

PART NUMBER 74HC659DW-ROCV

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All re-creations are done with the approval of the Original Component Manufacturer. (OCM)

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceeds the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-38535
 - Class Q Military
 - Class V Space Level

Qualified Suppliers List of Distributors (QSLD)

 Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OCM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

PART NUMBER 74HC659

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All re-creations are done with the approval of the Original Component Manufacturer. (OCM)

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceeds the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-38535
 - Class Q Military
 - Class V Space Level

Qualified Suppliers List of Distributors (QSLD)

 Rochester is a critical supplier to DLA and meets all industry and DLA standards.

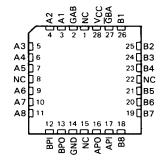
Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OCM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

D2839, MARCH 1984-REVISED SEPTEMBER 1987

- Bus Transceivers with Inverting Outputs ('HC658) or True Outputs ('HC659)
- Generates a Parity Bit for A Bus and B Bus
- Easily Cascadable
- Internal Active Pull-Ups and Pull-Downs
- High-Current 3-State Outputs Can Drive Up to 15 LSTTL Loads
- Package Options Include Plastic "Small Outline" Packages, Ceramic Chip Carriers, and Standard Plastic and Ceramic 300-mil DIPs
- Dependable Texas Instruments Quality and Reliability

description


These octal bus transceivers are designed for asynchronous, bidirectional communication between data buses. The devices transmit data from the A Bus to the B Bus or from the B Bus to the A Bus, depending on the level at the direction control inputs, GAB and GBA. These devices also generate parity outputs, APO and BPO, which reflect the number of high levels at the A Bus and B Bus, respectively, taking into account the parity inputs API and BPI.

The bidirectional I/O ports feature active circuitry on the input stage that, when the output shared by that pin is disabled, will maintain the input in the last state taken by the output. This state will be maintained until changed by activity on the bus. The advantage of this arrangement is that when all outputs on the bus are disabled, the inputs will be prevented from floating, resulting in minimum power dissipation and minimum susceptibility to noise. This eliminates any need for external pull-up or pull-down resistors. The parity inputs API and BPI have similar circuits. For futher information, see Typical Application Data.

The SN54HC658 and SN54HC659 are characterized for operation over the full military temperature range of −55°C to 125°C. The SN74HC658 and SN74HC659 are characterized for operation from −40°C to 85°C.

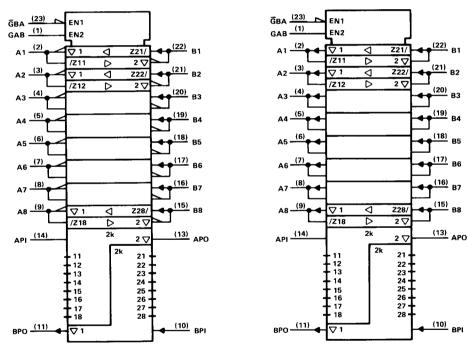
SN74HC658, SN74HC659 . (. DW) OR NIT PACKAGE (TOP VIEW) GAB T U24 VCC A1 □2 23 GBA 22 B1 A2 🛮 3 A3∏4 21 B2 A4∏5 20 B3 19 B4 A5∏6 A6 🛛 7 18 B5 A7 ∏8 17 DB6 A8∏9 16 B7 BPI ☐10 15 B8 BPO []11 14 API GND 12 13 APO SN54HC658 SN54HC659 ... FK PACKAGE (TOP VIEW)

SN54HC658 SN54HC659 TPACKAGE

NC-No internal connection

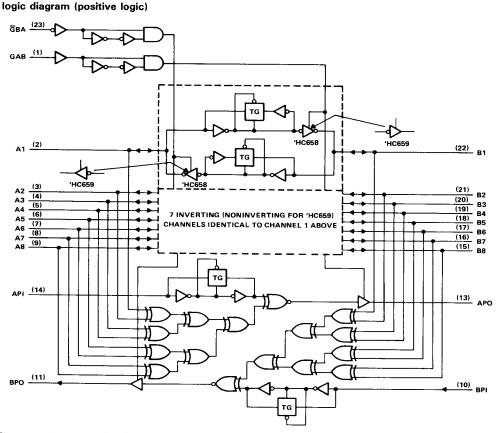
PRODUCTION DATA documents contain information current as of publication date. Products conform to specifications per the terms of Texas instruments standard warranty. Production processing does not necessarily include testing of all parameters.

