

数据手册

三相电机控制 MCU FU6332

峰岹科技(深圳)股份有限公司

目 录

目 录	
符号意义说明	19
英文缩写及说明	20
1 系统介绍	22
1.1 特性	22
1.2 应用场景	23
1.3 概述	23
1.4 系统框图	24
1.4.1 FU6332N 功能框图	24
1.5 Memory 空间	25
1.5.1 Program Memory	25
1.5.2 Data Memory	25
1.5.3 SFR	26
1.5.4 XSFR	27
2 引脚定义	30
2.1 FU6332N QFN40 引脚列表	30
2.2 FU6332N QFN40 引脚图	34
3 封装尺寸信息	35
3.1 FU6332N QFN40_5X5	35
4 订购信息	36
5 电气特性	37
5.1 绝对最大额定值	37
5.2 全局电气特性	37
5.3 MR Sensor 电气特性	38
5.4 GPIO 电气特性	38
5.5 3P3N Pre-driver IO 电气特性	39
5.6 ADC 电气特性	39
5.7 参考电压电气特性	40
5.8 运算放大器电气特性	40
5.9 BEMF 电气特性	40
5.10 OSC 电气特性	41
5.11 复位电气特性	41

5.12 LDO 电气特性	41
5.13 封装热阻	41
6 复位控制	42
6.1 复位源(RST_SR)	42
6.2 复位使能	42
6.3 外部引脚复位、上电复位	42
6.4 低电压保护复位	42
6.5 看门狗溢出复位	42
6.6 RSTFED 复位	43
6.7 RSTDBG 复位	43
6.8 软复位	43
6.9 复位寄存器	43
6.9.1 RST_SR (0xC9)	43
7 中断	45
7.1 中断简介	45
7.2 中断源使能	45
7.3 外部中断	45
7.4 中断说明	46
7.5 中断寄存器	47
7.5.1 IE (0xA8)	47
7.5.2 IP0 (0xB8)	48
7.5.3 IP1 (0xC0)	48
7.5.4 IP2 (0xC8)	48
7.5.5 IP3 (0xD8)	49
7.5.6 TCON (0x88)	49
7.5.7 P1_IE (0xD1)	50
7.5.8 P1_IF (0xD2)	51
7.5.9 P2_IE (0xD3)	52
7.5.10 P2_IF (0xD4)	52
8 I ² C	54
8.1 I ² C 简介	54
8.2 I ² C 操作说明	55
8.2.1 主机模式	55

8.2.2 从机模式	56
8.2.3 I ² C 中断源	56
8.3 I ² C 寄存器	56
8.3.1 I2C_CR (0x4028)	56
8.3.2 I2C_ID (0x4029)	57
8.3.3 I2C_DR (0x402A)	57
8.3.4 I2C_SR (0x402B)	58
9 SPI	61
9.1 SPI 简介	61
9.2 SPI 操作说明	61
9.2.1 信号说明	61
9.2.1.1 主输出、从输入(MOSI)	61
9.2.1.2 主输入、从输出(MISO)	61
9.2.1.3 串行时钟(SCLK)	62
9.2.1.4 片选信号(NSS)	62
9.2.2 SPI 主机模式	63
9.2.2.1 主机模式配置	63
9.2.3 SPI 从机模式	64
9.2.3.1 从机模式配置	64
9.2.4 SPI 中断源	64
9.2.5 串行时钟时序	65
9.3 SPI 寄存器	65
9.3.1 SPI_CR0 (0x4030)	65
9.3.2 SPI_CR1 (0x4031)	66
9.3.3 SPI_CLK (0x4032)	68
9.3.4 SPI_DR (0x4033)	68
10 UART	69
10.1 UART 简介	69
10.2 UART 操作说明	69
10.2.1 UART1 操作说明	69
10.2.1.1 UART1 模式 0	69
10.2.1.2 UART1 模式 1	69
10 2 1 3 I IΔRT1 模式 2	70

10.2.1.4 UART1 模式 3	70
10.2.1.5 UART1 中断源	70
10.2.2 UART2 操作说明	70
10.2.2.1 UART2 模式 0	70
10.2.2.2 UART2 模式 1	71
10.2.2.3 UART2 模式 2	71
10.2.2.4 UART2 模式 3	71
10.2.2.5 UART2 中断源	71
10.3 UART1 寄存器	72
10.3.1 UT_CR (0x98)	72
10.3.2 UT_DR (0x99)	73
10.3.3 UT_BAUD (0x9A, 0x9B)	73
10.4 UART2 寄存器	74
10.4.1 UT2_CR (0x8A)	74
10.4.2 UT2_DR (0x89)	75
10.4.3 UT2_BAUD (0x4042, 0x4043)	75
11 MDU	77
11.1 MDU 简介	77
11.2 MDU 特性	77
11.3 MDU 功能说明	77
11.3.1 操作方法	77
11.3.2 运算结果左移 1 位的 16 位有符号乘法	78
11.3.3 16 位有符号乘法	78
11.3.4 16 位无符号乘法	78
11.3.5 32 位/16 位的无符号除法	79
11.3.6 低通滤波器	79
11.3.7 坐标转换(sin/cos 计算)	80
11.3.8 反正切函数	80
11.4 MDU 寄存器	82
11.4.1 MDU_CR (0xC1)	82
11.4.2 MDU_MD (0xCA)	82
11.4.3 MDU_A (0xC7, 0xC6)	83
11.4.4 MDU_B (0xC5, 0xC4)	83

11.4.5 MDU_C (0xC3, 0xC2)	84
11.4.6 MDU_D (0xCB)	85
12 PI/PID	86
12.1 PI/PID 简介	86
12.2 PI/PID 特性	86
12.3 PI/PID 操作说明	86
12.4 PI/PID 寄存器	87
12.4.1 PI_CR (0xF9)	87
12.4.2 PI0_KP (0x02E0, 0x02E1)	88
12.4.3 PI0_KI (0x02E2, 0x02E3)	88
12.4.4 PI0_UKMAX (0x02E4, 0x02E5)	88
12.4.5 PI0_UKMIN (0x02E6, 0x02E7)	89
12.4.6 PI0_EK1 (0x02E8, 0x02E9)	89
12.4.7 PI0_EK (0x02EA, 0x02EB)	90
12.4.8 PI0_UKH (0x02EC, 0x02ED)	90
12.4.9 PI0_UKL (0x02EE, 0x02EF)	90
12.4.10 PI1_KP (0x02D0, 0x02D1)	91
12.4.11 PI1_KI (0x02D2, 0x02D3)	91
12.4.12 PI1_UKMAX (0x02D4, 0x02D5)	92
12.4.13 PI1_UKMIN (0x02D6, 0x02D7)	92
12.4.14 PI1_EK1 (0x02D8, 0x02D9)	92
12.4.15 PI1_EK (0x02DA, 0x02DB)	93
12.4.16 PI1_UKH (0x02DC, 0x02DD)	93
12.4.17 PI1_UKL (0x02DE, 0x02DF)	94
12.4.18 PI2_KP (0x02BC, 0x02BD)	94
12.4.19 PI2_KI (0x02BE, 0x02BF)	94
12.4.20 PI2_UKMAX (0x02C0, 0x02C1)	95
12.4.21 PI2_UKMIN (0x02C2, 0x02C3)	
12.4.22 PI2_EK1 (0x02C4, 0x02C5)	96
12.4.23 PI2_EK (0x02C6, 0x02C7)	96
12.4.24 PI2_UKH (0x02C8, 0x02C9)	96
12.4.25 PI2_UKL (0x02CA, 0x02CB)	97
12.4.26 PI2_KD (0x02CC, 0x02CD)	97

12.4.27 PI2_EK2 (0x02CE, 0x02CF)	98
12.4.28 PI3_KP (0x02A8, 0x02A9)	98
12.4.29 PI3_KI (0x02AA, 0x02AB)	98
12.4.30 PI3_UKMAX (0x02AC, 0x02AD)	99
12.4.31 PI3_UKMIN (0x02AE, 0x02AF)	99
12.4.32 PI3_EK1 (0x02B0, 0x02B1)	100
12.4.33 PI3_EK (0x02B2, 0x02B3)	100
12.4.34 PI3_UKH (0x02B4, 0x02B5)	100
12.4.35 PI3_UKL (0x02B6, 0x02B7)	101
12.4.36 PI3_KD (0x02B8, 0x02B9)	101
12.4.37 PI3_EK2 (0x02BA, 0x02BB)	102
13 FOC	103
13.1 FOC 说明	103
13.1.1 FOC 简介	103
13.1.2 参考输入	103
13.1.3 PI 控制器	103
13.1.4 坐标转换	104
13.1.4.1 Park 逆变换	104
13.1.4.2 Clarke 逆变换	105
13.1.4.3 Clarke 变换	105
13.1.4.4 Park 变换	106
13.1.5 SVPWM	106
13.1.5.1 七段式 SVPWM	108
13.1.5.2 五段式 SVPWM	108
13.1.6 过调制	108
13.1.7 死区补偿	108
13.1.8 电流电压采样	108
13.1.8.1 单电阻采样模式	109
13.1.8.2 双三电阻采样模式	111
13.1.8.3 电流采样偏置	112
13.1.9 角度模式	112
13.1.9.1 爬坡强制角度	112
12.1.0.2 保垃色度	112

7

13.1.9.3 估算器角度	114
13.1.9.3.1 估算器估算角度	114
13.1.9.3.2 估算器强制角度	114
13.1.9.3.3 角度平滑切换	115
13.1.9.3.4 角度补偿	115
13.1.10 电机实时参数	115
13.1.10.1 顺风逆风检测	116
13.1.10.2 反电动势检测	116
13.1.10.3 电机功率	116
13.1.11 FG 输出产生	116
13.2 FOC 寄存器	117
13.2.1 FOC_CR0 (0x409F)	117
13.2.2 FOC_CR1 (0x40A0)	118
13.2.3 FOC_CR2 (0x40A1)	119
13.2.4 FOC_TSMIN (0x40A2)	120
13.2.5 FOC_TGLI (0x40A3)	120
13.2.6 FOC_TBLO (0x40A4)	120
13.2.7 FOC_TRGDLY (0x40A5)	121
13.2.8 FOC_CSO (0x40A6, 0x40A7)	121
13.2.9 FOC_RTHESTEP (0x40A8, 0x40A9)	122
13.2.10 FOC_RTHEACC (0x40AA, 0x40AB)	122
13.2.11 FOC_EOMELPF (0x40AA, 0x40AB)	123
13.2.12 FOC_RTHECNT (0x40AC)	123
13.2.13 FOC_THECOR (0x40AD)	124
13.2.14 FOC_EMF (0x40AE, 0x40AF)	124
13.2.15 FOC_THECOMP (0x40AE, 0x40AF)	124
13.2.16 FOC_DMAX (0x40B0, 0x40B1)	125
13.2.17 FOC_DMIN (0x40B2, 0x40B3)	125
13.2.18 FOC_QMAX (0x40B4, 0x40B5)	126
13.2.19 FOC_QMIN (0x40B6, 0x40B7)	126
13.2.20 FOC_UD (0x40B8, 0x40B9)	127
13.2.21 FOC_UQ (0x40BA, 0x40BB)	127
13.2.22 FOC ID (0y40BC 0y40BD)	127

8

13.2.23 FOC_IQ (0x40BE, 0x40BF)	128
13.2.24 FOC_IBET (0x40C0, 0x40C1)	128
13.2.25 FOC_VBET (0x40C2, 0x40C3)	129
13.2.26 FOC_VALP (0x40C4, 0x40C5)	129
13.2.27 FOC_UDCPS (0x40C2, 0x40C3)	130
13.2.28 FOC_UQCPS (0x40C4, 0x40C5)	130
13.2.29 FOC_IC (0x40C6, 0x40C7)	131
13.2.30 FOC_IB (0x40C8, 0x40C9)	131
13.2.31 FOC_IA (0x40CA, 0x40CB)	131
13.2.32 FOC_THETA (0x40CC, 0x40CD)	132
13.2.33 FOC_ETHETA (0x40CE, 0x40CF)	132
13.2.34 FOC_EALP (0x40D0, 0x40D1)	133
13.2.35 FOC_EBET (0x40D2, 0x40D3)	133
13.2.36 FOC_EOME (0x40D4, 0x40D5)	134
13.2.37 FOC_UQEX (0x40D6, 0x40D7)	134
13.2.38 FOC_KFG (0x40D6, 0x40D7)	135
13.2.39 FOC_POW (0x40D8, 0x40D9)	135
13.2.40 FOC_EOMEKLPF (0x40D8)	136
13.2.41 FOC_IAMAX (0x40DA, 0x40DB)	136
13.2.42 FOC_IBMAX (0x40DC, 0x40DD)	136
13.2.43 FOC_ICMAX (0x40DE, 0x40DF)	137
13.2.44 FOC_EFREQMAX (0x406F)	138
13.2.45 FOC_EKP (0x4074, 0x4075)	138
13.2.46 FOC_EKI (0x4076, 0x4077)	138
13.2.47 FOC_EBMFK (0x407C, 0x407D)	139
13.2.48 FOC_KSLIDE (0x4078, 0x4079)	139
13.2.49 FOC_EKLPFMIN (0x407A, 0x407B)	140
13.2.50 FOC_OMEKLPF (0x407E, 0x407F)	140
13.2.51 FOC_FBASE (0x4080, 0x4081)	141
13.2.52 FOC_EFREQACC (0x4082, 0x4083)	141
13.2.53 FOC_EFREQMIN (0x4084, 0x4085)	142
13.2.54 FOC_EFREQHOLD (0x4086, 0x4087)	142
13 2 55 EOC EK3 (0v/088 0v/080)	1,/2

13.2.56 FOC_EK4 (0x408A, 0x408B)	143
13.2.57 FOC_EK1 (0x408C, 0x408D)	144
13.2.58 FOC_EK2 (0x408E, 0x408F)	144
13.2.59 FOC_IDREF (0x4090, 0x4091)	145
13.2.60 FOC_IQREF (0x4092, 0x4093)	145
13.2.61 FOC_DQKP (0x4094, 0x4095)	145
13.2.62 FOC_DQKI (0x4096, 0x4097)	146
13.2.63 FOC_UDCFLT (0x4098, 0x4099)	146
14 Timer1	148
14.1 Timer1 操作说明	148
14.1.1 Timer1 计数单元	149
14.1.1.1 分频器	149
14.1.1.2 基本计数器	150
14.1.1.3 重载计数器	151
14.1.2 位置检测(因引脚有限, FU6332N 不支持此功能)	151
14.1.2.1 位置检测信号	151
14.1.2.2 CMP/GPIO 位置检测事件	151
14.1.2.3 ADC 位置检测事件	152
14.1.2.4 采样	153
14.1.2.5 滤波	153
14.1.3 写入时序中断	154
14.1.4 Timer1 中断	154
14.2 BLDC 电机方波驱动	155
14.2.1 方波驱动的六步换相	156
14.2.2 方波驱动的工作原理	157
14.2.2.1 60 度基准时间	157
14.2.2.2 60 度强制换相	157
14.2.2.3 续流屏蔽	158
14.2.2.4 位置检测成功到换相的角度	158
14.2.2.5 逐波限流	158
14.3 Timer1 寄存器	159
14.3.1 TIM1_CR0 (0x4068)	159
1/, 2.2 TIM1 CD1 (0v/,040)	140

14.3.3 TIM1_CR2 (0x406A)	160
14.3.4 TIM1_CR3 (0x406B)	161
14.3.5 TIM1_CR4 (0x406C)	162
14.3.6 TIM1_IER (0x406D)	162
14.3.7 TIM1_SR (0x406E)	163
14.3.8 TIM1_BCOR (0x4070, 0x4071)	165
14.3.9 TIM1_DBR1 (0x4074, 0x4075)	165
14.3.10 TIM1_DBR2 (0x4076, 0x4077)	167
14.3.11 TIM1_DBR3 (0x4078, 0x4079)	168
14.3.12 TIM1_DBR4 (0x4080, 0x4081)	170
14.3.13 TIM1_DBR5 (0x4082, 0x4083)	171
14.3.14 TIM1_DBR6 (0x4084, 0x4085)	173
14.3.15 TIM1_DBR7 (0x4086, 0x4087)	174
14.3.16 TIM1_BCNTR (0x4082, 0x4083)	176
14.3.17 TIM1_BCCR (0x4084, 0x4085)	176
14.3.18 TIM1_BARR (0x4086, 0x4087)	177
14.3.19 TIM1_RARR (0x4088, 0x4089)	177
14.3.20 TIM1_RCNTR (0x408A, 0x408B)	178
14.3.21 TIM1_UCOP (0x408C, 0x408D)	178
14.3.22 TIM1_UFLP (0x408E, 0x408F)	179
14.3.23 TIM1_URES (0x4090, 0x4091)	179
14.3.24 TIM1_UIGN (0x4092, 0x4093)	179
14.3.25 TIM1_KF (0x4094, 0x4095)	180
14.3.26 TIM1_KR (0x4096, 0x4097)	180
14.3.27 TIM1_ITRIP (0x4098, 0x4099)	181
15 Timer2	182
15.1 Timer2 操作说明	182
15.1.1 分频器	182
15.1.2 TIM2_CNTR 的读写和计数	182
15.1.3 输出模式	183
15.1.3.1 TIM2_ARR/TIM2_DR 的读写	183
15.1.3.2 高/低电平输出模式	183
15.1.3.3 PWM 输出	183

15.1.3.4 中断事件	183
15.1.4 输入信号滤波和边沿检测	184
15.1.5 输入捕获模式	185
15.1.6 输入计数模式	186
15.1.7 QEP&RSD 模式	187
15.1.7.1 RSD 的比较器采样	188
15.1.8 步进模式	188
15.2 Timer2 寄存器	190
15.2.1 TIM2_CR0 (0xA1)	190
15.2.2 TIM2_CR1 (0xA9)	191
15.2.3 TIM2_CNTR (0xAA, 0xAB)	193
15.2.4 TIM2_DR (0xAC, 0xAD)	193
15.2.5 TIM2_ARR (0xAE, 0xAF)	194
16 Timer3/Timer4	195
16.1 Timer3/Timer4 操作说明	195
16.1.1 分频器	195
16.1.2 TIMxCNTR 的读写和计数	195
16.1.3 输出模式	196
16.1.3.1 高/低电平输出模式	196
16.1.3.2 PWM 输出	196
16.1.3.3 中断事件	196
16.1.4 输入信号滤波和边沿检测	197
16.1.5 输入捕获模式	198
16.1.6 Timer4 的 FG 输出模式	199
16.2 Timer3/Timer4 寄存器	199
16.2.1 TIMx_CR0 (0x9C/0x9E) (x = 3/4)	199
16.2.2 TIMx_CR1 (0x9D/0x9F) (x = 3/4)	200
16.2.3 TIMx_CNTR (0xA2, 0xA3/0x92, 0x93) (x = 3/4)	201
16.2.4 TIMx_DR (0xA4, 0xA5/0x94, 0x95) (x = 3/4)	202
16.2.5 TIMx_ARR (0xA6, 0xA7/0x96, 0x97) (x = 3/4)	202
17 Systick	203
17.1 Systick 操作说明	203
17.2 Svetick 客友哭	203

17.2.1 DRV_SR (0x4061)	203
17.2.2 SYST_ARR (0x4064, 0x4065)	204
18 Driver	205
18.1 Driver 操作说明	205
18.1.1 Driver 简介	205
18.1.2 输出控制模块	206
18.1.2.1 计数比较模块	206
18.1.2.2 死区模块	207
18.1.2.3 输出使能与极性	207
18.1.2.4 主输出使能 MOE	209
18.1.2.5 中断	209
18.1.2.5.1 比较匹配中断	209
18.1.2.5.2 FG 中断	210
18.2 Driver 寄存器	210
18.2.1 DRV_CR (0x4062)	210
18.2.2 DRV_SR (0x4061)	211
18.2.3 DRV_OUT (0xF8)	212
18.2.4 DRV_CMR (0x405C, 0x405D)	213
18.2.5 DRV_ARR (0x405E, 0x405F)	214
18.2.6 DRV_COMR (0x405A, 0x405B)	215
18.2.7 DRV_DR (0x4058, 0x4059)	216
18.2.8 DRV_DTR (0x4060)	216
18.2.9 DRV_CNTR (0x4066, 0x4067)	217
19 WDT	218
19.1 WDT 使用注意事项	218
19.2 WDT 操作说明	218
19.3 WDT 寄存器	218
19.3.1 WDT_CR (0x4026)	218
19.3.2 WDT_ARR (0x4027)	219
19.3.3 CCFG1 (0x401E)	219
20 RTC 与时钟校准	220
20.1 RTC 基本功能框图	220
20.2 DTC 塌作说明	220

