图5和7,		560	700	ns
<u> </u>	ILZ	CL=15pF, S1关闭				
驱动器从高电平到无效时间	tHZ	图5和7,		560	700	ns
<u> </u>		CL=15pF, S2关闭				
	tPLH,	图4和8,			200	ns
接收器输入到输出		RDIFF=54 Ω ,	20	100		
		CL1=CL2=100pF				
		图4和8,				ns
tPLH-tPHL 不对称差分接收器	tskd	RDIFF=54 Ω ,		13		
		CL1=CL2=100pF				
接收器使能到输出低电平	tzL	图3和9,		100	250	ns
按权益 使形判制山區电干	LZL	CRL=15pF, S1关闭		100		
接收器使能到输出高电平	4-711	图3和9,		100	250	ns
按权益 使形判制山向电干	tzH	CRL=15pF, S2关闭		100	250	
接收器从低电平到无效时间	tLZ	图3和9,	20	50	ne	
按权价从以电干到儿双时间	ILZ	CRL=15pF, S1关闭		20	50	ns
接收器从高电平到无效时间	京山亚列工沙时间 417	图3和9,		20	50	
按收价//	tHZ	CRL=15pF, S2关闭		20	50	ns
最大数据传输速率	fMAX			2		Mbps

注1: 当DE=0V时,提供给负载转换器的电源电流规范有效

注2:峰值电流,请参考典型工作特性

典型工作特性

(VCC = +5V ± 5%, 除非特殊说明, 典型值为VCC= +5V, 环境温度为 +25°C.)

测试电路

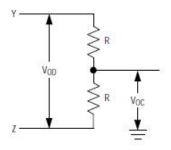


图 2. 驱动器 DC 测试负载

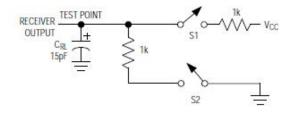


图 3. 接收器定时测试负载

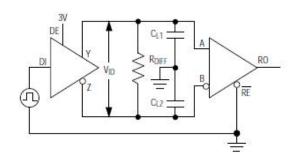


图 4. 驱动器/接收器定时测试电路

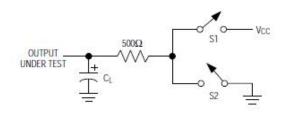


图 5. 驱动器定时测试负载

传输延时

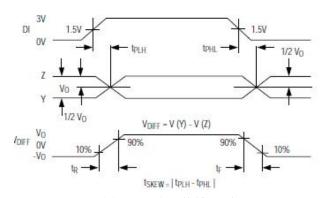


图 6. 驱动器传输延时

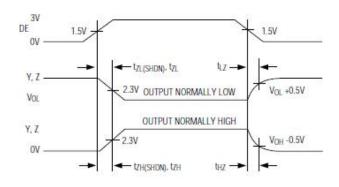


图 7. 驱动器使能和无效时间

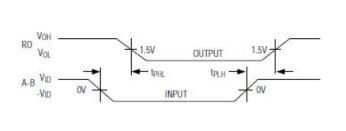


图 8. 接收器传输延时

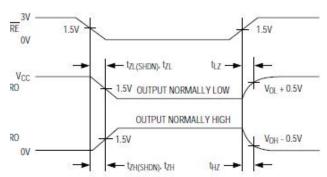


图 9. 接收器使能和无效时间

功能表

表 1. 传输

	输入		输	出
\overline{RE}	DE	DI	Α	В
Х	1	1	0	1
Х	1	0	1	0
0	0	Х	High-Z	High-Z
1	0	Х	关	断

High-Z: 高阻

X: 无需关注

表 2. 接收

	输出		
\overline{RE}	DE	A-B	RO
0	Х	≥+0.2v	1
0	X	≤-0.2v	0
0	X	输入悬空	1
1	0	X	关断

X: 无需关注

High-Z: 高阻

应用信息

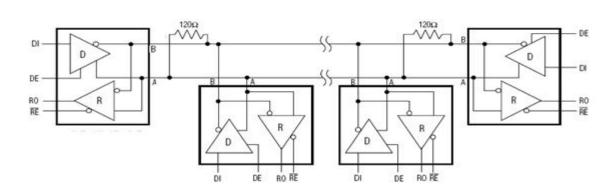


图10.典型半双工RS485工作电路

低功耗关断模式

RE 为高电平,DE 为低电平,芯片进入低功耗关断模式。关断电流典型值为 2 微安。 RE 和 DE 可以同时驱动;如果 RE 为高电平,DE 为低电平保持时间小于 50 纳秒,芯片不会进入关断模式;如果保持时间超过 600 纳秒,芯片会确保进入关断模式。

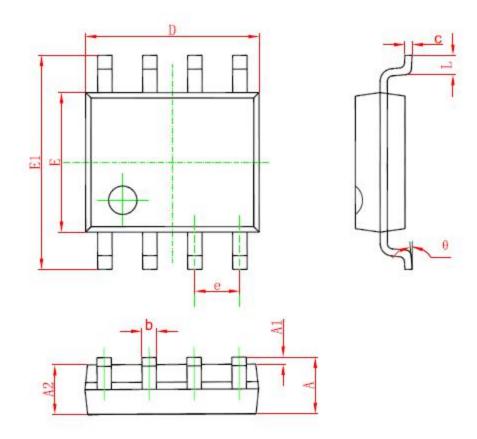
驱动器输出保护

两种机理实现过大电流和过大功耗保护。一个是过流保护电路。当正常驱动总线时,由于总线异常导致芯片电流过大时,芯片内部的过流保护电路起作用,来保证驱动电流不会超过一定条件下的设定值。另一个是过温保护。当芯片功耗太大,温度上升时,过温保护电路保证芯片不会损坏。如果芯片进入过温保护状态,驱动器输出为高阻态。

典型应用

SLM485 应用于双向数据通信的多点 网络。图 10 给出了典型的应用网络。为了 降低反射,应当在传输线两端以其特性阻抗 进行终端匹配,主干线以外的分支线路的长 度应尽可能短。

静电保护


SLM485的所有管脚均具有静电泄放保护电路来防止人手触摸或者装配时的ESD事件对芯片造成损坏。驱动器的输出和接收器的输入管脚采用额外增强的ESD保护电路,这些管脚可以抵抗±15kV的ESD冲击而不会损坏。所有ESD保护电路在正常工作时均处于关断状态,并不消耗电流。

ESD 事件后,SLM485 可以保证正常工作,而不会出现闩锁和损坏情况。

ESD 保护性能测试方法有很多种。驱动器的输出和接收器的输入采用如下 ESD 测试方法来衡量 ESD 性能: 1) ±15kV 人体模型 2) ±15kV IEC61000-4-2 气隙放电模型。

封装信息

SOP8 PACKAGE OUTLINE DIMENSIONS

0 1 1	Dimensions I	n Millimeters	Dimensions In Inches		
Symbol	Min	Max	Min	Max	
A	1. 350	1. 750	0.053	0.069	
A1	0. 100	0. 250	0.004	0.010	
A2	1. 350	1.550	0.053	0.061	
b	0. 330	0.510	0.013	0.020	
С	0.170	0. 250	0.006	0.010	
D	4. 700	5. 100	0. 185	0.200	
E	3. 800	4. 000	0. 150	0.157	
E1	5. 800	6. 200	0. 228	0.244	
е	1. 270 (BSC)		0.050	O (BSC)	
L	0. 400	1. 270	0.016	0.050	
θ	0°	8°	0°	8°	