Copyright © 1984, Texas instruments incorporated


FUNCTION 1	TABLE
------------	-------

CONTROL INPUTS GBA GAB		NUMBER OF HIGH			PUTS	OPERATION				
		INPUTS ON A BUS AND API	INPUTS ON B BUS AND BPI	APO	вро	"НС658	'HC659			
		Х	X 0, 2, 4, 6, 8 Z H		н	B Data to A Bus	B Data to A Bus			
L	L X		X 1, 3, 5, 7, 9 Z		L	B Data to A Bus	D Data to A Dus			
		0, 2, 4, 6, 8	X	Н	Z	A Data to B Bus	A Data to B Bus			
н	Н	1, 3, 5, 7, 9	X	L	Z	A Data to B Bus				
Н	L	×	X	Z	Z	Isolation	Isolation			
		X	0, 2, 4, 6, 8		Н					
	١	X	1, 3, 5, 7, 9		L	B Data to A Bus,	B Data to A Bus,			
L	Н	0, 2, 4, 6, 8	Х	Н		A Data to B Bus	A Data to B Bus			
		1, 3, 5, 7, 9	Х	L			1			

logic symbols†


′HC658

'HC659

 $^{^{\}dagger} These$ symbols are in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12. Pin numbers shown are for DW, JT, and NT packages.

Pin numbers shown are for DW, JT, and NT packages.

absolute maximum ratings over operating free-air temperature range†

Supply voltage, VCC0.5 V to 7 V
Input clamp current, I_{K} (V_{I} < 0 or V_{I} > V_{CC})
Output clamp current, IOK (VO < 0 or VO > VCC)
Continuous output current, IO (VO = 0 to VCC)
Continuous current through VCC or GND pins
Lead temperature 1,6 mm (1/16 in) from case for 60 s: FK or JT package
Lead temperature 1,6 mm (1/16 in) from case for 10 s: DW or NT package
Storage temperature range65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

recommended operating conditions

			SN54HC658 SN54HC659			SI SI	UNIT		
			MIN	NOM	MAX	MIN	NOM	MAX	
VCC Supply voltage			2	5	6	2	5	6	V
		V _{CC} = 2 V	1.5			1.5			
νін	High-level input voltage	$V_{CC} = 4.5 \text{ V}$	3.15			3.15			V
	•	V _{CC} = 6 V	4.2			4.2			l
		V _{CC} = 2 V	0		0.3	0		0.3	
VIL	Low-level input voltage	V _{CC} = 4.5 V	0		0.9	0		0.9	v
. 1		VCC = 6 V	0		1.2	0		1.2	
Vı	Input voltage		0		Vcc	0		Vcc	V
VΩ	Output voltage		0		Vcc	0		Vcc	V
		V _{CC} = 2 V	0		1000	0		1000	
tt	Input transition (rise and fall) times	V _{CC} = 4.5 V	0		500	0		500	ns
		V _{CC} = 6 V	0		400	0		400	
TA	Operating free-air temperature	- 55		125	-40		85	°C	

electrical characteristics over recommended operating free-air temperature range (unless otherwise