20.3 RTC 寄存器	220
20.3.1 RTC_TM (0x402C, 0x402D)	220
20.3.2 RTC_STA (0x402E)	221
20.4 时钟校准	221
20.4.1 时钟校准简介	221
20.4.2 时钟校准寄存器	222
20.4.2.1 CAL_CR0 (0x4044) CAL_CR1 (0x4045)	222
21 10	223
21.1 IO 简介	223
21.2 IO 操作说明	223
21.3 IO 寄存器	224
21.3.1 P0_OE (0xFC)	224
21.3.2 P1_OE (0xFD)	224
21.3.3 P2_OE (0xFE)	224
21.3.4 P3_OE (0xFF)	225
21.3.5 P4_OE (0xE9)(FU6332N 不支持此功能)	225
21.3.6 P1_AN (0x4050)	225
21.3.7 P2_AN (0x4051)	226
21.3.8 P3_AN (0x4052)	226
21.3.9 P0_PU (0x4053)	227
21.3.10 P1_PU (0x4054)	227
21.3.11 P2_PU (0x4055)	228
21.3.12 P3_PU (0x4056)	228
21.3.13 P4_PU (0x4057)(FU6332N 不支持此功能)	228
21.3.14 PH_SEL (0x404C)	229
21.3.15 PH_SEL1 (0x404D)	229
21.3.16 P0 (0x80)	230
21.3.17 P1 (0x90)	230
21.3.18 P2 (0xA0)	231
21.3.19 P3 (0xB0)	231
21.3.20 P4 (0xE8)(FU6332N 不支持此功能)	232
22 ADC	233
22.1 ADC 符介	າວາ

22.2 ADC 框图	233
22.3 ADC 操作说明	234
22.3.1 顺序采样模式	234
22.3.2 触发采样模式	235
22.3.3 输出数据格式	235
22.4 ADC 寄存器	236
22.4.1 ADC_CR (0x4039)	236
22.4.2 ADC_MASK (0x4036, 0x4037)	237
22.4.3 DAC_CR (0x4035)	237
22.4.4 ADC_SCYC (0x4038)	238
22.4.5 ADC0_DR (0x0300, 0x0301)	238
22.4.6 ADC1_DR (0x0302, 0x0303)	239
22.4.7 ADC2_DR (0x0304, 0x0305)	239
22.4.8 ADC3_DR (0x0306, 0x0307)(FU6332N 不支持此通道)	240
22.4.9 ADC4_DR (0x0308, 0x0309)	240
22.4.10 ADC5_DR (0x030A, 0x030B)	241
22.4.11 ADC6_DR (0x030C, 0x030D)(FU6332N 不支持此通道)	241
22.4.12 ADC7_DR (0x030E, 0x030F)	242
22.4.13 ADC8_DR (0x0310, 0x0311)	242
22.4.14 ADC9_DR (0x0312, 0x0313)	243
22.4.15 ADC10_DR (0x0314, 0x0315)(FU6332N 不支持此通道)	243
22.4.16 ADC11_DR (0x0316, 0x0317)(FU6332N 不支持此通道)	244
22.4.17 ADC12_DR (0x0318, 0x0319)(FU6332N 不支持此通道)	244
22.4.18 ADC13_DR (0x031A, 0x031B)(FU6332N 不支持此通道)	245
22.4.19 ADC14_DR (0x031C, 0x031D)	245
23 DAC	246
23.1 DAC 简介	246
23.2 DAC0 功能框图(FU6332N 不支持 DAC0 输出至 P2.6)	246
23.3 DAC1 功能框图	247
23.4 DAC 寄存器	248
23.4.1 DAC_CR (0x4035)	248
23.4.2 DAC0_DR (0x404B)	248
23.4.3 DAC1_DR (0x404A)	248

24 DMA	249
24.1 DMA 功能与说明	249
24.2 DMA 寄存器	249
24.2.1 DMA0_CR0 (0x403A)	249
24.2.2 DMA1_CR0 (0x403B)	251
24.2.3 DMA0_LEN (0x403C)	252
24.2.4 DMA0_BA (0x403E, 0x403F)	252
24.2.5 DMA1_LEN (0x403D)	253
24.2.6 DMA1_BA (0x4040, 0x4041)	253
25 VREF	255
25.1 VREF 模块的操作说明	255
25.2 VREF 寄存器	256
25.2.1 VREF_CR (0x404F)	256
26 VHALF	257
26.1 VHALF 模块的操作说明	257
26.2 VHALF 寄存器	257
27 运放	258
27.1 运放简介	258
27.2 运放操作说明	258
27.2.1 母线电流采样运放(AMP0)	258
27.2.1.1 AMP0 普通模式	258
27.2.1.2 AMP0 PGA 差分输入模式	259
27.2.2 相电流运放(AMP1/AMP2)	259
27.2.2.1 AMP1	259
27.2.2.2 AMP2	260
27.3 运放寄存器	260
27.3.1 AMP_CR0 (0x404E)	260
27.3.2 AMP0_GAIN (0x4034)	261
28 比较器	262
28.1 比较器操作说明	262
28.1.1 比较器 CMP3(FU6332N 不支持 P2.6 输入)	262
28.1.1.1 过流保护	264
28.1.1.2 逐波限流	264

28.1.2 比较器 CMP4	266
28.1.3 比较器组 CMPG(因引脚有限,FU6332N 不支持此比较器组)	266
28.1.4 比较器采样	269
28.1.5 比较器输出	270
28.2 比较器寄存器	271
28.2.1 CMP_CR0 (0xD5)	271
28.2.2 CMP_CR1 (0xD6)	271
28.2.3 CMP_CR2 (0xDA)	272
28.2.4 CMP_CR3 (0xDC)	275
28.2.5 CMP_CR4 (0xE1)	275
28.2.6 CMP_SAMR (0x40AD)	276
28.2.7 CMP_SR (0xD7)	277
28.2.8 EVT_FILT (0xD9)	278
28.2.9 TSD_CR (0x402F)	278
29 电源模块	280
29.1 LDO	280
29.1.1 LDO 模块的操作说明	280
29.2 低压检测	281
29.2.1 低压检测简介	281
29.2.2 低压检测操作说明	281
29.2.3 低压检测寄存器	282
29.2.3.1 LVSR (0xDB)	282
30 Flash	283
30.1 Flash 简介	283
30.2 Flash 操作说明	283
30.3 Flash 寄存器	284
30.3.1 FLA_CR (0x85)	284
30.3.2 FLA_KEY (0x84)	285
31 CRC	286
31.1 CRC 功能框图	286
31.2 CRC16 多项式	286
31.3 CRC16 基本逻辑图	286
31.4 CRC 操作说明	287

31.4.1 计算单个字节的 CRC	287
31.4.2 批量计算 ROM 数据 CRC	287
31.5 CRC 寄存器	289
31.5.1 CRC_CR (0x4022)	289
31.5.2 CRC_DIN (0x4021)	289
31.5.3 CRC_DR (0x4023)	290
31.5.4 CRC_BEG (0x4024)	290
31.5.5 CRC_CNT (0x4025)	290
32 休眠模式	291
32.1 休眠模式简介	291
32.2 休眠模式寄存器	292
32.2.1 PCON(0x87)	292
33 代码保护	293
33.1 代码保护简介	293
33.2 代码保护操作说明	293
34 磁阻传感器	294
34.1 简介	294
34.2 使用说明	294
34.3 传感器功能框图	295
34.4 应用电路推荐	296
35 修改记录	297

符号意义说明

- 寄存器后的[]表示寄存器中的位。例: ABCD[XY]表示ABCD寄存器中的XY位
- 寄存器名中的x表示类似寄存器。例: TIMx_CR0表示TIM3_CR0和TIM4_CR0
- [m:n]表示位范围。例: [3:0]表示从bit3到bit0
- Pm.n表示Portm的第n个端口。例: P0.0表示Port0的0号端口
- 寄存器读写特性表示:
 - ▶ R: 只读
 - ▶ W: 只写
 - ▶ R/W: 可读可写
 - ➤ W0: 只可写0
 - ➤ W1: 只可写1
- 默认值为 时,表示该位为不定值或无效值
- 对读出和写入代表不同意义的寄存器,不可使用RMW指令
- Q格式是一种使用定点数存储浮点数的方式。最高位为符号位,数据低Q值的位数为数字小数部分分配的位数,剩余位数为数字整数部分分配的位数。例: Q12格式,15位为符号位,14~12位为整数位,11~0位为分数位。Q12格式数字的真实值为-8~7.9998(对应0x8000~0x7FFF)。

英文缩写及说明

ADC: Analog to Digital Convertor 模数转换器

AMR: Anisotropic Magneto Resistance 各向异性磁阻

BEMF: Back Electromotive Force 反电动势

BLDC: Brushless Direct Current 无刷直流电机

CRC: Cyclic Redundancy Check 循环冗余校验功能

DAC: Digital to Analog Convertor 数模转换器

DMA: Direct Memory Access 不经过 CPU 直接与内存交换数据的方式

FG: Frequency Generator 频率发生器

FICE: Fortior Interactive Connectivity Establishment 峰岹专用交互式连接建立

FOC: Field Oriented Control 电机磁场定向控制法,也称矢量控制法

FOSC: Fast Oscillator 内部快时钟

GPIO: General Purpose Input Output 通用输出输入端口

I²C: Inter Integrated Circuit 一种简单的双向二线制同步串行通信总线

IC: Integrated Circuit 集成电路

IDE: Integrated Development Environment 集成开发环境

IRAM: Internal RAM 内置随机存储器

LDO: Low Dropout Regulator 低压差稳压电源

LPF: Low Pass Filter 低通滤波器

LSB: Least Significant Bit 最低有效位

LVD: Low Voltage Detection 低电压检测

MDU: Multiplication Division Unit 乘除计算协处理器

ME: Motor Engine 峰岹特有电机驱动协处理器

MSB: Most Significant Bit 最高有效位

MOSFET: Metal Oxide Semiconductor Field Effect Transistor 金属氧化物半导体场效应晶体管

MR: Magnetic Sensor 磁阻传感器

NC: Not Connected 不连接

PGA: Programmable Gain Amplifier 可编程增益放大器

PI/PID: Proportional Integral/Proportional Integral Derivative 比例积分/比例积分微分控制器

PLL: Phase Locked Loop 锁相环

PWM: Pulse Width Modulation 脉冲宽度调制

QEP: Quadrature Encoder Pulse 正交编码器

RAM: Random Access Memory 随机存储器

RMW: Read Modified Write 读-修改-写指令

ROM: Read Only Memory 只读存储器

RSD: Rotating State Detection 顺逆风状态检测

RTC: Real Time Clock 实时时钟

SCL: Serial Clock Line 串行时钟线

SDA: Serial Data Line 串行数据线

SFR: Special Function Register 特殊功能寄存器

SMO: Sliding Mode Observer 滑模观测器

SOSC: Slow Oscillator 低速振荡器,此处特指内部慢时钟

SPI: Serial Peripheral Interface 串行通信接口

SVPWM: Space Vector PWM 空间矢量脉冲宽度调制

TSD: Temperature Sensor Detect 温度传感器检测

UART: Universal Asynchronous Receiver/Transmitter 异步串行通信接口

WDT: Watch Dog Timer 看门狗定时器 XRAM: External RAM 外部随机存储器

XSFR: External SFR 外部特殊功能寄存器

1 系统介绍

1.1 特性

■ 电源电压:

- ▶ 单电源高压模式: VCC_MODE = 0,外部电源从VCC输入5V~28V,VDD5由内部LDO产生
- ▶ 单电源低压模式: VCC_MODE = 1, 外部电源从VDD5输入3V ~ 5.5V, 同时将VCC与 VDD5短接
- ▶ 双电源模式: VCC_MODE = 1,外部电源1从VCC输入5V~36V,外部电源2从VDD5输入5V
- 双核: 8051内核和ME
- 集成 180°角度磁传感器,可感应 X-Y 平面磁场角度
- 指令周期大多为1或2个系统时钟周期
- 16kB Flash ROM、带CRC校验功能、支持程序自烧录和代码保护功能
- 256 bytes IRAM、768 bytes XRAM
- ME: 包含PID控制模块、FOC模块、MDU辅助计算模块、LPF
- 16个中断源,可设为4个优先级
- 22个GPIO
- 定时器:
 - > Timer1: 方波驱动时序控制、支持自动换相、逐波限流
 - ▶ Timer2: PWM输出,输入PWM波形的周期及个数检测,顺逆风检测RSD
 - Timer3/Timer4: PWM输出、输入PWM波形的周期检测。Timer4支持FG输出模式, Timer3支持48MHz输入模式
 - ➢ Systick定时器
 - ▶ RTC定时器

■ 通信接口:

- ➤ 1个SPI
- > 1↑I²C
- ▶ 2个UART,支持单线模式
- ➤ 2通道DMA: 支持I²C/SPI/UART数据传输
- 模拟外设:
 - 12位ADC: 1μs转换,可选择内部VREF、外部VREF作参考电压
 - ▶ 9路ADC

- ▶ 内置VREF参考,可配置3V、4V、4.5V、VDD5
- ▶ 内置VHALF(VREF/2)参考输出
- > 3个独立运算放大器,其中AMPO可配置可编程增益放大器
- > 3路模拟比较器
- ▶ DAC: 1路9位, 1路6位
- 内置MOSFET驱动器: 3P3N Pre-driver输出
- FOC驱动支持单电阻、双电阻、三电阻电流采样
- 振荡器:
 - ▶ 内置24MHz高速RC振荡器
 - ▶ 内置32.8kHz低速RC振荡器
- WDT
- LVD
- TSD
- 两线制FICE协议提供在线仿真功能

1.2 应用场景

可用于无感/有感的 BLDC 电机/PMSM、三相/单相感应电机、伺服电机驱动。 应用领域: 云台、闸门、电动门、物流机器人、玩具车、舞台灯光等。

1.3 概述

FU6332是一款集成电机控制引擎(ME)和8051内核的高性能电机驱动专用芯片,ME集成了FOC、MDU、LPF、PID、SVPWM等诸多硬件模块,可由硬件自动完成有感/无感 BLDC 电机/PMSM的 FOC 驱动/方波驱动的运算和控制;8051内核用于参数配置和日常事务处理,双核并行工作实现各种高性能电机控制,采用了各向异性磁阻(AMR)技术,相比霍尔效应的磁传感器有很多优势。其中8051内核大部分指令周期为1T或2T。芯片内部集成有高速运算放大器、比较器、Pre-driver、高速ADC、CRC、SPI、I²C、UART、多种 Timer 等功能,内置高压 LDO,适用于 BLDC/PMSM 电机的方波、FOC 驱动控制。

以上为 FU6332 芯片功能的全面描述、具体的功能因引脚而异、请参考 2 引脚定义。

1.4 系统框图

1.4.1 FU6332N 功能框图

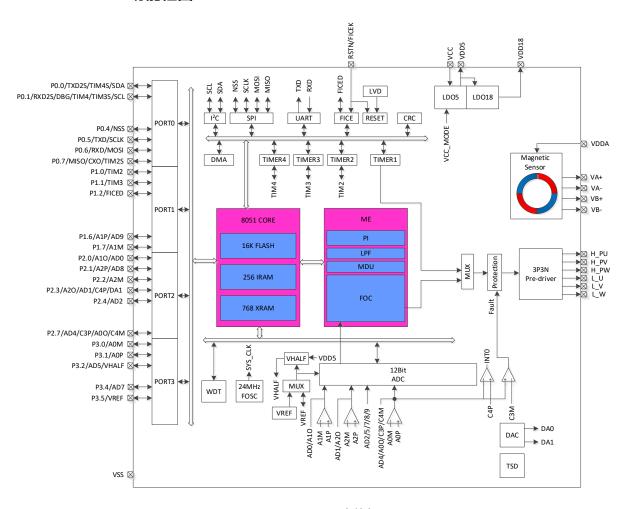


图 1-1 FU6332N 功能框图

1.5 Memory 空间

内部存储空间分为指令空间(Program Memory)和数据空间(Data Memory),两个空间独立编址空间。

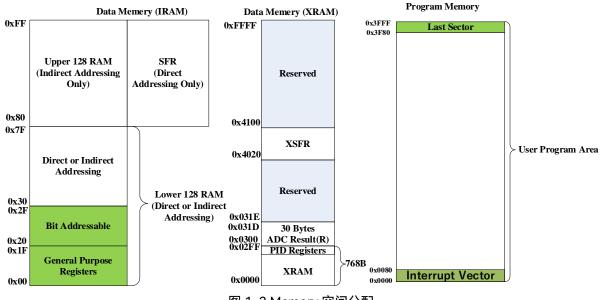


图 1-2 Memory 空间分配

1.5.1 Program Memory

指令空间可寻址范围(0x0000~0x3FFF)。指令空间存储介质为 Flash, 用于存储控制程序。

第一个扇区(0x0000 ~ 0x007F)是中断向量地址区,用于保存各个中断子程序的起始地址。最后一个扇区(0x3F80 ~ 0x3FFF)内配置有芯片内部控制位。

1.5.2 Data Memory

数据空间分为外部数据空间(External Data Memory)和内部数据空间(Internal Data Memory),如图 1-2 所示。

外部数据空间的地址范围为(0x0000 ~ 0xFFFF), 仅可通过 MOVX 指令访问。其中包括外部数据存储空间 XRAM(0x0000 ~ 0x02A7), 扩展控制寄存器空间(0x02A8 ~ 0x02EF, 0x4020 ~ 0x40FF)以及 ADC 转换结果存储区域(0x0300 ~ 0x031D)。

内部数据空间的地址范围为 $(0x00 \sim 0xFF)$ 。其中 $(0x00 \sim 0x1F)$ 为通用寄存器空间,包含 4 组,每 组 8 个,共 32 个通用寄存器。 $(0x20 \sim 0x7F)$ 为通用 RAM 空间,支持直接寻址和间接寻址访问,其中 $(0x20 \sim 0x2F)$ 的 16Bytes 支持位寻址操作。 $(0x80 \sim 0xFF)$,在间接寻址访问时,指向 RAM 空间,直接寻址访问时,指向 SFR 空间。

1.5.3 SFR

表 1-1 SFR 地址映射

Addr	0(8)	1(9)	2(A)	3(B)	4(C)	5(D)	6(E)	7(F)
0xF8	DRV_OUT	PI_CR			P0_OE	P1_OE	P2_OE	P3_OE
0xF0	В							
0xE8	P4	P4_OE						
0xE0	ACC	CMP_CR4						
0xD8	IP3	EVT_FILT	CMP_CR2	LVSR	CMP_CR3			
0xD0	PSW	P1_IE	P1_IF	P2_IE	P2_IF	CMP_CR0	CMP_CR1	CMP_SR
0xC8	IP2	RST_SR	MDU_MD	MDU_D				
0xC0	IP1	MDU_CR	MDU_CL	MDU_CH	MDU_BL	MDU_BH	MDU_AL	MDU_AH
0xB8	IP0							
0xB0	P3							
0xA8	IE	TIM2_CR1	TIM2_CNTR L	TIM2_CNTR H	TIM2_DRL	TIM2_DRH	TIM2_ARR L	TIM2_ARR H
0xA0	P2	TIM2_CR0	TIM3_CNTR L	TIM3_CNTR H	TIM3_DRL	TIM3_DRH	TIM3_ARR L	TIM3_ARR H
0x98	UT_CR	UT_DR	UT_BAUDL	UT_BAUDH	TIM3_CR0	TIM3_CR1	TIM4_CR0	TIM4_CR1
0x90	P1		TIM4_CNTR L	TIM4_CNTR H	TIM4_DRL	TIM4_DRH	TIM4_ARR L	TIM4_ARR H
0x88	TCON	UT2_DR	UT2_CR					
0x80	P0	SP	DPL	DPH	FLA_KEY	FLA_CR		PCON

注:

- 有双下划线的寄存器为16位快照寄存器,快照寄存器均为动态寄存器,需要使用变量将其值读出; 直接读取寄存器将导致读出值不正确。
- 8位单片机读16位寄存器需要分两次读,有可能造成读高8位和低8位时,寄存器的值发生变化, 导致读出的值不正确。所以快照寄存器在读高8位时,芯片会将低8位快照,当读低8位时,读的 是快照的值,并非实时值。
- 快照寄存器必须先读高8位,再读低8位,而且必须整体读,不能只读高8位或者只读低8位。

1.5.4 XSFR

表 1-2 XSFR 地址映射

Addr	0(8)	1(9)	2(A)	3(B)	4(C)	5(D)	6(E)	7(F)
0x40E0								
0x40D8	FOC_POWH FOC_EOMEKLPF	FOC_POWL	FOC_IAMAXH	FOC_IAMAXL	FOC_IBMAXH	FOC_IBMAXL	FOC_ICMAXH	FOC_ICMAXL
0x40D0	FOC_EALPH	FOC_EALPL	FOC_EBETH	FOC_EBETL	FOC_EOMEH	FOC_EOMEL	FOC_UQEXH FOC_KFGH	FOC_UQEXL FOC_KFGL
0x40C8	FOC_IBH	FOC_IBL	FOC_IAH	FOC_IAL	FOC_THETAH	FOC_THETAL	FOC_ETHETAH	FOC_ETHETAL
0(000	FOC IDETII	FOC IDETI	FOC_VBETH	FOC_VBETL	FOC_VALPH	FOC_VALPL	FOC. 1011	FOC. 161
0x40C0	FOC_IBETH	FOC_IBETL	FOC_UDCPSH	FOC_UDCPSL	FOC_UQCPSH	FOC_UQCPSL	FOC_ICH	FOC_ICL
0x40B8	FOC_UDH	FOC_UDL	FOC_UQH	FOC_UQL	FOC_IDH	FOC_IDL	FOC_IQH	FOC_IQL
0x40B0	FOC_DMAXH	FOC_DMAXL	FOC_DMINH	FOC_DMINL	FOC_QMAXH	FOC_QMAXL	FOC_QMINH	FOC_QMINL
0x40A8	FOC RTHESTEPH	FOC_RTHESTEPL	FOC_RTHEACCH	FOC_RTHEACCL	FOC_RTHECNT	FOC_THECOR	FOC_THECOMPH	FOC THECOMPL
UX4UA6	FOC_RTHESTEPH		FOC_EOMELPFH	FOC_EOMELPFL		CMP_SAMR		FOC_THECOMPL
0x40A0	FOC_CR1	FOC_CR2	FOC_TSMIN	FOC_TGLI	FOC_TBLO	FOC_TRGDLY	FOC_CSOH	FOC_CSOL
0x4098	FOC_UDCFLTH	FOC_UDCFLTL						FOC_CR0
0.4070	TIM1_ITRIPH	TIM1_ITRIPL						FOC_CRU
0x4090	FOC_IDREFH	FOC_IDREFL	FOC_IQREFH	FOC_IQREFL	FOC_DQKPH	FOC_DQKPL	FOC_DQKIH	FOC_DQKIL
0X4090	TIM1_URESH	TIM1_URESL	TIM1_UIGNH	TIM1_UIGNL	TIM1_KFH	TIM1_KFL	TIM1_KRH	TIM1_KRL
0x4088	FOC_EK3H	FOC_EK3L	FOC_EK4H	FOC_EK4L	FOC_EK1H	FOC_EK1L	FOC_EK2H	FOC_EK2L
0x4066	TIM1_RARRH	TIM1_RARRL	TIM1_RCNTRH	TIM1_RCNTRL	TIM1_UCOPH	TIM1_UCOPL	TIM1_UFLPH	TIM1_UFLPL
0x4080	FOC_FBASEH	FOC_FBASEL	FOC_EFREQACCH	FOC_EFREQACCL	FOC_EFREQMINH	FOC_EFRQMINL	FOC_EFREQHOLDH	FOC_EFREQHOLDL
0x4060	TIM1_DBR7H	TIM1_DBR7H TIM1_DBR7L		TIM1_BCNTRL	TIM1_BCCRH	TIM1_BCCRL	TIM1_BARRH	TIM1_BARRL
0x4078	FOC_KSLIDEH	FOC_KSLIDEL	FOC_EKLPFMINH	FOC_EKLPFMINL	FOC_EBMFKH	FOC_EBMFKL	FOC_OMEKLPFH	FOC_OMEKLPFL
UX4U78	TIM1_DBR3H	TIM1_DBR3L	TIM1_DBR4H	TIM1_DBR4L	TIM1_DBR5H	TIM1_DBR5L	TIM1_DBR6H	TIM1_DBR6L

Addr	0(8)	1(9)	2(A)	3(B)	4(C)	5(D)	6(E)	7(F)
0 (070	TIMA DOOD!!	TIMA DOOD!			FOC_EKPH	FOC_EKPL	FOC_EKIH	FOC_EKIL
0x4070	TIM1_BCORH	TIM1_BCORL			TIM1_DBR1H	TIM1_DBR1L	TIM1_DBR2H	TIM1_DBR2L
0x4068	TIM1_CR0	TIM1_CR1	TIM1_CR2	TIM1_CR3	TIM1_CR4	TIM1_ IER	TIM1_SR	
0x4060	DRV_DTR	DRV_SR	DRV_CR		SYST_ARRH	SYST_ARRL	DRV_CNTRH	DRV_CNTRL
0x4058	DRV_DRH	DRV_DRL	DRV_COMRH	DRV_COMRL	DRV_CMRH	DRV_CMRL	DRV_ARRH	DRV_ARRL
0x4050	P1_AN	P2_AN	P3_AN	P0_PU	P1_PU	P2_PU	P3_PU	P4_PU
0x4048			DAC1_DR	DAC_DR	PH_SEL	PH_SEL1	AMP_CR	VREF_VHALF_CR
0x4040	DMA1_BAH	DMA1_BAL	UT2_BAUDL	UT2_BAUDH	CAL_CR0	CAL_CR1		
0x4038	ADC_SCYC	ADC_CR	DMA0_CR0	DMA1_CR0	DMA0_LEN	DMA1_LEN	DMA0_BAH	DMA1_BAL
0x4030	SPI_CR0	SPI_CR1	SPI_CLK	SPI_DR	AMP0_GAIN	DAC_CR	ADC_MASK_SYSCH	ADC_MASK_SYSCL
0x4028	I2C_CR	I2C_ID	I2C_DR	I2C_SR	RTC_TMH	RTC_TML	RTC_STA	TSD_CR
0x4020		CRC_DIN	CRC_CR	CRC_DR	CRC_BEG	CRC_CNT	WDT_CR	WDT_ARR
0x4018								
0x4010								
0x4008								
0x4000								
0x0318	AD12_DRH	AD12_DRL	AD13_DRH	AD13_DRL	AD14_DRH	AD14_DRL		
0x0310	AD8_DRH	AD8_DRL	AD9_DRH	AD9_DRL	AD10_DRH	AD10_DRL	AD11_DRH	AD11_DRL
0x0308	AD4_DRH	AD4_DRL	AD5_DRH	AD5_DRL	AD6_DRH	AD6_DRL	AD7_DRH	AD7_DRL
0x0300	AD0_DRH	AD0_DRL	AD1_DRH	AD1_DRL	AD2_DRH	AD2_DRL	AD3_DRH	AD3_DRL
0x02F8								
0x02F0								
0x02E8	PI0_EK1		PIC	_EK	PIO_UKH		PIO_UKL	
0x02E0	PIO_KP		PI)_KI	PIO_UKMAX		PIO_UKMIN	
0x02D8	PI1_EK1		PI1	_EK	PI1_UKH		PI1_UKL	
0x02D0	PI1	_KP	PI ⁻	1_KI	PI1_U	PI1_UKMAX		IKMIN
0x02C8	PI2_	UKH	PI2	UKL	PI2	KD	PI2_	EK2

Addr	0(8)	1(9)	2(A)	3(B)	4(C)	5(D)	6(E)	7(F)
0x02C0	PI2_UI	PI2_UKMAX PI2_UKMIN		PI2_EK1		PI2_EK		
0x02B8	PI3	PI3_KD PI3_EK2		PI2_KP		PI2_KI		
0x02B0	PI3_	PI3_EK1		PI3_EK		UKH	PI3_	UKL
0x02A8	PI3	_KP	PI3_KI		PI3_U	KMAX	PI3_U	KMIN

注:

- 有双下划线的寄存器为16位快照寄存器,快照寄存器均为动态寄存器,需要使用变量将其值读出;直接读取寄存器将导致读出值不正确。
- 8位单片机读16位寄存器需要分两次读,有可能造成读高8位和低8位时,寄存器的值发生变化,导致读出的值不正确。所以快照寄存器在读高8位时, 芯片会将低8位快照,当读低8位时,读的是快照的值,并非实时值。
- 快照寄存器必须先读高8位,再读低8位,而且必须整体读,不能只读高8位或者只读低8位。

2 引脚定义

IO 类型说明:

- DI = 数字输入
- DO = 数字输出
- DB = 数字双向
- AI = 模拟输入
- AO = 模拟输出
- AB = 模拟双向
- P = 电源

2.1 FU6332N QFN40 引脚列表

表 2-1 FU6332N QFN40 引脚列表

引脚	FU6332N QFN40	IO 类型	功能描述
VA-	1	AO	角度传感器正弦差分输出负端
VB-	2	AO	角度传感器余弦差分输出负端
VSS	3	Р	地
VB+	4	AO	角度传感器余弦差分输出正端
VA+	5	AO	角度传感器正弦差分输出正端
H_PU	6	DO	3P3N Pre-driver 上桥 U 相输出,内置 50kΩ 上拉电阻
H_PV	7	DO	3P3N Pre-driver 上桥 V 相输出,内置 50kΩ 上拉电阻
H_PW	8	DO	3P3N Pre-driver 上桥 W 相输出,内置 50kΩ 上拉电阻
L_U	9	DO	3P3N Pre-driver 下桥 U 相输出,内置 25kΩ 下拉电阻
L_V	10	DO	3P3N Pre-driver 下桥 V 相输出,内置 25kΩ 下拉电阻
L_W	11	DO	3P3N Pre-driver 下桥 W 相输出,内置 25kΩ 下拉电阻
VCC	12	Р	 电源输入,电压范围由 VCC_MODE 决定,外接 10μF 或更大滤波电容 ■ 单电源高压模式: VCC_MODE = 0,外部电源从 VCC 输入 5V ~ 28V, VDD5 由内部 LDO 产生 ■ 单电源低压模式: VCC_MODE = 1,外部电源从 VDD5 输入 3V ~ 5.5V,同时将VCC 与 VDD5 短接 ■ 双电源模式:

引脚	FU6332N QFN40	IO 类型	功能描述
			VCC_MODE = 1, 外部电源 1 从 VCC 输入 5V ~ 36V, 外部
			电源 2 从 VDD5 输入 5V
VSS	13	Р	地
			中压电源输入或内部 5V LDO 输出电源,由 VCC_MODE 决定,电
VDD5	14	Р	源接法请参考 VCC 引脚描述,外接 1μF ~ 4.7μF 电容。
			具体请参考 VCC 引脚描述
RSTN/	15	DI/	外部复位输入,内置上拉电阻
FICEK	13	DI	FICE 时钟端
VDD18	16	Р	1.85V LDO 输出,外接 1μF ~ 4.7μF 电容
P1.2/	17	DB/	GPIO,可配置外部中断 INT1 输入
FICED	17	DB	FICE 数据端
P1.6/		DB/	GPIO,可配置外部中断 INT1 输入
A1P/	18	Al/	AMP1 正输入端
AD9		Al	ADC 通道 9 输入
P1.7/	19	DB/	GPIO,可配置外部中断 INT1 输入
A1M	17	Al	AMP1 负输入端
P2.0/		DB/	GPIO,可配置外部中断 INT1 输入
A10/	20	AO/	AMP1 输出端
AD0		Al	ADC 通道 0 输入
P2.1/		DB/	GPIO,可配置外部中断 INT1 输入
A2P/	21	Al/	AMP2 正输入端
AD8/		Al	ADC 通道 8 输入
P2.2/	22	DB/	GPIO,可配置外部中断 INT1 输入
A2M	22	Al	AMP2 负输入端
P2.3/		DB/	GPIO,可配置外部中断 INT1 输入
A2O/		AO/	AMP2 输出端
AD1/	23	Al/	ADC 通道 1 输入
C4P/		Al/	CMP4 正输入端
DA1		AO	DAC1 输出,无 Buffer 输出
P2.4/	24	DB/	GPIO,可配置外部中断 INT1 输入
AD2	24	Al	ADC 通道 2 输入,可用于母线电压采样
P2.7/		DB/	GPIO,可配置外部中断 INT1 输入
AD4/		AI/	ADC 通道 4 输入,可用于母线电流采样
C3P/	25	AI/	CMP3 的正输入端
A00/		AO/	AMP0 输出端
C4M		Al	CMP4 负输入端

引脚	FU6332N QFN40	IO 类型	功能描述
P3.0/	27	DB/	GPIO
A0M	26	Al	AMP0 负输入端
P3.1/	27	DB/	GPIO
A0P	21	Al	AMP0 正输入端
P3.2/		DB/	GPIO
AD5/	28	Al/	ADC 通道 5 输入
VHALF		AO	VREF/2 参考电压输出,可外接 1μF 电容
P3.4/	29	DB/	GPIO
AD7	29	Al	ADC 通道 7 输入
P3.5/		DB/	GPIO
VREF	30	AB	ADC 参考电压外部输入或者内部 VREF 输出,外接 1μF~4.7μF 电
			容
P0.0/		DB/	GPIO,可配置外部中断 INT0 输入
TXD2S/	31	DO/	功能转移后 UART2 的 TXD 输出
TIM4S/	31	DB/	功能转移后 Timer4 输入或输出
SDA		DB	I ² C SDA,可设置为集电极开漏输出
P0.1/		DB/	GPIO,可配置外部中断 INT0 输入
RXD2S/		DB/	功能转移后 UART2 在双线制模式下的 RXD 输入或单线制模式下
			的 TXD 输出/RXD 输入
DBG/	32	DO/	Debug(调试)信号输出
TIM4/		DB/	Timer4 输入或输出
TIM3S/		DB/	功能转移后 Timer3 输入或输出
SCL		DB	I ² C SCL,可设置为集电极开漏输出
P0.4/	33	DB/	GPIO,可配置外部中断 INTO 输入
NSS	3	DB	SPI 的选择端口
P0.5/		DB/	GPIO,可配置外部中断 INTO 输入
TXD/	34	DO/	UART1 TXD 输出
SCLK		DB	SPI 接口时钟 SCLK
P0.6/		DB/	GPIO,可配置外部中断 INTO 输入
RXD/	35	DB/	UART1 在双线制模式下的 RXD 输入或单线制模式下的 TXD 输出
	33		/RXD 输入
MOSI		DB	SPI MOSI,主机输出从机输入端口
P0.7/		DB/	GPIO
MISO/	36	DB/	SPI MISO,主机输入从机输出端口
CXO/	30	DO/	比较器输出测试端口
TIM2S		DB	功能转移后 Timer2 输入或 PWM 模式输出

引脚	FU6332N QFN40	IO 类型	功能描述								
P1.0/	37	DB/	GPIO,可配置外部中断 INT1 输入								
TIM2	3/	DB	Timer2 输入或输出或 PWM 模式								
P1.1/	38	DB/	GPIO,可配置外部中断 INT1 输入								
TIM3	30	DB	Timer3 输入或输出								
VDDA	39	Р	角度传感器电源,通常接 VDD5								
VDDA	40	Р	角度传感器电源,通常接 VDD5								

2.2 FU6332N QFN40 引脚图

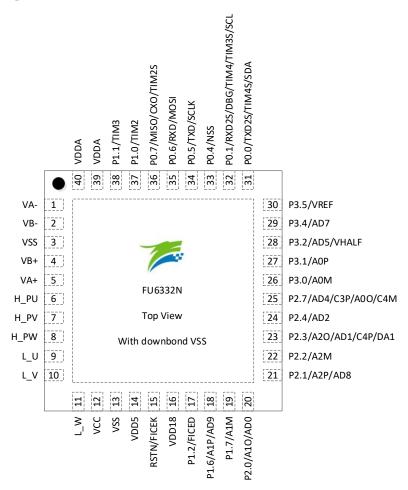
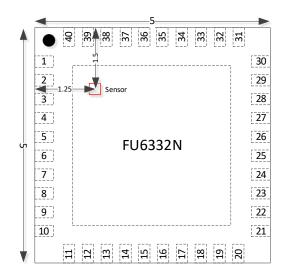
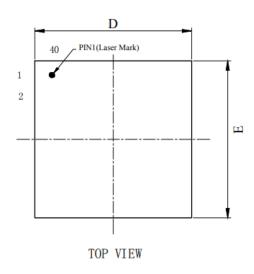
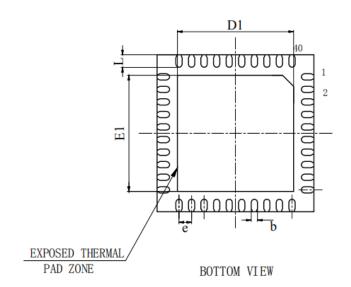
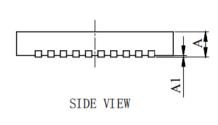


图 2-1 FU6332N QFN40 引脚图


图 2-2 Sensor 位置示意图(单位: mm)



3 封装尺寸信息

3.1 FU6332N QFN40_5X5

QFN40											
MILLIMETER											
MIN	NOM	MAX									
0.7	0.75	0.8									
	0.02	0.05									
4.9	5.0	5.1									
4.9	5.0	5.1									
3.6	3.7	3.8									
3.6	3.7	3.8									
0.35	0.40	0.45									
0.4BSC											
0.15	0.2	0.25									
	MIN 0.7 4.9 4.9 3.6 3.6 0.35	MILLIMET MIN NOM 0.7 0.75 0.02 4.9 5.0 4.9 5.0 3.6 3.7 3.6 3.7 0.35 0.40 0.4BSC									

图 3-2 FU6332N QFN40_5X5 封装尺寸图

4 订购信息

表 4-1 产品型号选择

	主频 (MHz)	FLASH(kByte)	XRAM(Byte)	时钟电路				驱动接口			驱动类型										模拟	外设					
壐믁				内部快时钟	外部快时钟	内部慢时钟	外部慢时钟	6N Pre-driver	N Pre-	方波	正弦波	FOC	I2C/UART/SPI	DMA	GPIO	定 时 器	个数	ADC 通 道 数	位数	个 位 数数		VREF	A KEF	比较器	无铅	對装	
FU6332N	24	16	768	√	_	√	_	_	√	_	√	_	√	√	√	22	6	1	9	12	2	9\6	√	3	3	√	QFN40 (5x5 mm)

5 电气特性

5.1 绝对最大额定值

表 5-1 绝对最大额定值

参数	条件	最小值	典型值	最大值	单位
工作时环境温度 T _A		-40	-	85	°C
工作时结温 T」		-40	-	150	°C
储存温度		-55	_	150	°C
VCC 相对 VSS 的电压		-0.3	-	36	V
VDD5 相对 VSS 的电压		-0.3	=	6.5	V
RSTN、GPIO 相对 VSS 的电压		-0.3	=	VDD5 + 0.3	V

注: 超过表 5-1 绝对最大额定值中所列的应力值可能会永久损坏器件。这仅为应力额定值,不建议器件运行在该规范范围以外。长期在最大额定值条件下工作可能会影响器件的可靠性。

5.2 全局电气特性

表 5-2 全局电气特性

(除非特别声明, T_A = 25℃, VCC = 5V ~ 28V)

参数	条件	最小值	典型值	最大值	单位
	单电源高压模式	5	ı	28	V
VCC 工作电压 ^[1]	双电源模式[2]				
ACC TILETT	VCC_MODE = 1,	5	-	36	V
	VCC ≥ VDD5				
VDD5 工作电压	VCC 与 VDD5 连接 ^[2]	3	ı	5.5	V
I _{vcc} 工作电流 ^[3]		-	20	-	mA
I _{vcc} 待机电流 ^[3]		-	6	-	mA
I _{vcc} 睡眠电流		_	50	150	μΑ
工作时环境温度 T _A	VCC ≤ 15V & Ivcc ≤ 30mA	_	-	105[4]	$^{\circ}$

注:

- [1] 根据不同批次的样品, VCC 电压上升速率范围 0.5V/µs ~ 0.1V/s
- [2] Flash 写入或擦除时 VDD5 必须保持在 5V~5.5V
- [3] 根据程序运行的设置发生变化
- [4] 只有保证任何时刻均不超过最大 T_J的前提下, 才能工作到 T_A最大值

5.3 MR Sensor 电气特性

表 5-3 MR Sensor 参数

(除非特别声明, T_A = 25℃)

参数	条件	最小值	典型值	最大值	单位
供电电压 VDDA/VDDB		1.0	5.0	25.0	V
电阻 R	电桥电流 = 1mA 两个电桥并联	800	1000	1200	Ω
角度范围	大于饱和磁场	0	1	180	Deg
灵敏度	VDDA = 5V,磁场 = 80G 在零输出附近时	-	2.1	-	mV/°
输出电压幅度 Vamp	VDDA = 5V, 磁场 = 80G 峰峰值	100	120	140	mV
电桥零点偏移	磁场 = 80G	-3	0	+3	mV/V
电桥电阻温度系数 TCR	VDDA = 5V -40°C ~ +125°C	-	2800	-	ppm/°C
灵敏度温度系数 TCS	VDDA = 5V -40°C ~ +125°C	-	-3200	-	ppm/°C
电桥零点温漂系数 TCO	-40°C ~ +125°C	-	±100	-	ppm/°C
电桥匹配度	(Vamp-A/Vamp-B)*100	97	100	103	%