PAF	RAMETER	METER TEST CONDITIONS		T _A = 25°C			SN54HC658 SN54HC659		SN74HC658 SN74HC659		UNIT
			1	MIN	TYP	MAX	MIN	MAX	MIN	MAX	l
			2 V	1.9	1.998		1.9		1.9		
νон		$V_I = V_{IH}$ or V_{IL} , $I_{OH} = -20 \mu A$	4.5 V	4.4	4.499		4.4		4.4		
٠			6 V	5.9	5.999		5.9		5.9		1
	All outputs	V _I = V _{IH} or V _{IL} , I _{OH} = -6 mA	4.5 V	3.98	4.30		3.7		3.84		V
.	except APO & BPO	$V_I = V_{IH}$ or V_{IL} , $I_{OH} = -7.8$ mA	6 V	5.48	5.80		5.2		5.34		
VOH	AFO	VI = VIH or VIL. IOH = -4 mA	4.5 V	3.98	4.30		3.7		3.84		
	or BPO	$V_I = V_{IH}$ or V_{IL} , $I_{OH} = -5.2$ mA	6 V	5.48	5.80		5.2		5.34		
			2 V		0.002	0.1		0.1		0.1	
VOL		$V_I = V_{IH}$ or V_{IL} , $I_{OL} = 20 \mu A$	4.5 V		0.001	0.1		0.1		0.1	
			6 V		0.001	0.1		0.1	<u> </u>	0.1	4
	All outputs except	V _I = V _{IH} or V _{IL} , I _{OL} = 6 mA	4.5 V		0.17	0.26		0.4		0.33	V
V	APO & BPO	$V_I = V_{IH}$ or V_{IL} , $I_{OL} = 7.8$ mA	6 V		0.15	0.26		0.4		0.33	1
VOL	APO or	VI = VIH or VIL, IOL = 4 mA	4.5 V		0.17	0.26		0.4		0.33	
	BPO	V _I = V _{IH} or V _{IL} , I _{OL} = 5.2 mA	6 V		0.15	0.26		0.4		0.33	<u> </u>
Ξ	GAB, GBA, API or BPI	VI = VCC or 0	6 V		± 0.1	± 100		± 1000	:	± 1000	nA
ioz	A or B	VO = VCC or 0	6 V		±0.01	±0.5		± 10		± 5	μΑ
Icc		V _I = V _{CC} or 0, I _O = 0	6 V			8		160	1	80	μΑ
C _i †	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		2 to 6 V		3	10		10		10	рF

[†]This parameter, C_i, does not apply to transceiver I/O ports.

switching characteristics over recommended operating free-air temperature range (unless otherwise noted), CL = 50 pF (see Note 1)

PARAMETER	FROM	то	то у (TA = 25°C			SN54I	1C658	SN74HC658		UNIT
PARAMETER	(INPUT)	(OUTPUT)	VCC	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNII
			2 V		75	150		225		190	
tpd	A or B	B or A	4.5 V		15	30		45		38	ns
.			6 V		13	26		38		32	
		APO	2 V		115	230		345		290	
tpd	A or B	or	4.5 V	1	23	46		69		58	ns
		BPO	6 V		20	39		59		49	
	API	APO	2 V		77	155		235		195	
tpd	or	or	4.5 V		15	31	ŀ	47		39	ns
·	BPI	BPO	6 V		13	26		40		33	
	GAB	APO	2 V		117	235		355		295	
ten	or	or	4.5 V	1	23	47	1	71		59	ns
İ	Gва	BPO	6 V		20	40]	60		50	
	GAB	APO	2 V		117	235		355		295	
t _{dis}	or	or	4.5 V		23	47		71		59	ns
	ĞBA	BPO	6 V	l	20	40	1	60		50	
			2 V		28	60		90		75	
tt		Any	4.5 V		8	12	•	18		15	ns
	······································	<u> L</u>	6 V		6	10		15		13	
C _{pd}	Powe	er dissipation capa	citance	- 1	No load	i, T _A =	25°C		5	6 pF typ	

switching characteristics over recommended operating free-air temperature range (unless otherwise noted), CL = 150 pF (see Note 1)