5.4 GPIO 电气特性

表 5-4 GPIO 电气特性

(除非特别声明, T_A = 25℃, VCC = 5V ~ 28V)

参数	条件	最小值	典型值	最大值	单位
输出上升时间	50pF 负载,从 10%上升至 90%时		15		nc
棚山土川町	间, T _A = 25°C	_	2	_	ns
 输出下降时间	50pF 负载,从 90%下降至 10%时		13		nc
押山 小柱 1010	间, T _A = 25°C	_	13	_	ns
│ │Voн輸出高电压	I _{OH} = 4mA	VDD5 -	_	_	V
VOH和山自七下	10H - 4111A	0.7	_	_	V
VoL 输出低电压	I _{OL} = 8mA	-	ı	VSS + 0.7	V
V _ℍ 输入高电压 ^[1]		0.7*VDD5	ı	-	V
V∟输入低电压		-	ı	0.2*VDD5	V
上拉电阻[2]		-	33	-	kΩ
上拉电阻[3]		-	5.6	-	kΩ
下拉电阻[4]		-	10	-	kΩ

注:

- [1] 当 VDD5 = 5V 时, V_H 最小值可以为 0.6*VDD5
- [2] 除 P0[2:0]、P1[6:3]、P2[1]、P3[7:6]外其他 GPIO
- [3] P0[2:0]、P1[6:3]、P2[1]、P3[7:6]
- [4] P0[1]、P1[1]

5.5 3P3N Pre-driver IO 电气特性

表 5-5 3P3N Pre-driver IO 电气特性

(除非特别声明, T_A = 25℃, VCC = 15V, VCC_MODE = 0)

参数	条件	最小值	典型值	最大值	单位
上桥输出拉电流		П	150	П	mA
上桥输出灌电流		-	90	-	mA
下桥输出拉电流		-	150	-	mA
下桥输出灌电流		=	180	-	mA
上桥输出上升时间	外接 1nF 电容,从 10%上升至 90%时间	-	25	-	ns
上桥输出下降时间	外接 1nF 电容,从 90%下降至 10%时间	-	90	-	ns
下桥输出上升时间	外接 1nF 电容,从 10%上升至 90%时间	-	115	-	ns
下桥输出下降时间	外接 1nF 电容,从 90%下降至 10%时间	=	60	_	ns

5.6 ADC 电气特性

表 5-6 ADC 电气特性

(除非特别声明, T_A = 25℃, VCC = 5V ~ 28V)

参数	条件	最小值	典型值	最大值	单位
INL(积分非线性)	12 位模式	-	2	-	LSB
DNL(差分非线性)	12 位模式	-	1.5	-	LSB
OFFSET(失调误差)	12 位模式	-	6	-	LSB
SNR(信噪比)	$f_{IN} = 350kHz$	-	70.8	-	dB
ENOB(有效位数)	$f_{IN} = 350kHz$	-	10.5	-	Bit
SFDR(无杂散动态范围)	$f_{IN} = 350kHz$	-	68.2	-	dB
THD(总谐波失真)	$f_{IN} = 350kHz$	-	67	-	dB
R _{IN} 输入电阻		-	800	-	Ω
C _{IN} 输入电容		-	30	-	pF
转换时间		-	13	-	ADCLK ^[1]
采样时间		3	_	63	ADCLK2 ^[2]

注:

[1] ADCLK = 24MHz

[2] ADCLK2 = 12MHz

5.7 参考电压电气特性

表 5-7 参考电压电气特性

 $(T_A = -40^{\circ}C \sim 85^{\circ}C, VCC = 5V \sim 28V)$

参数	条件	最小值	典型值	最大值	单位
VEE	VREF_CR[VREFVSEL] = 00	-	4.5	-	V
	VREF_CR[VREFVSEL] = 01	-	-	VDD5	V
VREF	VREF_CR[VREFVSEL] = 11	-	4	-	V
	VREF_CR[VREFVSEL] = 10	_	3	-	V
VHALF		-	VREF/2	=	V

5.8 运算放大器电气特性

表 5-8 运算放大器电气特性

(除非特别声明, T_A = 25℃, VCC = 5V ~ 28V)

参数	条件	最小值	典型值	最大值	单位
V _{ICMR} 共模输入范围		0	-	VDD5 - 1.5	٧
Vos运放的失配电压	T _A = 25°C	-	5	10	mV
A _{OL} 开环增益	R _L = 100kΩ	-	80	-	dB
U _{GBW} 单位增益带宽	C _L = 40pF	6	10	-	MHz
SR 运放的摆率	C _L = 40pF	10	15	-	V/µs
	AMP0_GAIN = 001	1.88	2	2.12	ı
\=\tau\+\/\ta*\	AMP0_GAIN = 010	3.76	4	4.24	1
运放放大倍数	AMP0_GAIN = 011	7.52	8	8.48	-
	AMP0_GAIN = 100	15.04	16	16.96	-

注: 运放放大倍数是在正负输入端串联 1 kΩ 电阻的情况下测得,不同的外接电阻,放大倍数不同。

5.9 BEMF 电气特性

表 5-9 BEMF 电气特性

(除非特别声明, T_A = 25℃, VCC = 5V ~ 28V, VCC_MODE = 0)

参数	条件	最小值	典型值	最大值	单位
BEMF 内置电阻		5.4	6.8	8.2	kΩ
BEMF 内置电阻间相对精度		-	1	-	%

5.10 OSC 电气特性

表 5-10 OSC 电气特性

 $(T_A = -40^{\circ}C \sim 85^{\circ}C, VCC = 5V \sim 28V, VCC_MODE = 0)$

参数	条件	最小值	典型值	最大值	单位
系统时钟频率		23.5	24	24.5	MHz
低速时钟频率		29	32.8	37	kHz

注: 系统时钟周期为 T, SYSCLK 为系统时钟频率, T = 1/SYSCLK, 芯片系统时钟频率为 24MHz。除非特别声明,后续引用到 T 与 SYSCLK 均与此同。

5.11 复位电气特性

表 5-11 复位电气特性

(除非特别声明, T_A = 25℃, VCC = 5V ~ 28V, VCC_MODE = 0)

参数	条件	最小值	典型值	最大值	单位
RSTN复位低电平最小时间		50	1	-	μs
	复位电压选择 LVR = 2.8V	2.6	2.8	3.0	V
VDDE 低电压复位电压	复位电压选择 LVR = 3.0V	2.8	3.0	3.2	V
VDD5 低电压复位电压	复位电压选择 LVR = 3.5V	3.3	3.5	3.7	V
	复位电压选择 LVR = 3.8V	3.6	3.8	4.0	V

5.12 LDO 电气特性

表 5-12 LDO 电气特性

(除非特别声明, T_A = 25℃, VCC = 5V ~ 28V, VCC_MODE = 0)

参数	条件	最小值	典型值	最大值	单位
VDD5 电压	VCC = 7V ~ 28V, VCC_MODE = 0	4.7	5	5.3	٧
VDD18 电压		1.65	1.85	2.0	V

5.13 封装热阻

表 5-13 QFN40 封装热阻

参数	条件	值	单位
$ heta_{ ext{A}}$ 结温相对环境温度热阻 $^{[1]}$	JEDEC 标准,2S2P PCB	40	°C/W
D _{IA} 结温怕对环境温度热阻… 	JEDEC 标准,1S0P PCB	66	°C/W
<i>θ</i> _{IC} 结温相对封装表面温度热阻 ^[1]	JEDEC 标准,2S2P PCB	12	°C/W

注:

[1] 实际应用条件不同,会与测试结果有所出入

6 复位控制

6.1 复位源(RST SR)

芯片有7个复位源:

- 上电复位(RSTPOW)
- 外部引脚复位(RSTEXT)
- 低电压复位(RSTLVD)
- 看门狗复位(RSTWDT)
- Flash非法操作复位(RSTFED)
- Debug复位(RSTDBG)
- 软复位(SOFTR)

复位标志位可查询,记录在寄存器RST_SR中。最近一次的复位会把相关的标志位置1,把其他各位标志位清0。如需清除标志位,将RST_SR[RSTCLR]置1,以清除RST_SR[7:3]&RST_SR[0]的复位标志位。复位后MCU从地址0开始执行程序。

6.2 复位使能

复位使能参考相关控制寄存器。

6.3 外部引脚复位、上电复位

当芯片 RSTN 管脚为低,且超过 50 μs 时,芯片复位。

电源上电, 电压超过复位电压阈值后, 芯片复位。

6.4 低电压保护复位

芯片的内部电路会对 VCC 进行监测,如 VCC 电压降低至复位电压阈值,内部监测电路将发出对应的复位信号,使芯片发生复位。

配置相关寄存器可使能低电压监测电路,并选择低电压阈值。

6.5 看门狗溢出复位

使能看门狗定时器后,软件在程序中不断喂狗对看门狗定时器清 0。当程序跑飞,看门狗定时器溢出引发芯片复位。

6.6 RSTFED 复位

Flash 操作模块提供了 MOVX 指令,软件可进行自写、自擦除以及读取 Flash 的功能。当对最后一个扇区(0x3F80 ~ 0x3FFF)进行自擦除或对最后一个字节(0x3FFF)进行自写操作时,发生 Flash 非法操作复位。RSTFED 复位源固定使能,不可禁止。

6.7 RSTDBG 复位

当芯片处于调试状态,点击 IDE 的复位按钮,IDE 发送 Debug 复位将芯片复位。

6.8 软复位

通过程序设置 RST_SR[SOFTR] = 1, 芯片立刻复位, 复位后 RST_SR[SOFTR]标志位被置 1。

6.9 复位寄存器

6.9.1 RST_SR (0xC9)

位	7	6	5	4	3	2	1	0
名称	RSTPOW/ RSTCLR	RSTEXT	RSTLVD	RSV	RSTWDT	RSTFED	RSTDBG	SOFTR
类型	R/W1	R	R	ı	R	R	R	R/W1
复位值	-	-	-	-	-	-	-	-

位	名称	描述				
[7]	RSTPOW/ RSTCLR	上电复位标志位 读: 0: 上次复位不是来自上电复位 1: 上次复位来自上电复位 写: 0: 无意义 1: 清 RST_SR[7:3]&RST_SR[0]的复位标志位				
[6]	RSTEXT	外部引脚复位标志位 0: 上次复位不是来自外部引脚复位 1: 上次复位来自外部引脚复位				
[5]	RSTLVD	低电压复位标志位 0: 上次复位不是来自低电压复位 1: 上次复位来自低电压复位				
[4]	RSV	保留				
[3]	RSTWDT	看门狗复位标志位 T 0: 上次复位不是来自看门狗复位 1: 上次复位来自看门狗复位				

		Flash 非法操作复位标志位			
[2]	RSTFED	0: 上次复位不是来自 Flash 非法操作复位			
		1: 上次复位来自 Flash 非法操作复位			
		Debug 复位标志位			
[1] RSTDBG		0: 上次复位不是来自 Debug 复位			
		1: 上次复位来自 Debug 复位			
		软复位标志位			
		读:			
		0: 上次复位不是来自软复位			
[0]	SOFTR	1: 上次复位来自软复位			
		写:			
		0: 无意义			
		1: 触发软复位			

7 中断

7.1 中断简介

芯片内部有 16 个中断源。中断源有四级优先级,可通过 IPO ~ IP3 寄存器进行设置。中断标志位分布在 SFR 或 XSFR 内。当内部电路或者外部信号满足中断条件时,相应的中断标志位硬件置 1。当 IE[EA] = 1 且中断使能位和标志位均为 1 时,向 CPU 发出中断请求。如果没有更高优先级的中断子程序正在执行,则进入中断开始执行该中断子程序。

除复位中断外,每个中断源都可以设置优先级。低优先级中断可以被高优先级中断打断。当高优先级中断子程序执行结束,进入低优先级中断。相同优先级的中断不能相互打断。中断优先级寄存器可以单独设置每一个中断的优先级。设定值 0~3 依次表示优先级从低到高,默认值为 0。如果同时发生两个中断请求,则优先进入优先级较高的中断。如果两个中断源的优先级相同,则按照固定的优先顺序进行仲裁。中断源的详细列表以及仲裁顺序如表 7-1 中断说明所示。其中,标号越小代表优先顺序越高。

7.2 中断源使能

IE[EA]是全局中断使能位,IE[EA] = 0 时不响应任何中断请求。

通过设置 SFR 或 XSFR 中相关的中断使能位,可以单独使能或不使能某个中断源。使能全局中断后才能识别该中断源。全局中断使能寄存器或各个中断对应的中断使能位被清 0 后,被置 1 的中断标志寄存器将被一直保持。当相应的使能位被置 1,立刻进入标志位为 1 的中断。所以,在将使能位置 1 之前,要注意先将对应的中断标志位清 0。

7.3 外部中断

外部中断共有 2 个中断源 INTO 和 INT1。

端口 P0.0~P0.6 的数字输入信号和 CMP4 的输出信号,可以作为外部中断 INTO 的中断触发源。中断触发源通过 LVSR[EXT0CFG]选择。这些中断触发源共用一个中断入口,一个中断标志位 TCON[IF0],一个中断使能位 IE[EX0]。中断触发电平由 TCON[IT0]选择。优先级在 IP0[PX0]中设定。

端口 P1.0 ~ 1.7 和 P2.0 ~ 2.7 的数字输入信号可以作为外部中断 INT1 的中断触发源。中断标志位为 P1_IF 和 P2_IF,中断使能位为 P1_IE 和 P2_IE,每一个中断触发源都对应一个中断标志位和中断使能位。外部中断 INT1 可以选择多个中断触发源,在中断子程序内通过 P1_IF 和 P2_IF 来确认中断源。16个中断触发源共用一个中断入口,一个中断使能位 IE[EX1]。配置外部中断 INT1 使能先配置 IE[EX1] = 1,再配置对应的中断源使能位。中断触发电平由 TCON[IT1]选择。优先级在 IP0[PX1]中设定。外部中断 INT1 中断标志寄存器和中断使能寄存器,详见 7.5.7 P1 IE (0xD1) ~ 7.5.10 P2 IF (0xD4)。

7.4 中断说明

表 7-1 中断说明

中断源	优先 顺序	向量地址	标志位	是否软 件清除	中断使能位	优先级 设定
复位	最高	0x0000	无	否	一直使能	最高
LVW 中断 TSD 中断	0	0x0003	LVSR[0] TCON[5]	是	CCFG1[6] IE[1]	IP0[1:0]
外部中断 INT0	1	0x000B	TCON[2]	是	IE[0]	IP0[3:2]
外部中断 INT1	2	0x0013	P1_IF[7:0] P2_IF[7:0]	是	IE[2]	IP0[5:4]
FG 中断 DRV 比较匹配中 断	3	0x001B	DRV_SR[5:4]	是	DRV_SR[3] DRV_SR[2:0]	IP0[7:6]
Timer2 中断	4	0x0023	TIM2_CR1[7:5]	是	TIM2_CR1[4:3] TIM2_CR0[3]	IP1[1:0]
Timer1 中断	5	0x002B	TIM1_SR[4:0]	是	TIM1_IER[4:0]	IP1[3:2]
ADC 中断	6	0x0033	ADC_CR[0]	是	ADC_CR[1]	IP1[5:4]
CMP0/1/2 中断	7	0x003B	CMP_SR[6:4]	是	CMP_CR0[5:0]	IP1[7:6]
RTC 中断	8	0x0043	RTC_STA[6]	是	IE[6]	IP2[1:0]
Timer3 中断	9	0x004B	TIM3_CR1[7:5]	是	TIM3_CR1[4:3] TIM3_CR0[3]	IP2[3:2]
Systick 中断	10	0x0053	DRV_SR[7]	是	DRV_SR[6]	IP2[5:4]
Timer4 中断	11	0x005B	TIM4_CR1[7:5]	是	TIM4_CR1[4:3] TIM4_CR0[3]	IP2[7:6]
CMP3 中断	12	0x0063	CMP_SR[7]	是	CMP_CR0[7:6]	IP3[1:0]
I ² C 中断 UART1 中断	13	0x006B	I2C_SR[0] UT_CR[1:0]	是	I2C_CR[0] IE[4]	IP3[3:2]
SPI 中断 UART2 中断	14	0x0073	SPI_CR0[7:4] SPI_CR1[7] UT2_CR[1:0]	是	IE[3] UT2_BAUDH[5]	IP3[5:4]
DMA 中断	15	0x007B	DMA0_CR0[0] DMA1_CR0[0]	是	DMA0_CR0[2]	IP3[7:6]

注:

■ 对于 UT_CR[RI]、UT_CR[TI]、DMA0_CR0[DMAIF]和 DMA0_CR1[DMAIF],可软件清 0 置 1,软件置 1 时产生中断请求。除上述中断事件标志位,其他的中断事件标志位软件只能清 0,软件置 1 无意义。

■ 对于含有多个中断事件标志位的寄存器,为防止操作寄存器失误把中断事件标志位清 0,对不操作的中断事件标志位写 1。以 DRV_SR 为例,对于 DRV_SR[SYSTIF]的软件清 0,为避免 DRV_SR[FGIF]和 DRV_SR[DCIF]误清 0,使用语句 DRV_SR = (DRV_SR&0x7F) | 0x30。

7.5 中断寄存器

7.5.1 IE (0xA8)

位	7	6	5	4	3	2	1	0
名称	EA	RTCIE	RSV	ES0	SPIIE	EX1	TSDIE	EX0
类型	R/W	R/W	-	R/W	R/W	R/W	R/W	R/W
复位值	0	0	-	0	0	0	0	0
位	名称				描述			
		全局中断倒	能					
[7]	EA	0: 不使能						
		1: 使能						
		RTC 中断例	 能					
[6]	RTCIE	0: 不使能						
		1: 使能						
[5]	RSV	保留						
UART1 中断使能								
[4]	ES0	0: 不使能						
		1: 使能						
		SPI 中断使	能					
[3]	SPIIE	0: 不使能						
		1: 使能						
		外部中断	NT1 使能					
[2]	EX1	0: 不使能						
		1: 使能						
		TSD 中断使能						
[1]	TSDIE	0: 不使能						
		1: 使能						
		外部中断 INTO 使能						
[0]	EX0	0: 不使能						

1: 使能

7.5.2 IPO (0xB8)

位	7	6	5	4	3	2	1	0
名称	PDR	V	PX1		PX0		PLVW_TSD	
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
复位值	0	0	0	0	0	0	0	0
位	名称				描述			
[7:6]	PDRV	FG/DRV b	比较匹配中国	断优先级设法	定			
[5:4]	PX1	外部中断 INT1 优先级设定						
[3:2]	PX0	外部中断 INTO 优先级设定						
[1:0]	PLVW_TSD	LVW/TSD	中断优先组	及设定				

注:中断优先级设定值从0~3依次表示优先级从低到高,共4级。

7.5.3 IP1 (0xC0)

位	7	6	5	4	3	2	1	0
名称	PC	MP	MP PADC		PTIM1		PTIM2	
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
复位值	0	0	0	0	0	0	0	0
位	名称				描述			
[7:6]	PCMP	CMP0/1/2	中断优先级	设定				
[5:4]	PADC	ADC 中断	ADC 中断优先级设定					
[3:2]	PTIM1	Timer1 中断优先级设定						
[1:0]	PTIM2	Timer2 中	断优先级设置	定		·	·	·

注:中断优先级设定值从0~3依次表示优先级从低到高,共4级。

7.5.4 IP2 (0xC8)

位	7	6	5	4	3	2	1	0
名称	PTIN	M 4	PSYSTICK		PT	IM3	PRTC	
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
复位值	0	0	0	0	0	0	0	0
位	名称				描述			
[7:6]	PTIM4	Timer4 中	断优先级设	定				
[5:4]	PSYSTICK	Systick 中	Systick 中断优先级设定					
[3:2]	PTIM3	Timer3 中断优先级设定						
[1:0]	PRTC	RTC 中断化	尤先级设定					

注:中断优先级设定值从0~3依次表示优先级从低到高,共4级。

7.5.5 IP3 (0xD8)

位	7	6	5	4	3	2	1	0
名称	PDI	MA	PSPI _.	_UT2	PI2C	_UT1	PCMP3	
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
复位值	0	0	0	0	0	0	0	0
位	名称				描述			
[7:6]	PDMA	DMA 中断	优先级设定					
[5:4]	PSPI_UT2	SPI/UART	SPI/UART2 中断优先级设定					
[3:2]	PI2C_UT1	I ² C/UART	I ² C/UART1 中断优先级设定					
[1:0]	PCMP3	CMP3 中陸	听优先级设定	È				

注:中断优先级设定值从0~3依次表示优先级从低到高,共4级。

7.5.6 TCON (0x88)

7	6 5 4 3 2 1 0						
RS	SV	TSDIF	IT	1	IFO ITO		
ı	ı	R/W0	R/W	R/W	R/W0	R/W	R/W
ı	ı	0	0	0	0	0	0
名称				描述			
RSV	保留						
TSDIF	当检测到范 读: 0: 未发生中的 1: 发生中的 写: 0: 清 0 1: 无意义	0: 未发生中断事件 1: 发生中断事件 写: 0: 清 0 1: 无意义					
IT1	外部中断 INT1 触发电平选择 00: 上升沿触发中断 01: 下降沿触发中断 1X: 电平改变(上升或下降)触发中断 外部中断 INT0 事件标志位 读:						
	RS 名称 RSV TSDIF	RSV	RSV TSDIF R/W0 - 0 A称 RSV 保留 TSD 中断事件标志位 当检测到芯片曾经超过 读: 0: 未发生中断事件 5: 0: 清 0 1: 无意义 注: 此标志位常与过温 外部中断 INT1 触发电 00: 上升沿触发中断 1X: 电平改变(上升或 外部中断 INT0 事件标	RSV TSDIF IT R/W0 R/W - 0 0 27 RSV 保留 TSD 中断事件标志位 当检测到芯片曾经超过设定温度时读: 0:未发生中断事件 5: 0:清0 1:无意义 注:此标志位常与过温状态位 LVSF 外部中断 INT1 触发电平选择 00:上升沿触发中断 01:下降沿触发中断 1X:电平改变(上升或下降)触发中 外部中断 INT0 事件标志位 读:	RSV TSDIF IT1 R/W0 R/W R/W 0 0 0 0 名称 描述 RSV 保留 TSD 中断事件标志位 当检测到芯片曾经超过设定温度时,该位硬件 读: 0: 未发生中断事件 写: 0: 清 0 1: 无意义 注: 此标志位常与过温状态位 LVSR[TSDF]配合 外部中断 INT1 触发电平选择 00: 上升沿触发中断 01: 下降沿触发中断 1X: 电平改变(上升或下降)触发中断 外部中断 INT0 事件标志位 读:	RSV TSDIF IT1 IF0 R/W0 R/W R/W R/W0 0 0 0 0 0 名称	RSV TSDIF IT1 IF0 IT R/W0 R/W R/W R/W0 R/W 0 0 0 0 0 0 名称 描述 RSV 保留 TSD 中断事件标志位 当检测到芯片曾经超过设定温度时,该位硬件置 1 读: 0: 未发生中断事件 5: 0: 清 0

		1: 发生中断事件
		写:
		0: 清 0
		1: 无意义
		外部中断 INTO 触发电平选择
[1.0]	ITO	00: 上升沿触发中断
[1:0] IT	IT0	01: 下降沿触发中断
		1X: 电平改变(上升或下降)触发中断

7.5.7 P1_IE (0xD1)

位	7	6	5	4	3	2	1	0
名称	P17_IE	P16_IE	P15_IE	P14_IE	P13_IE	P12_IE	P11_IE	P10_IE
类型	R/W							
复位值	0	0	0	0	0	0	0	0

位	名称	描述
		P1.7 端口外部中断 INT1 使能
[7]	P17_IE	0: 不使能
		1: 使能
		P1.6 端口外部中断 INT1 使能
[6]	P16_IE	0: 不使能
		1: 使能
		P1.5 端口外部中断 INT1 使能(FU6332N 不支持此功能)
[5]	P15_IE	0: 不使能
		1: 使能
		P1.4 端口外部中断 INT1 使能(FU6332N 不支持此功能)
[4]	P14_IE	0: 不使能
		1: 使能
		P1.3 端口外部中断 INT1 使能(FU6332N 不支持此功能)
[3]	P13_IE	0: 不使能
		1: 使能
		P1.2 端口外部中断 INT1 使能
[2]	P12_IE	0: 不使能
		1: 使能
		P1.1 端口外部中断 INT1 使能
[1]	P11_IE	0: 不使能
		1: 使能

		P1.0 端口外部中断 INT1 使能
[0]	P10_IE	0: 不使能
		1: 使能

7.5.8 P1_IF (0xD2)

位	7	6	5	4	3	2	1	0	
名称	P17_IF	P16_IF	P15_IF	P14_IF	P13_IF	P12_IF	P11_IF	P10_IF	
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
复位值	0	0	0	0	0	0	0	0	
位	名称		描述						
		P1.7 端口名	外部中断标题	 志位					

P17_IF	位	名称	描述
1: 发生中断事件			P1.7 端口外部中断标志位
P1.6 端口外部中断标志位	[7]	P17_IF	0: 未发生中断事件
[6] P16_IF 0: 未发生中断事件 1: 发生中断事件 1: 发生中断事件 P1.5 端口外部中断标志位(FU6332N 不支持此中断标志位)			1: 发生中断事件
1: 发生中断事件 P1.5 端口外部中断标志位(FU6332N 不支持此中断标志位) 0: 未发生中断事件 1: 发生中断事件 1: 发生中断事件 P1.4 端口外部中断标志位(FU6332N 不支持此中断标志位) 0: 未发生中断事件 1: 发生中断事件			P1.6 端口外部中断标志位
[5] P15_IF P1.5 端口外部中断标志位(FU6332N 不支持此中断标志位) 0: 未发生中断事件 1: 发生中断事件	[6]	P16_IF	0: 未发生中断事件
[5] P15_IF 0: 未发生中断事件 1: 发生中断事件 1: 发生中断事件 P1.4 端口外部中断标志位(FU6332N 不支持此中断标志位) 0: 未发生中断事件 1: 发生中断事件 P1.3 端口外部中断标志位(FU6332N 不支持此中断标志位) [3] P13_IF 0: 未发生中断事件 1: 发生中断事件 1: 发生中断事件 1: 发生中断事件 P1.2 端口外部中断标志位 [2] P12_IF 0: 未发生中断事件 1: 发生中断事件 P1.1 端口外部中断标志位 [1] P11_IF 0: 未发生中断事件			1: 发生中断事件
1: 发生中断事件 P1.4 端口外部中断标志位(FU6332N 不支持此中断标志位) 0: 未发生中断事件 1: 发生中断事件 P1.3 端口外部中断标志位(FU6332N 不支持此中断标志位) 0: 未发生中断事件 1: 发生中断事件 0: 未发生中断事件 1: 发生中断事件 1: 发生中断事件 1: 发生中断事件 1: 发生中断事件			P1.5 端口外部中断标志位(FU6332N 不支持此中断标志位)
[4] P1.4 端口外部中断标志位(FU6332N 不支持此中断标志位) [5] P14_IF 0: 未发生中断事件 1: 发生中断事件 0: 未发生中断事件 0: 未发生中断事件	[5]	P15_IF	0: 未发生中断事件
[4] P14_IF 0: 未发生中断事件 1: 发生中断事件 P1.3 端口外部中断标志位(FU6332N 不支持此中断标志位) [3] P13_IF 0: 未发生中断事件 1: 发生中断事件 P1.2 端口外部中断标志位 [2] P12_IF 0: 未发生中断事件 1: 发生中断事件 P1.1 端口外部中断标志位 [1] P11_IF 0: 未发生中断事件			1: 发生中断事件
1: 发生中断事件 P1.3 端口外部中断标志位(FU6332N 不支持此中断标志位) (3] P13_IF 0: 未发生中断事件 1: 发生中断事件 P1.2 端口外部中断标志位 P1.2 端口外部中断标志位 C1 P12_IF 0: 未发生中断事件 1: 发生中断事件 P1.1 端口外部中断标志位 P1.1 端口外部中断标志位 D1.1 端口外部中断标志位 D1.1 端口外部中断标志位 D1.1 端口外部中断标志位 D1.1 端口外部中断标志位			P1.4 端口外部中断标志位(FU6332N 不支持此中断标志位)
[3] P1.3 端口外部中断标志位(FU6332N 不支持此中断标志位) [2] P13_IF [2] P12_IF [2] P12_IF [3] P12_IF [4] P1.2 端口外部中断标志位 [5] P11_IF [6] P11_IF [7] P11_IF [7] P11_IF	[4]	P14_IF	0: 未发生中断事件
[3] P13_IF 0: 未发生中断事件 1: 发生中断事件 P1.2 端口外部中断标志位 [2] P12_IF 0: 未发生中断事件 1: 发生中断事件 P1.1 端口外部中断标志位 [1] P11_IF 0: 未发生中断事件			1: 发生中断事件
1: 发生中断事件 P1.2 端口外部中断标志位 [2] P12_IF 0: 未发生中断事件 1: 发生中断事件 P1.1 端口外部中断标志位 [1] P11_IF 0: 未发生中断事件			P1.3 端口外部中断标志位(FU6332N 不支持此中断标志位)
[2] P1.2 端口外部中断标志位 0: 未发生中断事件 1: 发生中断事件 P1.1 端口外部中断标志位 P1.1 片 0: 未发生中断事件 0: 未发生中断事件	[3]	P13_IF	0: 未发生中断事件
[2] P12_IF 0: 未发生中断事件 1: 发生中断事件 P1.1 端口外部中断标志位 [1] P11_IF 0: 未发生中断事件			1: 发生中断事件
1: 发生中断事件 P1.1 端口外部中断标志位 [1] P11_IF 0: 未发生中断事件			P1.2 端口外部中断标志位
P1.1 端口外部中断标志位 [1] P11_IF 0: 未发生中断事件	[2]	P12_IF	0: 未发生中断事件
[1] P11_IF 0: 未发生中断事件			1: 发生中断事件
			P1.1 端口外部中断标志位
4 4 4 Nr = 14	[1]	P11_IF	0: 未发生中断事件
1: 友生中断事件			1: 发生中断事件
P1.0 端口外部中断标志位			P1.0 端口外部中断标志位
[0] P10_IF 0: 未发生中断事件	[0]	P10_IF	0: 未发生中断事件
1: 发生中断事件			1: 发生中断事件

注: 使用软件写入 0 时可以清零对应的中断标志位。

7.5.9 P2_IE (0xD3)

位	7	6	5	4	3	2	1	0
名称	P27_IE	RS	SV	P24_IE	P23_IE	P22_IE	P21_IE	P20_IE
类型	R/W	-	-	R/W	R/W	R/W	R/W	R/W
复位值	0	-	=	0	0	0	0	0
位	名称				描述			
		P2.7 端口:	外部中断 IN	NT1 使能				
[7]	P27_IE	0: 不使能						
		1: 使能						
[6:5]	RSV	保留						
		P2.4 端口:	外部中断 IN	NT1 使能				
[4]	[4] P24_IE 0: 不使能							
		1: 使能						
		P2.3 端口:	外部中断 IN	NT1 使能				
[3]	P23_IE	0: 不使能						
		1: 使能						
		P2.2 端口:	外部中断 IN	NT1 使能				
[2]	P22_IE	0: 不使能						
		1: 使能						
		P2.1 端口:	外部中断 IN	NT1 使能				
[1] P21_IE 0: 不使能								
		1: 使能						
		P2.0 外部	中断 INT1 (吏能				
[0]	P20_IE	0: 不使能						
		1: 使能						

7.5.10 P2_IF (0xD4)

位	7	6	5	4	3	2	1	0	
名称	P27_IF	RSV		P24_IF	P23_IF	P22_IF	P21_IF	P20_IF	
类型	R/W	-	-	R/W	R/W	R/W	R/W	R/W	
复位值	0	-	-	0	0	0	0	0	
位	名称		描述						
		P2.7 端口名	外部中断标题	ま位					
[7]	P27_IF	0: 未发生口	中断事件						
		1: 发生中图	断事件						

[6:5]	RSV	保留
		P2.4 端口外部中断标志位
[4]	P24_IF	0: 未发生中断事件
		1: 发生中断事件
		P2.3 端口外部中断标志位
[3]	P23_IF	0: 未发生中断事件
		1: 发生中断事件
		P2.2 端口外部中断标志位
[2]	P22_IF	0: 未发生中断事件
		1: 发生中断事件
		P2.1 端口外部中断标志位
[1]	P21_IF	0: 未发生中断事件
		1: 发生中断事件
		P2.0 端口外部中断标志位
[0]	P20_IF	0: 未发生中断事件
		1: 发生中断事件

注: 使用软件写入 0 时可以清零对应的中断标志位。

8 I2C

8.1 I²C 简介

I²C 模块提供了符合工业标准的两线串口接口,是一种简单双向的同步串行总线,可用于 MCU 和外部 I²C 设备的通讯,如图 8-1 所示。总线由两根串行线组成: SDA 和 SCL。P0.0 为 SDA 端口,P0.1 为 SCL 端口。I²C 使能后、P0.0 和 P0.1 自动变为开漏电路。

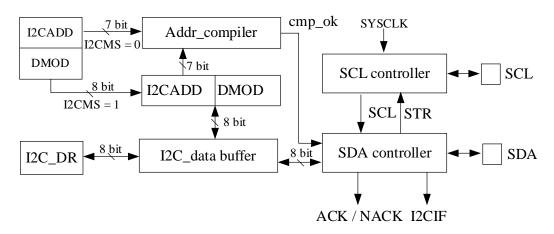


图 8-1 I²C 结构框图

主要特性:

- 支持I²C协议的标准模式(最高100kHz)、快速模式(最高400kHz)以及快速 + 模式(最高1MHz)
- 支持主机模式和从机模式
- 支持7位地址模式和广播寻址模式
- 支持DMA数据传输

总线在空闲时 SDA 和 SCL 为高电平,这是检测总线是否空闲的唯一依据。在传输过程中总线上有且只有一个主器件和至少一个从器件处于活跃状态。当总线被占用时,其他设备必须等待 I²C 总线空闲后才能控制总线发起 I²C 通讯。主机用于启动总线传输数据,并通过 SCL 向所有设备发送时钟信号,通过 SDA 发送从机地址和读写模式。如总线上有设备匹配该地址,则该设备将作为从机。在总线上主从机和数据收发的关系不是恒定的。主机发送数据给从机的过程为: 主机首先寻址从器件,等待从机应答后发送数据至从机,最后由主机终止数据传送,通讯过程如图 8-2 所示。主机接收从机数据的过程为: 主机首先寻址从机,等待从机应答后,主机接收从机发送的数据,最后由主机终止接收过程,通讯过程如图 8-3 所示。在这种情况下,主机负责产生传输时钟和终止数据传送。

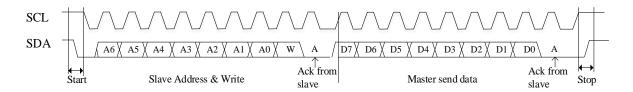


图 8-2 主机向从机发送数据

图 8-3 主机接收从机的数据

8.2 I²C 操作说明

8.2.1 主机模式

- 1. 配置 I2C CR[I2CMS] = 1,设置为主机模式;
- 2. 配置 I2C_CR[I2CSPD],设置时钟 SCL 频率;
- 3. 配置 I2C_ID[I2CADD],设置从机地址;
- 4. 配置 I2C_SR[DMOD],设置读写方向;
- 5. 配置 I2C_CR[I2CEN] = 1, 使能 I²C;
- 6. 配置 I2C_SR[I2CSTA] = 1,发送 START 和地址,在接收到 ACK/NACK 后,I2C_SR[STR]被硬件置 1,SCL 被主机强制拉低;
- 7. 发送数据: 通过 I2C_DR 配置发送数据,将 I2C_SR[STR]清 0 释放 SCL 后,主机开始发送数据。当数据发送完毕且接收到 ACK/NACK 后,I2C_SR[STR]硬件置 1, SCL 被主机强制拉低;
- 8. 接收数据: 在将 I2C_SR[STR]清 0 释放 SCL 后,主机开始接收数据。当数据接收完毕, I2C_SR[STR]硬件置 1, SCL 被主机强制拉低。通过 I2C_SR[NACK]设置 ACK/NACK 后,再向 I2C_SR[STR]清 0 释放 SCL 以发送 ACK/NACK 信号。如收到了新数据, I2C_SR[STR]硬件置 1, SCL 被主机强制拉低;
- 9. 停止通讯: 当在 I2C_SR[STR] = 1 时置位 I2C_SR[I2CSTP] = 1, I2C_SR[STR]复位后发送停止信号。

8.2.2 从机模式

- 1. 配置 I2C CR[I2CMS] = 0, 设置为从机模式;
- 2. 配置 I2C_ID[I2CADD],设置从机地址;或者配置 I2C_ID[GC] = 1,使能广播模式;
- 3. 配置 I2C_CR[I2CEN] = 1, 使能 I²C;
- 4. 接收到 START 信号和正确的地址后,I2C_SR[I2CSTA]和 I2C_SR[STR]被硬件置 1, SCL 被从机强制拉低。通过 I2C_SR[NACK]设置 ACK/NACK,并通过 I2C_SR[DMOD]确认本次通讯是接收数据还是发送数据:
- 5. 发送数据: 通过 I2C_DR 配置发送数据,将 I2C_SR[STR]清 0 释放 SCL 后,发送 ACK/NACK 后发送数据,当数据发送完成且收到主机发来的 ACK/NACK 后,I2C_SR[STR]硬件置 1, SCL 被从机强制拉低;
- 6. 接收数据: 将 I2C_SR[STR]清 0 释放 SCL 开始接收数据。当数据接收完成,I2C_SR[STR]硬件置 1, SCL 被从机强制拉低。通过 I2C_SR[NACK]设置 ACK/NACK 后,将 I2C_SR[STR]清 0 释放 SCL 并发送 ACK/NACK。如接收到新的数据,I2C_SR[STR]硬件置 1, SCL 被从机强制拉低:
- 7. RESTART 功能: 当从机在忙状态中接收到 START 信号,则中止当前工作,等待接收地址。

8.2.3 I²C 中断源

I²C 的中断源有:

- I2C_SR[STR] = 1 时,该中断源在主机和从机模式下都有效
- I2C_SR[I2CSTP] = 1 时,该中断源只在从机模式下有效

8.3 I²C 寄存器

8.3.1 I2C_CR (0x4028)

位	7	6	5	4	3	2	1	0
名称	I2CEN	I2CMS		RSV		I2C	SPD	I2CIE
类型	R/W	R/W	-	-	-	R/W	R/W	R/W
复位值	0	0	-	-	-	0	0	0

位	名称	描述
[7]	I2CEN	I ² C 使能使能相应 GPIO 切换为 I ² C 模式,集电极开漏输出。I ² C 上拉是否打开由端口上拉设置决定。 0: 不使能 1: 使能

		主/从机模式选择
[6]	I2CMS	0: 从机
		1: 主机
[5:3]	RSV	保留
		I ² C 传输速率配置,仅在主机模式下有效
	I2CSPD	00: 100kHz
[2:1]		01: 400kHz
		10: 1MHz
		11: 保留
		I ² C 中断使能
[0]	I2CIE	0: 不使能
		1: 使能

8.3.2 I2C_ID (0x4029)

位	7	6	5	4	3	2	1	0			
名称		I2CADD GC									
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
复位值	1	0	1	0	1	0	1	0			
位	名称		描述								
[7:1]	I2CADD	从机地址									
		广播模式,仅在从机模式下有效									
[0]	GC	0: 不使能几	: 不使能广播呼叫								
		1: 使能广持	番呼叫,即均	也址 0x00 也	会响应						

8.3.3 I2C_DR (0x402A)

位	7	6	5	4	3	2	1	0			
名称			I2C_DR								
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
复位值	0	0	0	0	0	0	0	0			
位	名称				描述						
		I ² C 数据寄	存器								
[7:0]	I2C_DR	读: 准备发	送的数据或	接收到的数	据						
		写: 准备发	送的数据								

8.3.4 I2C_SR (0x402B)

位	7	6	5	4	3	2	1	0	
名称	I2CBSY	DMOD	RSV	I2CSTA	I2CSTP	STR	NACK	I2CIF	
类型	R	R/W	-	R/W	R/W	R/W0	R/W	R	
复位值	0	0	-	0	0	0	0	0	
位	名称				描述				
[7]	I2CBSY	当 I2C_CR[i 主机模式: 发送 STAR ⁻ 从机模式:	台 I2C_CR[I2CEN] = 0 时,I2C_SR[I2CBSY]硬件清 0 注机模式: 设送 START 成功后,硬件置 1,发送 STOP 成功后,硬件清 0 从机模式: 纹到 START 且地址匹配成功后,硬件置 1,收到 STOP 后,硬件清 0						
[6]	DMOD	0: 写模式(3	l ² C 读写标志位 0: 写模式(主机端发数据,从机端收数据) 1: 读模式(主机端收数据,从机端发数据) 注: 从机模式只读						
[5]	RSV	保留							
[4]	I2CSTA	送完成后硬 入。在数据 0: 非 STAR 1: 发送 STA 从机模式: 硬件收到 S 表 8-1 加	件自动清(发送或接收 T和地址字 ART或 RES TART 且地 机模式 I2C	D。在发送或 效完毕后置 I2 节 START 和地址 址字节匹配质 _SR[I2CSTA]和 I2CSTP	接收数据的 2C_SR[I2CS 止字节 舌置 1,软件	过程中,禁 TA] = 1,发 ‡清 0 STP]与当前 I ² C 数据	止 I2C_SR[I 送 RESTAR I ² C 数据类型	2CSTA]	
		0		0		数据字	节		
		0		1		STO	P		
		1		0		START + 地	地字节		
		1/2 C 忙状态标志位							