DADAMETED	FROM	то	V	Tρ	± 25	°C	SN54	HC658	SN74	HC658	UNIT
PARAMETER	(INPUT)	(OUTPUT)	Vcc	MIN	TYP	MAX	MIN	MAX	MIN	MAX	OWIT
			2 V		117	235		355		295	
t _{pd}	A or B	B or A	4.5 V		23	47		71		59	ns
			6 V		20	41		60		51	
		APO	2 V		157	315		475		395	
^t pd	A or B	or	4.5 V		31	63		95		79	ns
		BPO	6 V	İ	27	54		81	İ	68	
	API	APO	2 V		120	240		365		300	
t _{pd}	or	or	4.5 V		24	48		73		60	ns
,	BPI	BPO	6 V		20	41	İ	62		52	
	GAB	APO	2 V		160	320		485		400	
t _{en}	or	or	4.5 V	İ	32	64		97		80	ns
	Ğва	BPO	6 V	1	27	55		82		69	
			2 V		37	210		315		265	
tt		Any	4.5 V	1	12	42		63	i	53	ns
			6 V		10	36		53		45	

NOTE 1: Load circuits and voltage waveforms are shown in Section 1.

Cpd

switching characteristics over recommended operating free-air temperature range (unless otherwise noted), CL = 50 pF (see Note 1)

	FROM	то	Γ	TA	= 25	°C	SN54	1C659	SN74I	HC659	UNIT
PARAMETER	(INPUT)	(OUTPUT)	Vcc	MIN	MIN TYP M		MIN MAX		MIN	MAX	ONT
			2 V		70	140		210		175	
t _{pd}	A or B	B or A	4.5 V		14	28		42		35	ns
, ,			6 V		12	24		36		30	
		APO	2 V		115	230		345		290	
^t pd	A or B	or	4.5 V		23	46		69		58	ns
		вро	6 V		20	39		59	<u> </u>	49	
^t pd	API	APO	2 V		77	155		235		195	
	or	or	4.5 V		15	31		47		39	ns
Pu	BPI	BPO	6 V	ì	13	26	l	40		33	
	GAB	APO	2 V		117	235		355		295	
t _{en}	or	or	4.5 V		23	47	1	71	İ	59	ns
···	GBA	BPO	6 V	-	20	40		60		50	
	GAB	APO	2 V		117	235		355		295	
t _{dis}	or	or	4.5 V		23	47		71		59	ns
u	GBA	ВРО	6 V		20	40		60		50	
			2 V		28	60		90		75	
tt		Any	4.5 V		8	12	1	18		15	ns
.			6 V	1	6	10		15		13	

switching characteristics over recommended operating free-air temperature range (unless otherwise noted), C_L = 150 pF (see Note 1)

Power dissipation capacitance

No load, TA = 25°C

56 pF typ

	FROM	TO		TA = 25°C			SN54I	HC659	SN74HC659		UNIT	
PARAMETER	(INPUT)	(OUTPUT)	Vcc	MIN	MIN TYP MA			MIN MAX		MAX	Civili	
			2 V		117	225		340		280		
t _{pd}	A or B	A or B	B or A	4.5 V		23	45		68		56	ns
βα			6 V	1	20	39		58		49		
		APO	2 V		157	315		475		395		
tpd	A or B	or	4.5 V	i	31	63		95		79	ns	
pu		ВРО	6 V		27	54		81		68	L	
	API	APO	2 V	1	120	240		365		300		
tpd	or	or	4.5 V		24	48		73		60	ns	
P-0	BPI	BPO	6 V	!	20	41		62		52	l	
******	GAB	APO	2 V		160	320		485		400		
t _{en}	or	or	4.5 V		32	64		97	ł	80	ns	
···	GBA	BPO	6 V		27	55		82		69		
			2 V		37	210		315		265		
tt		Any	4.5 V		12	42		63	İ	53	ns	
,			6 V		10	36		53		45	1	

NOTE 1: Load circuits and voltage waveforms are shown in Section 1.

TYPICAL APPLICATION DATA

The unique structure used on the I/O ports and the parity inputs of these devices deserves some special consideration (see Figure 1). Only the input structure is shown. The conventional 3-state output structure associated with each I/O port has been omitted to facilitate understanding.