注: 当 I2C_CR[I2CEN] = 0 时, I2C_SR[I2CSTA]自动清 0

[3]	I2CSTP	主机模式: 当 I2C_SR[I2CBSY] = 1 时,软件才能有效写 1,I2C_SR[STR]清 0 释放 SCL 开始发送 STOP。发送完 STOP 后硬件自动清 0。如果 I2C_SR[I2CSTA]和 I2C_SR[I2CSTP]同时写 1,且 I2C_SR[I2CBSY] = 1,则 I ² C 先发送 STOP,再发 START 和地址字节,START 和地址字节发送完成后 I2C_SR[STR]硬件置 1。在发送或接收数据的过程中,禁止 I2C_SR[I2CSTP]写入。 0: 不发送 STOP 1: 发送 STOP 从机模式: 硬件收到 STOP 后置 1,软件清 0 状态标志位参考表 8-1 注: 当 I2C_CR[I2CEN] = 0 时,I2C_SR[I2CSTP]会被硬件自动清 0
[2]	STR	I ² C 总线挂起标志位 主机模式: 当硬件发送完 START 加地址字节或 DATA 字节后, I2C_SR[STR]硬件置 1, 同 时 SCL 被拉低, I2C_SR[STR]软件清 0 后释放 SCL。 如果 I2C_SR[I2CSTA]和 I2C_SR[I2CSTP]同为 1, 则当硬件发送完 STOP 和 START 加地址字节后, I2C_SR[STR]才会置 1。 从机模式: 当硬件接收完 START 且地址匹配或 DATA 字节后, I2C_SR[STR]硬件置 1, 同 时 SCL 被拉低, I2C_SR[STR]软件清 0 后释放 SCL。 注: 该位由硬件置 1, 软件清 0。当 I2C_SR[I2CEN] = 0 时, I2C_SR[STR]自动 清 0
[1]	NACK	I ² C 传输完一个字节后,接收方向发送方的反馈。I2C_CR[I2CEN] = 0 时,该位自动清 0 0: ACK,表示接收方可以继续接收数据 1: NACK,表示接收方希望停止数据传送 当设备处于读模式,在接收完数据第 8 位后配置 I2C_SR[NACK]发送 ACK/NACK 0: 第 9 位发送 ACK 1: 第 9 位发送 NACK 当设备处于写模式,在发送完数据第 8 位后读 I2C_SR[NACK]接收 ACK/NACK

		0: 第 9 位收到的是 ACK
		1: 第 9 位收到的是 NACK
		I ² C 中断事件标志位
		0: 未发生中断事件
[0]	I2CIF	1: 发生中断事件
		当 I2C_SR[STR] = 1 时,在主机和从机模式下产生中断
		当 I2C_SR[I2CSTP] = 1 时,在从机模式下产生中断

9 SPI

9.1 SPI 简介

SPI 是一种高速全双工同步串行总线,其原理框图如图 9-1 所示。SPI 支持主机模式和从机模式, 支持 3 线制或 4 线制传输模式,允许总线上存在多个主机和从机。

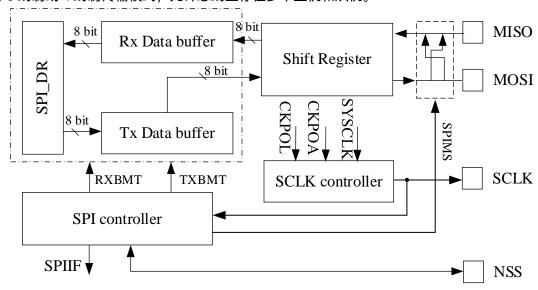


图 9-1 SPI 原理结构框图

9.2 SPI 操作说明

9.2.1 信号说明

SPI 所使用的 4 个信号为 MOSI、MISO、SCLK、NSS。

9.2.1.1 主输出、从输入(MOSI)

主出从入(MOSI)信号是主机的输出和从机的输入,用于从主机到从机的串行数据传输。数据传输时最高位在先,即按顺序将移位寄存器的 MSB 串行地送到 MOSI 引脚上。

9.2.1.2 主输入、从输出(MISO)

主入从出(MISO)信号是从机的输出和主机的输入。当 SPI 被禁止或工作在 4 线从模式而未被选中时,MISO 引脚被置于高阻态。当作为从机工作在 3 线模式或 4 线从模式被选中时,用于从从机到主机的串行数据传输。数据传输时最高位在先,即按顺序将移位寄存器的 MSB 串行地送到 MISO引脚上。

9.2.1.3 串行时钟(SCLK)

串行时钟(SCLK)信号是主机的输出和从机的输入,用于同步主机和从机之间的串行数据传输。 SCLK 由工作在主机模式的 SPI 产生。在 4 线从模式,当从器件未被选中时(NSS = 1), SCLK 信号被忽略。

9.2.1.4 片选信号(NSS)

片选信号(NSS)的功能通过 SPI_CR1[NSSMOD]配置,用于选择 SPI 的工作模式。SPI 工作模式包括 3 线模式、4 线从机/多主机模式及 4 线单主模式。当 SPI 工作在 4 线从机/多主机模式时,片选信号(NSS)被配置为输入以选择从机模式 SPI,或在多主模式中禁止总线某个 SPI 主机,避免两个以上主机试图同时进行数据传输时发生 SPI 总线冲突。当 SPI 工作在 4 线单主模式时,主机 NSS 被配置为片选输出。当 SPI 工作在 3 线模式时,NSS 被禁止。在主机模式,可以用其他通用端口 I/O 引脚选择多个从机。

配置 SPI_CR1[NSSMOD] = 00 时, SPI 工作在 3 线模式。该工作模式无需 NSS 端口, SPI 总线上只有一个主机一个从机,连接方式如图 9-2 所示。

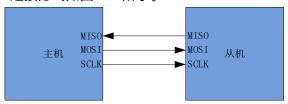


图 9-2 3 线 SPI 模式连接图

配置 SPI_CR1[NSSMOD] = 01 时,SPI 工作在 4 线从模式或多主模式。在该工作模式,SPI 总线上器件的 NSS 端口均配置为输入,等待主机寻址。配置 SPI_CR0[SPIMS] = 0,SPI 工作在 4 线从机模式。当 NSS 为逻辑 0 时,从机 SPI 被选通;当 NSS 为逻辑 1 时,从机 SPI 不被选通。配置 SPI_CR0[SPIMS] = 1,SPI 工作在主机模式,默认为多主模式。在多主工作模式下,NSS 输入用于禁止 SPI 的主机模式。当总线上主机的 NSS 信号为低电平时,SPI_CR0[SPIMS]和 SPI_CR1[SPIEN]被硬件清 0,以不使能 SPI,同时方式错误标志 SPI_CR1[MODF]被置 1。在这种情况下,需软件重新使能SPI,才能继续 SPI 通讯。该工作模式,SPI 总线允许多个主机参与通信,其连接方式如图 9-3 所示。

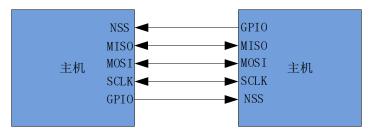


图 9-3 4 线多主机模式连接图

配置 SPI_CR1[NSSMOD] = 1X 时, SPI 工作在 4 线单主模式。在该工作模式下,总线上主机 NSS 配置为输出,从机的 NSS 为输入。主机配置 SPI_CR1[NSSMOD0]的设定值决定 NSS 引脚的输出电平,作为一个从机的选通信号,其它从机的选通可通过通用 I/O 来选择。4 线制单主机模式的连接如图 9-4 所示。

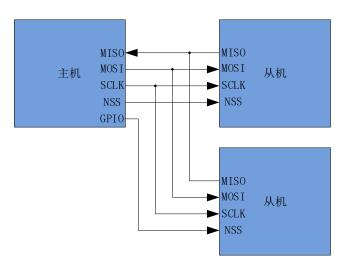


图 9-4 4 线单主机模式连接图

9.2.2 SPI 主机模式

配置 SPI_CR0[SPIMS] = 1, SPI 工作在主机模式,为 SPI 总线提供 SCLK 信号,启动数据传输。在该模式下,SPI 会根据移位寄存器是否为空控制 SPI 启动传输。当向 SPI_DR 写入数据时,该数据首先被写入发送缓冲器,SPI_CR1[TXBMT]被清 0。如果移位寄存器为空,则发送缓冲器中的数据将会传送到移位寄存器,传输开始。主机 SPI 串行地将移位寄存器 MSB 送到 MOSI 引脚上。传输结束后 SPI_CR1[SPIIF]和 SPI_CR1[TXBMT]将会被置 1。在全双工操作中,当 SPI 主机在 MOSI 线向从机发送数据时,被寻址的 SPI 从机可以同时在 MISO 线上向主机发送其移位寄存器中的内容。因此,SPI_CR1[SPIIF]标志既作为发送完成标志又作为接收数据准备就绪标志,移位寄存器的数据为 MISO接收到的数据,该数据传送到接收缓冲器中。向 SPI_DR 读取数据为接收缓冲器的数据。如果在SPI_CR1[TXBMT] = 0 时向 SPI_DR 写入数据,写冲突标志位 SPI_CR1[WCOL]被置 1,并保持发送缓冲器中的数据。

9.2.2.1 主机模式配置

- 1. 配置 SPI_CR1[NSSMOD],设置 SPI 工作模式;
- 2. 配置 SPI CR0[CPOL],设置时钟极性;
- 3. 配置 SPI CRO[CPHA],设置时钟相位;
- 4. 配置 SPI_CR0[SPIMS] = 1,设置为主机模式;
- 5. 配置 SPI_CLK,设置 SCLK 频率;

- 6. 配置 SPI CR1[SPIEN] = 1, 使能 SPI;
- 7. 向 SPI_DR 写入要发送的数据,每写一次,SPI 将传输一次;
- 8. SPI_CR1[SPIIF]被置 1 后,读 SPI_DR 获取接收到的数据。

9.2.3 SPI 从机模式

配置 SPI_CR0[SPIMS] = 0 时,SPI 工作于从机模式。在该模式下,SPI 的 SCLK 信号将由主机的 SPI 提供,从 MOSI 移入数据,从 MISO 引脚移出数据。当 SCLK 信号未输入时,从机移位寄存器处于停止状态。当 SCLK 信号输入时,从机的移位寄存器开始动作,通过 MOSI 和 MISO 开始接收和发送数据。从器件不能启动数据传送。通过写 SPI_DR 预装要发送给主机的数据到发送缓冲器。如果移位寄存器为空,发送缓冲器中的数据会立即被传送到移位寄存器。当传输完成后,SPI_CR1[SPIIF]和 SPI_CR1[TXBMT]被置 1,接收到的字节被传送到接收缓冲器,且接收缓冲器空标志位 SPI_CR0[RXBMT]被清 0,表示当前有未读数据。如果 SPI_CR0[RXBMT] = 0 且此时有新的数据准备送入接收缓冲器,则 SPI_CR1[RXOVRN]将会被置 1,且接收缓冲器中的数据不变。当向 SPI_DR 写入数据时 SPI_CR1[TXBMT]被清 0。如果此时再写入数据,写冲突标志位 SPI_CR1[WCOL]被置 1,并保持发送缓冲器中的数据。

9.2.3.1 从机模式配置

- 1. 配置 SPI_CR1[NSSMOD],设置 SPI 工作模式;
- 2. 配置 SPI_CR0[CPOL],设置时钟极性;
- 3. 配置 SPI_CR0[CPHA],设置时钟相位;
- 配置 SPI_CR0[SPIMS] = 0, 设置为从机模式;
- 5. 配置 SPI CR1[SPIEN] = 1, 使能 SPI;
- 6. 向 SPI DR 写入操作数据,等待主机发送时钟信号。

9.2.4 SPI 中断源

SPI 的中断源有:

- 每次字节传输结束时、SPI 中断标志 SPI CR1[SPIIF]被置 1
- 如果在发送缓冲器中的数据尚未被传送到移位寄存器时写 SPI_DR, 写冲突标志 SPI CR1[WCOL]被置 1 且写 SPI DR 的操作被忽略。
- 当 SPI 被配置为工作于多主系统中的主机而 NSS 被拉低时,模式错误标志 SPI_CR1[MODF] 被置 1。当发生模式错误时,SPI_CR0[SPIMS]和 SPI_CR1[SPIEN]位被清 0,SPI 被禁止以允许另一个主机控制总线。
- 当 SPI 被配置为从机并且一次传输结束,接收缓冲器中还保持着上一次传输的数据未被读取时,接收溢出标志 SPI_CR1[RXOVRN]被置 1。新接收的数据将不被传送到接收缓冲器。

9.2.5 串行时钟时序

配置 SPI_CRO 中相位和空闲电平选择位可以实现串行时钟相位和空闲电平的 4 种组合。 SPI_CRO[CPHA]选择时钟相位(移位寄存器数据跳变时的 SCLK 信号边沿)。SPI_CRO[CPOL]选择空闲电平。主机和从机配置必须一致。配置时钟相位和空闲电平时应禁止 SPI(SPI_CR1[SPIEN] = 0)。相位和空闲电平组合下时钟线和数据线的时序关系如图 9-5 和图 9-6。

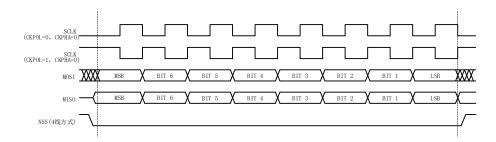


图 9-5 数据/时钟时序图(SPI_CR0[CPHA] = 0)

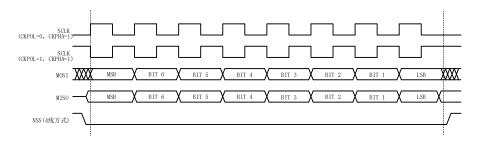


图 9-6 数据/时钟时序图(SPI_CR0[CPHA] = 1)

9.3 SPI 寄存器

9.3.1 SPI_CR0 (0x4030)

位	7	6	5	4	3	2	1	0	
名称	SPIBSY	SPIMS	СРНА	CPOL	SLVSEL	NSSIN	SRMT	RXBMT	
类型	R	R/W	R/W	R/W	R	R	R	R	
复位值	0	0	0	0	0	1	1	1	
位	名称		描述						
[7]	SPIBSY	忙标志位 0: 没有 SP 1: 正在进行	I 传输 F SPI 传输						
[6]	SPIMS	主/从机设 0: 从机 1: 主机	定						

		时钟相位				
[5]	СРНА	0: 在 SCLK 有效电平的前沿接收数据,后沿发送数据				
		1: 在 SCLK 有效电平的前沿发送数据,后沿接收数据				
		时钟空闲电平				
[4]	CPOL	0: 低电平为空闲电平				
		1: 高电平为空闲电平				
		NSS 片选标志位				
		当 NSS 引脚滤波后的信号为低电平时该位被置 1,表示被选中为从机。当信				
[3]	SLVSEL	号为高电平时该位被清 0,表示未被选中为从机。				
		0: 未被选中为从机				
		1: 被选中为从机				
[2]	NSSIN	NSS 实时信号,该信号未滤波				
		移位寄存器空标志位(只在从机模式时有效)				
		0: 数据从发送缓冲器传送到移位寄存器或 SCLK 发生变化				
[1]	SRMT	1: 移位寄存器没有数据且发送和接收缓冲器均没有数据				
		注: 在主模式时 SPI_CR0[SRMT] = 1				
		接收缓冲器空标志位(只在从机模式时有效)				
		0: 存在新数据未被读取				
[0]	RXBMT	1: 数据被读取且没有新数据				
		注: 在主模式时 SPI_CR0[RXBMT] = 1				

注:

时钟相位空闲电平模式 SPI_CR0[CPHA:CPOL]:

- 00: 上升沿接收,下降沿发送,空闲电平为低
- 01: 上升沿发送,下降沿接收,空闲电平为高
- 10: 上升沿发送,下降沿接收,空闲电平为低
- 11: 上升沿接收,下降沿发送,空闲电平为高

9.3.2 SPI_CR1 (0x4031)

位	7	6	5	4	3	2	1	0
名称	SPIIF	WCOL	MODF	RXOVR N	NSSI	MOD	TXBMT	SPIEN
类型	R/W0	R/W0	R/W0	R/W0	R/W	R/W	R	R/W
复位值	0	0	0	0	0	0	1	0

位	名称	描述
[7]	SPIIF	SPI 中断事件标志位 每次传输完一个数据(8 位)之后,此位将由硬件置 1 读:

		0: 未发生中断事件
		1: 发生中断事件
		写:
		0: 清 0
		1: 无意义
		写冲突中断事件标志位
		当 SPI_CR1[TXBMT]为 0 时,写入 SPI_DR,则此位被置 1
		此位必须由软件清 0
[6]	WCOL	0: 未发生中断事件
		 1: 发生中断事件
		写:
		0:清0
		1: 无意义
		主机模式错误中断事件标志位
		工机模式间读下断事件机态位 当检测到主机模式冲突的时候,此位置 1(SPI_CR0[NSSIN] = 0,
	MODF	SPI_CR1[SPIMS] = 1 且 SPI_CR1[NSSMOD] = 01)
		此位必须由软件清 0
[5]		读:
		0: 未发生中断事件
		1: 发生中断事件
		写:
		0: 清 0
		1: 无意义
		接收溢出中断事件标志位(只在从机模式下有效)
		当前传输的最后一位已经移入 SPI 移位寄存器,而接收缓冲器中仍保存着前一
		次传输未被读取的数据时该位由硬件置 1(并产生一个 SPI 中断)。该位不会被
		硬件自动清 0,必须用软件清 0。
	RXOVR	
[4]	N	0: 未发生中断事件
	NICCMAC	
[3:2]		
	l D	
		TX: 4
		发送缓冲器空标志位
[1]	TXBMT	当新数据被写入发送缓冲器时,该位被清 0。当发送缓冲器中的数据被传送到
		SPI 移位寄存器时,该位被置 1,表示可以向发送缓冲器写新数据。
	NSSMO D	当前传输的最后一位已经移入 SPI 移位寄存器,而接收缓冲器中仍保存着前一次传输未被读取的数据时该位由硬件置 1(并产生一个 SPI 中断)。该位不会被硬件自动清 0,必须用软件清 0。读: 0: 未发生中断事件 1: 发生中断事件 写: 0: 清 0 1: 无意义 SPI 模式配置 00: 3 线从模式或 3 线主模式。NSS 信号不连到端口引脚 01: 4 线从模式或多主模式(默认值)。NSS 端口为输入 1X: 4 线单主模式。NSS 端口为输出状态并输出 SPI_CR1[2]的值 发送缓冲器空标志位 当新数据被写入发送缓冲器时,该位被清 0。当发送缓冲器中的数据被传送到

		0: 存在新数据写入发送缓冲器
		1: 发送缓冲器数据已传送至移位寄存器
		SPI 使能
[0]	SPIEN	0: 不使能
		1: 使能

9.3.3 SPI_CLK (0x4032)

位	7	6	5	4	3	2	1	0			
名称			SPI_CLK R/W R/W R/W R/W R/W R/W R/W 0 0 0 0 0 0 0 0 0 描述 SPI 波特率设置 主机模式有效,仅在 SPI_CR1[SPIEN] = 0 时可写 皮特率 = SYSCLK/2/(SPI_CLK + 1) 列:波特率 2400kHz,则 SPI_CLK = (24M/2/2400k) - 1 = 4,即为 0x04								
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
复位值	0	0	0	0	0	0	0	0			
位	名称		描述								
[7:0]	SPI_CLK	主机模式存 波特率 = S 例:波特率 注: MDU fi	百效,仅在? SYSCLK/2/(2400kHz, 约 PI/PID 与	 SPI_CLK + ´ 则 SPI_CLK	1) = (24M/2/2 时使用时(使	2400k) - 1 : ī用 DMA 传:	= 4,即为 0x(输),主机 S				

9.3.4 SPI_DR (0x4033)

位	7	6	5	4	3	2	1	0			
名称			SPI_DR								
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
复位值	0	0	0	0	0	0	0	0			
位	名称		描述								
[7:0]	SPI_DR	读: 接收缓	存器 存器用于发 冲器中的数 据送至发送	据							

10 UART

10.1 UART 简介

UART 是一种全双工或半双工串行数据交换接口,如图 10-1 所示。传输波特率可配置并支持 DMA 功能传输数据。UART 通信时序如图 10-2 所示。

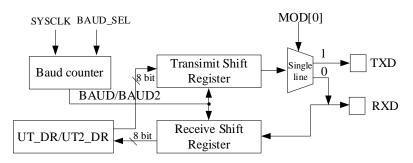


图 10-1 UART 通信模块构造框图

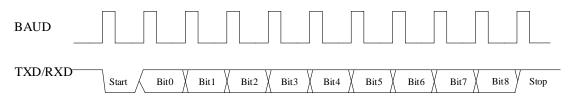


图 10-2 UART 通信时序图

10.2 UART 操作说明

在使用 UART 前需确保相关寄存器使能,详细请参考 21.3.14 PH_SEL (0x404C) [6]、[5]位描述。

10.2.1 UART1 操作说明

10.2.1.1 UART1 模式 0

模式 0 工作于单线制半双工模式。RXD 既为发送数据总线,又为接收数据总线。收发数据为 10 位(1 位启动、8 位数据、1 位停止),波特率由 UT BAUD[BAUD]决定。

发送数据: 将发送的数据写入 UT_DR 并将 UT_CR[TI]清 0, RXD 将输出 10 位数据。发送完成后 UT_CR[TI]置 1。

接收数据: 配置 UT_CR[REN] = 1 启动接收并将 UT_CR[RI]清 0,数据通过 RXD 接收。接收完成后,UT_CR[RI]置 1,读取 UT_DR 会得到接收到的数据。

10.2.1.2 UART1 模式 1

模式 1 工作于全/半双工模式。TXD 为发送数据总线,RXD 为接收数据总线,收发数据为 10 位 (1 位启动、8 位数据、1 位停止),波特率由 UT_BAUD[BAUD]决定。

发送数据: 将发送的数据写入 UT_DR 并将 UT_CR[TI]清 0, TXD 将输出 10 位数据。发送完成后 UT_CR[TI]被置 1。

接收数据: 配置 UT_CR[REN] = 1 启动接收并将 UT_CR[RI]清 0,数据通过 RXD 接收。接收完成后,UT_CR[RI]被置 1,读取 UT_DR 会得到接收到的数据。

10.2.1.3 UART1 模式 2

模式 2 工作于单线制半双工模式。RXD 既为发送数据总线,又为接收数据总线,收发数据为 11 位(1 位启动、9 位数据、1 位停止),波特率由 UT_BAUD[BAUD]决定。

发送数据: 将发送数据前 8 位写入 UT_DR, 第 9 位写入 UT_CR[TB8]并将 UT_CR[TI]清 0, TXD 将输出 11 位数据。发送完成后 UT CR[TI]被置 1。

接收数据: 配置 UT_CR[REN] = 1 启动接收并将 UT_CR[RI]清 0,数据通过 RXD 接收。接收完成后,UT_CR[RI]被置 1,UT_CR[RB8]存放第 9 位数据,UT_DR 存放前 8 位的数据。

10.2.1.4 UART1 模式 3

模式 3 工作于全/半双工模式。TXD 为发送数据总线,RXD 为接收数据总线,收发数据为 11 位 (1 位启动、9 位数据、1 位停止),波特率由 UT_BAUD[BAUD]决定。

发送数据: 将发送数据的前 8 位写入 UT_DR, 第 9 位写入 UT_CR[TB8]并将 UT_CR[TI]清 0, TXD 将输出 11 位数据, 发送完成后 UT_CR[TI]被置 1。

接收数据: 配置 UT_CR[REN] = 1 启动接收并将 UT_CR[RI]清 0,数据通过 RXD 接收。接收完成后,UT CR[RI]被置 1,UT CR[RB8]存放第 9 位数据,UT DR 存放前 8 位的数据。

10.2.1.5 UART1 中断源

UART1 中断源有:

- UART1 发送完 1 组数据后,发送完成中断事件标志位 UT CR[TI]硬件置 1
- UART1 接收完 1 组数据和 STOP 停止位后,接收完成中断事件标志位 UT CR[RI]硬件置 1

10.2.2 UART2 操作说明

10.2.2.1 UART2 模式 0

模式 0 工作于单线制半双工模式。RXD 既为发送数据总线,又为接收数据总线。收发数据为 10 位(1 位启动、8 位数据、1 位停止),波特率由 UT2_BAUD[BAUD2]决定。

发送数据: 将发送的数据写入 UT2_DR 并将 UT2_CR[UT2TI]清 0, RXD 将输出 10 位数据。发送完成后 UT2_CR[UT2TI]置 1。

接收数据: 配置 UT2_CR[UT2REN] = 1 启动接收并将 UT2_CR[UT2RI]清 0,数据通过 RXD 接收。接收完成后,UT2 CR[UT2RI]置 1,读取 UT2 DR 会得到接收到的数据。

10.2.2.2 UART2 模式 1

模式 1 工作于全/半双工模式。TXD 为发送数据总线,RXD 为接收数据总线,收发数据为 10 位 (1 位启动、8 位数据、1 位停止),波特率由 UT2_BAUD[BAUD2]决定。

发送数据: 将发送的数据写入 UT2_DR 并将 UT2_CR[UT2TI]清 0, TXD 将输出 10 位数据。发送完成后 UT2 CR[UT2TI]被置 1。

接收数据: 配置 UT2_CR[UT2REN] = 1 启动接收并将 UT2_CR[UT2RI]清 0,数据通过 RXD 接收。接收完成后、UT2 CR[UT2RI]被置 1,读取 UT2 DR 会得到接收到的数据。

10.2.2.3 UART2 模式 2

模式 2 工作于单线制半双工模式。RXD 既为发送数据总线,又为接收数据总线,收发数据为 11 位(1 位启动、9 位数据、1 位停止),波特率由 UT2 BAUD[BAUD2]决定。

发送数据: 将发送数据前 8 位写入 UT2_DR, 第 9 位写入 UT2_CR[UT2TB8]并将 UT2_CR[UT2TI] 清 0, TXD 将输出 11 位数据。发送完成后 UT2_CR[UT2TI]被置 1。

接收数据: 配置 UT2_CR[UT2REN] = 1 启动接收并将 UT2_CR[UT2RI]清 0,数据通过 RXD 接收。接收完成后,UT2_CR[UT2RI]被置 1,UT2_CR[UT2RB8]存放第 9 位数据,UT2_DR 存放前 8 位的数据。

10.2.2.4 UART2 模式 3

模式 3 工作于全/半双工模式。TXD 为发送数据总线,RXD 为接收数据总线,收发数据为 11 位 (1 位启动、9 位数据、1 位停止),波特率由 UT2_BAUD[BAUD2]决定。

发送数据: 将发送数据的前 8 位写入 UT2_DR, 第 9 位写入 UT2_CR[UT2TB8]并将 UT2_CR[UT2TI] 清 0, TXD 将输出 11 位数据, 发送完成后 UT2_CR[UT2TI]被置 1。

接收数据: 配置 UT2_CR[UT2REN] = 1 启动接收并将 UT2_CR[UT2RI]清 0,数据通过 RXD 接收。接收完成后,UT2_CR[UT2RI]被置 1,UT2_CR[UT2RB8]存放第 9 位数据,UT2_DR 存放前 8 位的数据。

10.2.2.5 UART2 中断源

UART2 中断源有:

- UART2 发送完 1 组数据后、发送完成中断事件标志位 UT2 CR[UT2TI]硬件置 1
- UART2 接收完 1 组数据和 STOP 停止位后,接收完成中断事件标志位 UT2_CR[UT2RI]硬件 置 1

10.3 UART1 寄存器

10.3.1 UT_CR (0x98)

位	7	6	5	4	3	2	1	0
名称	MOD		SM2	REN	TB8	RB8	TI	RI
类型	R/W							
复位值	0	0	0	0	0	0	0	0

位 名称 描述 模式配置位 00: 模式 0 [7:6] MOD 01: 模式 1 10: 模式 2 11: 模式 3	
00: 模式 0 [7:6] MOD 01: 模式 1 10: 模式 2	
[7:6] MOD 01: 模式 1 10: 模式 2	
10: 模式 2	
单机通信和多机通信选择	
[5] SM2 0: 单机通信	
1: 多机通信	
串行输入使能	
[4] REN 0: 不使能	
1: 使能	
[3] TB8 模式 2 与模式 3 下发送数据的第 9 位	
[2] RB8 模式 2 与模式 3 下接收数据的第 9 位	
数据发送完成中断事件标志位	
读:	
0: 未发生中断事件	
[1] TI 1: 发生中断事件	
写:	
0: 清 0	
1: 产生中断事件	
数据接收完成中断事件标志位	
读:	
0: 未发生中断事件	
[0] RI 1: 发生中断事件	
写:	
0: 清 0	
1: 产生中断事件	

10.3.2 UT_DR (0x99)

位	7	6	5	4	3	2	1	0
名称		UT_DR						
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
复位值	0	0	0	0	0	0	0	0
位	名称	描述						
		发送/接收	数据					
		读: 接收的	数据					
		写: 发送的	数据					
[7:0]	UT_DR							
		注: UART1 的数据缓冲器由 2 个互相独立的接收、发送缓冲器构成,可以同时						
		发送和接收	女数据。发送	送缓冲器只能		能读出,接收	女缓冲器只能	能读出而不
		│ 能写入 月	日而两个缓冲	14.以下器中	1一个地址码	3.		

10.3.3 UT_BAUD (0x9A, 0x9B)

	UT_BAUDH(0x9B)							
位	15	14	13	12	11	10	9	8
名称	BAUD_SEL		RSV			BAUD[11:8]		
类型	R/W	-	-	-	R/W	R/W	R/W	R/W
复位值	0	-	-	-	0	0	0	0
			UT_	_BAUDL(0x	9A)			
位	7	6	5	4	3	2	1	0
名称				BAUD	[7:0]			
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
复位值	1	0	0	1	1	0	1	1
位	名称				描述			
		倍频使能						
[15]	BAUD_SEL	0: 不使能						
		1: 使能						
[14:12]	RSV	保留						
		波特率设置	<u> </u>					
		波特率 =	SYSCLK/	(16/(1 + UT	_BAUD[BA	UD_SEL]))/	(UT_BAUD	[BAUD] +
[11:0]	BAUD	1)						
		例: 波特率	9600, L	JT_BAUD[B	AUD_SEL] :	= 0; 则 UT_	BAUD[BAU	JD] =
		(24M/16/9	9600/(1 +	0)) - 1 = 1	55,即为 0x9	В		

10.4 UART2 寄存器

10.4.1 UT2_CR (0x8A)

位	7	6	5	4	3	2	1	0
名称	UT2M	10D	UT2SM2	UT2REN	UT2TB8	UT2RB8	UT2TI	UT2RI
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W0	R/W0
复位值	0	0	0	0	0	0	0	0
			•	•				

<i>j</i> .	Ath	****			
位	名称	描述			
		模式配置位			
		00: 模式 0			
[7:6]	UT2MOD	01: 模式 1			
		10: 模式 2			
		11: 模式 3			
		单机通信和多机通信选择			
[5]	UT2SM2	0: 单机通信			
		1: 多机通信			
		串行输入使能			
[4]	UT2REN	0: 不使能			
		1: 使能			
[3]	UT2TB8	模式 2 与模式 3 下发送数据的第 9 位			
[2]	UT2RB8	模式 2 与模式 3 下接收数据的第 9 位			
		数据发送完成中断事件标志位			
		读:			
		0: 未发生中断事件			
[1]	UT2TI	1: 发生中断事件			
		写:			
		0: 清 0			
		1: 无意义			
		数据接收完成中断事件标志位			
		 读:			
		0: 未发生中断时间			
[0]	UT2RI	1: 发生中断事件			
		写:			
		0:清0			
		1: 无意义			

10.4.2 UT2_DR (0x89)

位	7	6	5	4	3	2	1	0
名称		UT2_DR						
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
复位值	0	0	0	0	0	0	0	0
位	名称				描述			
		发送/接收	发送/接收数据					

位	名称	描述
[7:0] UT2_D		发送/接收数据
		读: 接收的数据
	LITA DD	写: 发送的数据
	U12_DR	注: UART2 的数据缓冲器由 2 个互相独立的接收、发送缓冲器构成,可以同时
		发送和接收数据。发送缓冲器只能写入而不能读出,接收缓冲器只能读出而不
		能写入,因而两个缓冲器可以共用一个地址码。

10.4.3 UT2_BAUD (0x4042, 0x4043)

UT2_BAUDH(0x4042)								
位	15	14	13	12	11	10	9	8
名称	BAUD2_SEL	UART2CH	UART2IEN	RSV		BAUD2	[11:8]	
类型	R/W	R/W	R/W	-	R/W	R/W	R/W	R/W
复位值	0	0	0	-	0	0	0	0
			UT2_BAUDL	(0x4043)				
位	7	6	5	4	3	2	1	0
名称			В	AUD2[7:0]				
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
复位值	1	0	0	1	1	0	1	1
位	名称	描述						
		倍频使能						
		倍频使能						
[15]	BAUD2_SEL	倍频使能 0: 不使能						
[15]	BAUD2_SEL							
[15]	BAUD2_SEL	0: 不使能	转移使能					
	_	0: 不使能 1: 使能 UART2 功能	5转移使能 第口功能不转移	多,P3.6 为	RXD; P3.	.7 为 TXD(注: FU63	332N 不
[15]	BAUD2_SEL UART2CH	0: 不使能 1: 使能 UART2 功能	岩口功能不转移	多,P3.6 为	RXD; P3.	.7 为 TXD(注: FU63	332N 不
	_	0: 不使能 1: 使能 UART2 功能 0: UART2 站 支持此此功	岩口功能不转移	·	·		注: FU63	332N 不
	_	0: 不使能 1: 使能 UART2 功能 0: UART2 站 支持此此功	岩口功能不转移能) 能) 岩口功能转移,	·	·		注: FU63	332N 不
	_	0: 不使能 1: 使能 UART2 功能 0: UART2 站 支持此此功 1: UART2 站	岩口功能不转移能) 能) 岩口功能转移,	·	·		注: FU63	332N 不

[12]	RSV	保留
		波特率设置
		波特率 = SYSCLK/(16/(1 +
[11:0]	BAUD2	UT2_BAUD[BAUD2_SEL]))/(UT2_BAUD[BAUD2] + 1)
		例: 波特率 9600,UT2_BAUD[BAUD_SEL] = 0;则 UT2_BAUD[BAUD2] =
		(24M/16/9600/(1 + 0)) - 1 = 155,即为 0x9B

11 MDU

11.1 MDU 简介

MDU 是一个计算协处理单元,可协助 CPU 快速完成复杂运算。MDU 提供乘法、除法、三角函数、低通滤波运算和 PID 运算。MDU 模块可以在不同中断程序和主程序中多次调用且计算结果互不干扰。

11.2 MDU 特性

MDU 具有以下特性:

- 支持中断嵌套调用
- 硬件加速,减少 CPU 负担
- 支持以下运算模式
 - ▶ 16 位有符号乘法
 - ▶ 16 位有符号乘法(运算结果左移 1 位)
 - ▶ 16 位无符号乘法
 - ▶ 32 位/16 位无符号除法
 - ▶ 低通滤波器
 - ➤ 坐标转换(sin/cos 计算)
 - ▶ 反正切函数

11.3 MDU 功能说明

11.3.1 操作方法

完整的 MDU 操作流程:

- 1. MDU_CR[MDURUN]置 1;
- 2. 配置 MDU_MD 寄存器,选择 MDU 的运算模式;
- 3. 写入数据到 MDU_A、MDU_B、MDU_C 和 MDU_D, 当检测到 MDU_C[7:0]写入数据时开始运算;
- 4. 等待 MDU_CR[MDUBUSY]硬件清 0;
- 5. MDU_CR[MDUDONE]置 1。

注:

- 在使用 MDU 前,必须将 MDU_CR[MDURUN]置 1,使用后将 MDU_CR[MDUDONE]置 1。 这两步操作保证 MDU 被不同中断以及主函数嵌套调用时数据互不影响。
- 在写 MDU_C[7:0]前,应确保运算模式和其他数据都已写入完成

11.3.2 运算结果左移 1 位的 16 位有符号乘法

当 MDU_MD[MDUMOD] = 000 时,MDU 为运算结果左移 1 位的 16 位有符号乘法。如表 11-1 所示,分别向 MDU_A 和 MDU_C 写入 16 位有符号数据作为被乘数和乘数。结果为相乘得到的 31 位有符号数据左移一位获得的 32 位有符号数据。该数据的高 16 位通过 MDU_A 读取,低 16 位通过 MDU B 读取。

数据寄存器	输入的内容	输出的内容
MDU_A	被乘数	积的高 16 位
MDU_B	-	积的低 16 位
MDU_C	乘数	-
MDU_D	-	-

表 11-1 运算结果左移 1 位的 16 位有符号乘法模式下寄存器的含义

11.3.3 16 位有符号乘法

当 MDU_MD[MDUMOD] = 001 时,MDU 为 16 位有符号乘法。如表 11-2 所示,分别向 MDU_A 和 MDU_C 写入 16 位有符号数据作为被乘数和乘数。结果为相乘得到的 31 位有符号数据。该数据的 高 16 位通过 MDU_A 读取,低 16 位通过 MDU_B 读取。

数据寄存器	输入的内容	输出的内容
MDU_A	被乘数	积的高 16 位
MDU_B	-	积的低 16 位
MDU_C	乘数	-
MDU_D	-	-

表 11-2 16 位有符号乘法模式下寄存器的含义

11.3.4 16 位无符号乘法

当 MDU_MD[MDUMOD] = 010 时,MDU 为 16 位无符号乘法。如表 11-3 所示,分别向 MDU_A 和 MDU_C 写入 16 位无符号数据作为被乘数和乘数。结果为相乘得到的 32 位无符号数据。该数据的 高 16 位通过 MDU_A 读取,低 16 位通过 MDU_B 读取。

表 11-3 16 位无符号乘法模式	式 卜奇 仔器的含义
--------------------	-------------------

数据寄存器	输入的内容	输出的内容
MDU_A	被乘数	积的高 16 位
MDU_B	Г	积的低 16 位
MDU_C	乘数	-
MDU_D	-	_

11.3.5 32 位/16 位的无符号除法

当 MDU_MD[MDUMOD] = 011 时,MDU 为 32 位/16 位的无符号除法。如表 11-4 所示,被除数为 32 位无符号数据,除数为 16 位无符号数据。使用时,MDU_A 写入被除数的高 16 位,MDU_B 写入被除数的低 16 位,MDU_C 写入除数。结果为相除得到的 32 位无符号的商和 16 位无符号的余数。商的高 16 位通过 MDU A 读取,低 16 位通过 MDU B 读取,余数通过 MDU C 读取。

 数据寄存器
 输入的内容
 输出的内容

 MDU_A
 被除数的高 16 位
 商的高 16 位

 MDU_B
 被除数的低 16 位
 商的低 16 位

 MDU_C
 除数
 余数

 MDU_D

表 11-4 无符号除法模式下寄存器的含义

11.3.6 低通滤波器

当 MDU_MD[MDUMOD] = 110 时,MDU 为 LPF。 LPF 的计算公式为:

$$Y_k = Y_{k-1} + K \times (X_k - Y_{k-1})$$

其中.