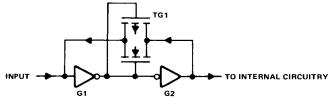


FIGURE 1: INPUT STRUCTURE

The two inverters (G1 and G2) have a transmission gate (TG1) connected in a feedback loop around them. This transmission gate is connected in an unusual fashion, that is, with the gates of both transistors connected to the output of G1. Thus, with the output of G1 at either a high or a low level, one or the other of the transistors will be turned on allowing feedback of the output of G2 to the input of G1. The effect of TG1 is that the input level will be maintained at whatever level existed prior to the bus being disabled or the level currently existing on the bus will be reinforced.

To understand the operation of this input, assume that initially the input is at a low logic level. As the input voltage is raised, TG1 sinks current to attempt to maintain the low level. However, TG1 consists of small geometry transistors and appears resistive as current flows thus allowing the input voltage to rise toward the threshold voltage of G1. When the threshold voltage is reached, G1 changes state causing G2 to change state. G2 then attempts to maintain a high level on the input through TG1. A similar operation occurs when the input voltage is decreased toward the threshold voltage of G1. G2 sources current through TG1 until the threshold is reached.

This characteristic of the input stage has some implications for the input current levels. With the input held at either VCC or GND, there is no voltage across TG1 and negligible input current. However, as the input voltage is raised from GND or lowered from VCC, the input current rises as the voltage across TG1 increases. The input current continues to rise until it reaches a maximum just as the threshold voltage of G1 is reached.

This configuration provides for minimum power dissipation when the bus is inactive (all outputs on the bus in the high-impedance state) and minimum susceptibility to noise on the bus during this time. The increase in input current may go unnoticed as it only occurs during transitions on the bus. Care must be taken when measuring input currents (e.g., at incoming inspection) to ensure that the input voltage is set to the correct value.

The use of these devices for interfacing to 8-, 16-, and 24-bit-wide memory arrays with parity is illustrated in Figures 2, 3 and 4.

TYPICAL APPLICATION DATA

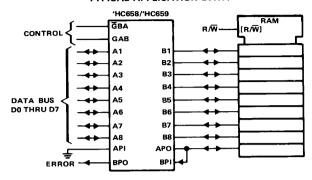


FIGURE 2. 8-BIT-WIDE MEMORY ARRAY WITH PARITY

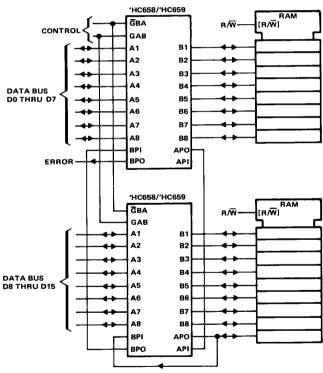


FIGURE 3. 16-BIT-WIDE MEMORY ARRAY WITH PARITY

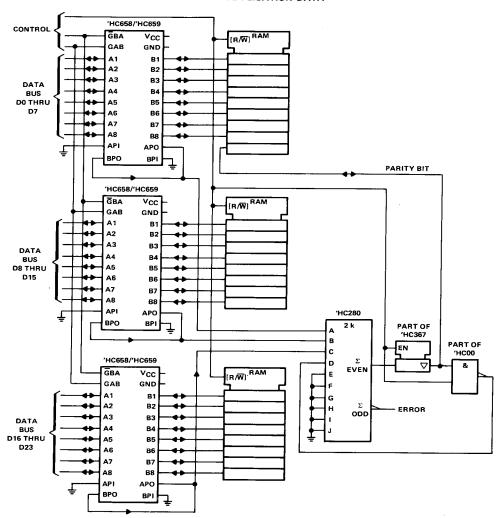


FIGURE 4. 24-BIT-WIDE MEMORY ARRAY WITH PARITY

NOTE: The 'HC280 eliminates ripple carry delays associated with Figures 2 and 3. However, in those two cases the delays are probably too small to be of concern.