Yk: 滤波后的数据

 Y_{k-1} : 上一次的滤波值

K: 滤波系数

Xk: 待滤波数据

如表 11-5 所示,当前输出值 Y_{k-1} 为 32 位有符号数据,输入值 X_k 为 16 位 有符号数据,滤波系数 K为 8 位无符号数据。MDU_B 写入 Y_{k-1} 的高 16 位,MDU_C 写入 Y_{k-1} 的低 16 位,MDU_D 写入 K,MDU_A 写入 X_k 。运算结果为 Y_k ,高 16 位通过 MDU_B 读取,低 16 位通过 MDU C 读取。

表 11-5 LPF 模式下寄存器的含义

数据寄存器	输入的内容	输出的内容
MDU_A	X_k	-
MDU_B	<i>Y_k</i> −1[31:16]	Y ₄ [31:16]
MDU_C	<i>Y_{k-1}</i> [15:0]	Υ _λ [15:0]
MDU_D	К	-

11.3.7 坐标转换(sin/cos 计算)

当 MDU_MD[MDUMOD] = 100 时,MDU 为坐标转换。如图 11-1,坐标转换将向量 A 在 x-y 轴下的分量 cos_i 、 sin_i 转换为在 x'-y'轴下的分量 cos_o 、 sin_o ,x'-y'轴滞后 x-y轴 θ 角度。

坐标转换的计算公式为:

$$cos_o = cos_i \times cos \theta - sin_i \times sin \theta$$

$$sin_o = cos_i \times sin \,\theta + sin_i \times cos \,\theta$$

特别的, 当 sin;为 0 时, 坐标转换变成了以 cos;为幅值的正余弦计算, 计算公式为:

$$cos_o = cos_i \times cos \theta$$

$$sin_o = cos_i \times sin \theta$$

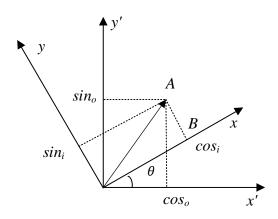


图 11-1 坐标变换

如表 11-6 所示,输入值 cos_i 、 sin_i 、 θ 和输出值 cos_o 、 sin_o 均为 16 位有符号数据。向 MDU_A 写入 cos_i ,MDU_B 写入 θ ,MDU_C 写入 sin_i ,计算得到 cos_o 和 sin_o 。 cos_o 通过 MDU_A 读取, sin_o 通过 MDU_C 读取。

数据寄存器	输入的内容	输出的内容
MDU_A	COS;	COS _o
MDU_B	θ	-
MDU_C	sin _i	sin _o
MDU_D	-	-

表 11-6 坐标转换模式下寄存器的含义

11.3.8 反正切函数

当 MDU_MD[MDUMOD] = 101 时, MDU 为反正切函数。

反正切函数运算根据输入的正余弦值计算出向量的幅值和角度。计算公式为

$$U = \sqrt{(U\sin\theta)^2 + (U\cos\theta)^2}$$
$$\theta = \tan^{-1}\left(\frac{U\sin\theta}{U\cos\theta}\right)$$

其中,

Usinθ. 向量的正弦分量

Ucosθ. 向量的余弦分量

Ө. 计算出的向量角度

U: 计算出的向量幅值

如表 11-7 所示,输入值 $Ucos\theta$ 、 $Usin\theta$ 和输出值 U、 θ 均为 16 位有符号数据。向 MDU_A 写入 $Ucos\theta$,MDU_C 写入 $Usin\theta$,计算得到 U和 θ 。U通过 MDU_A 读取, θ 通过 MDU_B 读取。

表 11-7 Atan 模式下寄存器的含义

数据寄存器	输入的内容	输出的内容
MDU_A	Ucosθ	U
MDU_B	-	heta
MDU_C	Usinθ	-
MDU_D	-	=

11.4 MDU 寄存器

11.4.1 MDU_CR (0xC1)

••										
位	7	6	5	4	3	2	1	0		
名称	MDUBUSY	MDUDONE	MDUDONE MDURUN RSV							
类型	R	W1	W1	-	-	-	_	_		
复位值	0	0	0	-	_	-	-	-		
位	名称			:	描述					
		MDU 忙标志位	Ì							
[7]	MOLIDITICA	当 MDU_C[7:0]写入时,MDU 启动								
[7]	MDUBUSY	0: MDU 空闲								
		1: MDU 正在)	运算							
		MDU 运算结束	 操作位							
[6]	MDUDONE	0: 无意义								
		1: MDU 运算组	吉東后,软件将	F该位置 1	。该操作码	角保嵌套调	用时 MDU	计算正确		
		MDU 运算开始	台操作位							
[5]	MDURUN	0: 无意义								
		1: MDU 运算开	1: MDU 运算开始前,软件将该位置 1。该操作确保嵌套调用时 MDU 计算正确							
[4:0]	RSV	保留								

11.4.2 MDU_MD (0xCA)

位	7	6	5	4	3	2	1	0
名称			RSV			MDUMOD		
类型	-	-	-	-	-	R/W	R/W	R/W
复位值	-	-	-	-	-	0	0	0

位	名称	描述
[7:3]	RSV	保留
		MDU 模式选择
		000: 运算结果左移 1 位的 16 位有符号乘法
		001: 16 位有符号乘法
		010: 16 位无符号乘法
[2:0]	MDUMOD	011: 32 位/16 位的无符号除法
		100: 坐标转换(sin/cos 计算)
		101: 反正切函数
		110: 低通滤波器
		111: 保留

11.4.3 MDU_A (0xC7, 0xC6)

			M	DU_AH	(0xC	:7)				
位	15	14	13	12	2	11	10	9	8	
名称			MDU_A[15:8]							
类型	R/W	R/W	R/W	R/V	٧	R/W	R/W	R/W	R/W	
复位值	0	0	0	0		0	0	0	0	
			MI	DU_AL	(0xC	6)				
位	7	6	5	4		3	2	1	0	
名称				М	DU_/	A[7:0]				
类型	R/W	R/W	R/W	R/V	٧	R/W	R/W	R/W	R/W	
复位值	0	0	0	0		0	0	0	0	
位	名称					描述				
		MDU 的 A	数据寄存器	,在不	同模	式下该寄存	器的内容如	1表 11-8 所	示	
			表 ²	11-8 不	同模	試下 MDU_	_A 的读写[内容		
		MDU_	MD[MDUM	10D]		写		读		
			000			被乘数		积的高 16	位	
[15:0]	MDU_A		001			被乘数		积的高 16	位	
			010		被乘数			积的高 16	位	
			011			被除数的高 16 位		商的高 16 位		
			100			COS _i		COS _o		
			101			Ucosθ		U		
			110			X_k		-		

11.4.4 MDU_B (0xC5, 0xC4)

	MDU_BH(0xC5)										
位	15	14	13	12	11	10	9	8			
名称				MDU_E	3[15:8]						
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
复位值	0	0	0	0	0	0	0	0			
			M	OU_BL(0xC	4)						
位	7	6	5	4	3	2	1	0			
名称				MDU_	B[7:0]						
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
复位值	0	0	0	0	0	0	0	0			

位	名称		描述																																
		MD	·	际同模式下该寄存器的内容如表 11-9 所示 不同模式下 MDU_B 的读写内容																															
			MDU_MD[MDUMOD]	写	读																														
		MDU_B	MDU_B	MDU_B	000	-	积的低 16 位																												
[15:0]	MDU_B				MDU_B	MDU_B	MDU_B	001	Ī	积的低 16 位																									
					010	-	积的低 16 位																												
			011	被除数的低 16 位	商的低 16 位																														
																																	100	θ	-
				101		_	θ																												
			110	<i>Y_k</i> -1[31:16]	Y _k [31:16]																														

11.4.5 MDU_C (0xC3, 0xC2)

			MI	DU_CH	(0xC	:3)				
位	15	14	13	12	2	11	10	9	8	
名称			MDU_C[15:8]							
类型	R/W	R/W	R/W	R/V	٧	R/W	R/W	R/W	R/W	
复位值	0	0	0	0		0	0	0	0	
			М	DU_CL	(0xC	2)				
位	7	6	5	4		3	2	1	0	
名称				М	IDU_	C[7:0]				
类型	R/W	R/W	R/W	R/V	٧	R/W	R/W	R/W	R/W	
复位值	0	0	0	0		0	0	0	0	
位	名称					描述				
		MDU 的 C	数据寄存器	,在不	同模	式下该寄存	器的内容如	表 11-10 所	示	
			表~	11-10 7	不同村	莫式下 MDU	J_C 的读写 P	内容		
		MDU	_MD[MDUN	MOD]		写		读		
			000			乘数		-		
[15:0]	MDU_C		001			乘数		-		
			010					-		
			011		除数			余数		
			100			sin;		sin₀		
			101		Usinθ			-		
			110			<i>Y_k</i> −1[15:0]		Y _k [15:0]		

11.4.6 MDU_D (0xCB)

位	7	6	5	4	3	2	1	0		
名称		MDU_D								
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
复位值	0	0	0	0	0	0	0	0		
位	名称				描述					
[7.0]	MDILD	MDU 的 D 数据寄存器								
[7:0]	MDU_D	MDU_MD[[MDUMOD]	= 110: LPF	模式滤波系	系数 K				

12 PI/PID

12.1 PI/PID 简介

PI/PID 调节器是一种线性控制器。根据偏差的比例、积分和微分通过线性组合生成控制量,再通过执行器对被控对象进行控制。在电机控制系统中,用于实现速度和位置控制。

PI 公式:

$$U_k = U_{k-1} + Kp \times (E_k - E_{k-1}) + Ki \times E_k$$

PID 公式:

$$U_k = U_{k-1} + Kp \times (E_k - E_{k-1}) + Ki \times E_k + Kd \times (E_k - 2 \times E_{k-1} + E_{k-2})$$

其中.

Uk: 第 k 次计算输出的控制量

Uk-1: 第 k - 1 次计算输出的控制量

Ek: 第 k 次输入的偏差量

 E_{k-1} , E_{k-2} : 第 k - 1、第 k - 2 次输入的偏差量

Kp、Ki、Kd: 调节控制量的比例、积分、微分系数

Uk的最大值为 Plx UKMAX(x 为 0 ~ 3),最小值为 Plx UKMIN

12.2 PI/PID 特性

- 参数范围可调
- 支持多次调用,不支持嵌套
- 运算结果 Plx_UK 为 32 位
- 忙标志位为 0 后读取运算结果

12.3 PI/PID 操作说明

- 1. PI/PID 操作之前需要先初始化,配置 Kp、Ki、Kd 的值以及 U_k 的最大最小值;
- 2. 配置 PI CR[PIxSTA] = 1 启动 PI/PID 计算,此时忙标志位 PI CR[PIBSY]自动置 1;
- 3. 用软件读取 PI_CR[PIBSY]位,为 0 时表示计算完成,计算结果 PIx_UK 数据更新;
- 4. 读取 Plx_UK 获得生成的控制量。

注:

- 比例参数 PI_KP 的数据格式为 Q12, 其余寄存器的数据格式均为 Q15
- Plx_UK 和 Plx_EK1 默认为上一次计算的 *U_k*和 *E_k*。对 Plx_EK1 和 Plx_UK 进行写操作可改变相 关数值
- 多次使用 PI 控制器时,在 PI 运算完后保存参数并初始化下次运算参数。初始化操作代码如下

Plx_KP = KP; //初始化 Kp

Plx_Kl = Kl; //初始化 Ki

Plx_KD = KD; //初始化 Kd

Plx_UKMAX = UKMAX; //初始化输出最大值

Plx_UKMIN = UKMIN; //初始化输出最小值

Plx_EK1 = X; //初始化 *E_{k-1}*

Plx_UKH = Y1; //初始化 *U_{k-1}*的高 16 位

Plx_UKL = Y2; //初始化 U_{k-1}的低 16 位

12.4 PI/PID 寄存器

12.4.1 PI_CR (0xF9)

	0	5	4	3		1	U
T2TSS	RS	SV	PIBSY	PI3STA	PI2STA	PI1STA	PI0STA
R/W	-	ı	R	W	W	W	W
0	-	ı	0	0	0	0	0
名称				描述			
	Timer2 步:	进电机模式	的输入模式	选择			
T2TSS	0: P1.0 为:	方向线,P0	.7 为脉冲计	数线			
	1: P1.0 为	反向脉冲计	数线,P0.7	为正向脉冲	计数线		
RSV	保留						
	PI 忙标志信	立					
PIBSY	0: PI 空闲 ^c	Þ					
	1: PI 计算i	进行中					
	PI3 使能						
PI3STA	0: 不使能						
	1: 使能						
	PI2 使能						
PI2STA	0: 不使能						
	1: 使能						
	PI1 使能						
PI1STA	0: 不使能						
	1: 使能						
	PI0 使能						
PI0STA	0: 不使能						
	R/W 0 名称 T2TSS RSV PIBSY PI3STA PI2STA	R/W - 0	R/W	R/W 0 0 - 0 名称 Timer2 歩进电机模式的输入模式: 0: P1.0 为方向线, P0.7 为脉冲计 1: P1.0 为反向脉冲计数线, P0.7 RSV 保留 PI 忙标志位 PIBSY 0: PI 空闲中 1: PI 计算进行中 P13 使能 P13STA 0: 不使能 1: 使能 P12 使能 P1 使能 P11STA 0: 不使能 1: 使能 P11 使能 P11 使能 P11 使能 P11 使能 P10 使能	R/W - - R W O O O O O O O O O	R/W 0 0 0 0 0	R/W R W W W O O O O O O O O O O O O O O O O

1: 使能

12.4.2 PIO_KP (0x02E0, 0x02E1)

	PI0_KPH(0x02E0)										
位	15	14	13	12	11	10	9	8			
名称		PI0_KP[15:8]									
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
复位值	0	0	0	0	0	0	0	0			
	PI0_KPL(0x02E1)										
位	7	6	5	4	3	2	1	0			
名称				PI0_K	P[7:0]						
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
复位值	0	0	0	0	0	0	0	0			
位	名称				描述						
[15:0]	PI0_KP	PIO 的比例	PIO 的比例系数								

12.4.3 PIO_KI (0x02E2, 0x02E3)

			PIC)_KIH(0x02	E2)					
位	15	14	13	12	11	10	9	8		
名称		PI0_KI[15:8]								
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
复位值	0	0	0	0	0	0	0	0		
	PI0_KIL(0x02E3)									
位	7	6	5	4	3	2	1	0		
名称				PI0_K	(I[7:0]					
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
复位值	0	0	0	0	0	0	0	0		
位	名称				描述					
[15:0]	PI0_KI	PIO 的积分	PIO 的积分系数							

12.4.4 PIO_UKMAX (0x02E4, 0x02E5)

	PIO_UKMAXH(0x02E4)										
位	15	15 14 13 12 11 10 9 8									
名称		PI0_UKMAX[15:8]									
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
复位值	0	0 0 0 0 0 0 0									
	PIO_UKMAXL(0x02E5)										

位	7	6	5	4	3	2	1	0		
名称			PI0_UKMAX[7:0]							
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
复位值	0	0	0	0	0	0	0	0		
位	名称				描述					
[15:0]	PI0_UKMAX	PIO 的输出允许的最大值								

12.4.5 PIO_UKMIN (0x02E6, 0x02E7)

	PI0_UKMINH(0x02E6)										
位	15	14	13	12	11	10	9	8			
名称		PI0_UKMIN[15:8]									
类型	R/W	R/W R/W R/W R/W R/W R/W R/W									
复位值	0	0 0 0 0 0 0 0									
	PIO_UKMINL(0x02E7)										
位	7	6	5	4	3	2	1	0			
名称				PI0_UKN	1IN[7:0]						
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
复位值	0	0	0	0	0	0	0	0			
位	名称		描述								
[15:0]	PI0_UKMI	N PIO的	PIO 的输出允许的最小值								

12.4.6 PIO_EK1 (0x02E8, 0x02E9)

	PI0_EK1H(0x02E8)										
位	15	14	13	12	11	10	9	8			
名称		PI0_EK1[15:8]									
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
复位值	0	0	0	0	0	0	0	0			
	PI0_EK1L(0x02E9)										
位	7	6	5	4	3	2	1	0			
名称				PI0_Ek	(1[7:0]						
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
复位值	0	0	0	0	0	0	0	0			
位	名称	描述									
[15:0]	PI0_EK1	PIO 上一次	PIO 上一次输入的偏差量								

12.4.7 PIO_EK (0x02EA, 0x02EB)

			PI0	_EKH(0x02	EA)					
位	15	14	13	12	11	10	9	8		
名称		PI0_EK[15:8]								
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
复位值	0	0	0	0	0	0	0	0		
	PI0_EKL(0x02EB)									
位	7	6	5	4	3	2	1	0		
名称				PI0_E	K[7:0]					
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
复位值	0	0	0	0	0	0	0	0		
位	名称				描述					
[15:0]	PI0_EK	PI0 本次输	PIO 本次输入的偏差量							

12.4.8 PI0_UKH (0x02EC, 0x02ED)

			PI0_	UKHH(0x0	2EC)		PIO_UKHH(0x02EC)										
位	15	14	13	12	11	10	9	8									
名称		PI0_UKH[15:8]															
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W									
复位值	0	0	0	0	0	0	0	0									
	PI0_UKHL(0x02ED)																
位	7	6	5	4	3	2	1	0									
名称				PI0_Uk	(H[7:0]												
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W									
复位值	0	0	0	0	0	0	0	0									
位	名称	描述															
[15:0]	PI0_UKH	PIO 的输	PIO 的输出结果高 16 位														

12.4.9 PI0_UKL (0x02EE, 0x02EF)

	PIO_UKLH(0x02EE)										
位	15	15 14 13 12 11 10 9 8									
名称		PI0_UKL[15:8]									
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
复位值	0	0 0 0 0 0 0 0									
	PIO_UKLL(0x02EF)										

位	7	6	5	4	3	2	1	0		
名称		PI0_UKL[7:0]								
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
复位值	0	0	0	0	0	0	0	0		
位	名称		描述							
[15:0]	PI0_UKL	PIO 的输出	PIO 的输出结果低 16 位							

12.4.10 PI1_KP (0x02D0, 0x02D1)

			PI1	_KPH(0x02	D0)					
位	15	14	13	12	11	10	9	8		
名称		PI1_KP[15:8]								
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
复位值	0	0	0	0	0	0	0	0		
	PI1_KPL(0x02D1)									
位	7	6	5	4	3	2	1	0		
名称				PI1_K	P[7:0]					
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
复位值	0	0	0	0	0	0	0	0		
位	名称				描述					
[15:0]	PI1_KP	PI1 的比例	PI1 的比例系数							

12.4.11 PI1_KI (0x02D2, 0x02D3)

	PI1_KIH(0x02D2)										
位	15	14	13	12	11	10	9	8			
名称		PI1_KI[15:8]									
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
复位值	0	0	0	0	0	0	0	0			
	PI1_KIL(0x02D3)										
位	7	6	5	4	3	2	1	0			
名称				PI1_K	I[7:0]						
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
复位值	0	0	0	0	0	0	0	0			
位	名称				描述						
[15:0]	PI1_KI	PI1 的积分	PI1 的积分系数								

12.4.12 PI1_UKMAX (0x02D4, 0x02D5)

			PI1_Uk	(MAXH(0x0	2D4)					
位	15	14	13	12	11	10	9	8		
名称		PI1_UKMAX[15:8]								
类型	R/W	R/W R/W R/W R/W R/W R/W R/W								
复位值	0	0	0	0	0	0	0	0		
	PI1_UKMAXL(0x02D5)									
位	7	6	5	4	3	2	1	0		
名称				PI1_UKM	AX[7:0]					
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
复位值	0	0	0	0	0	0	0	0		
位	名称	描述								
[15:0]	PI1_UKMA	X PI1 的转	PI1 的输出允许的最大值							

12.4.13 PI1_UKMIN (0x02D6, 0x02D7)

	PI1_UKMINH(0x02D6)									
位	15	14	13	12	11	10	9	8		
名称		PI1_UKMIN[15:8]								
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
复位值	0	0	0	0	0	0	0	0		
	PI1_UKMINL(0x02D7)									
位	7	6	5	4	3	2	1	0		
名称				PI1_UKM	1IN[7:0]					
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
复位值	0	0	0	0	0	0	0	0		
位	名称 描述									
[15:0]	PI1_UKMIN	N PI1 的输出允许的最小值								

12.4.14 PI1_EK1 (0x02D8, 0x02D9)

	PI1_EK1H(0x02D8)									
位	15	15 14 13 12 11 10 9 8								
名称		PI1_EK1[15:8]								
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
复位值	0 0 0 0 0 0 0									
	PI1_EK1L(0x02D9)									

位	7	6	5	4	3	2	1	0		
名称		PI1_EK1[7:0]								
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
复位值	0	0	0	0	0	0	0	0		
位	名称		描述							
[15:0]	PI1_EK1	PI1 上一次	PI1 上一次输入的偏差量							

12.4.15 PI1_EK (0x02DA, 0x02DB)

	PI1_EKH(0x02DA)									
位	15	14	13	12	11	10	9	8		
名称		PI1_EK[15:8]								
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
复位值	0	0	0	0	0	0	0	0		
			PI1	_EKL(0x02	DB)					
位	7	6	5	4	3	2	1	0		
名称				PI1_E	K[7:0]					
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
复位值	0	0	0	0	0	0	0	0		
位	名称				描述					
[15:0]	PI1_EK	PI1 本次输	PI1 本次输入的偏差量							

12.4.16 PI1_UKH (0x02DC, 0x02DD)

			PI1_	UKHH(0x02	2DC)					
位	15	14	13	12	11	10	9	8		
名称		PI1_UKH[15:8]								
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
复位值	0	0	0	0	0	0	0	0		
	PI1_UKHL(0x02DD)									
位	7	6	5	4	3	2	1	0		
名称				PI1_UK	(H[7:0]					
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
复位值	0	0	0	0	0	0	0	0		
位	名称	描述								
[15:0]	PI1_UKH	PI1 的输出	PI1 的输出结果高 16 位							

12.4.17 PI1_UKL (0x02DE, 0x02DF)

	PI1_UKLH(0x02DE)									
位	15	14	13	12	11	10	9	8		
名称		PI1_UKL[15:8]								
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
复位值	0	0	0	0	0	0	0	0		
	PI1_UKLL(0x02DF)									
位	7	6	5	4	3	2	1	0		
名称				PI1_Uk	KL[7:0]					
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
复位值	0	0	0	0	0	0	0	0		
位	名称	描述								
[15:0]	PI1_UKL	PI1 的输出	PI1 的输出结果低 16 位							

12.4.18 PI2_KP (0x02BC, 0x02BD)

	PI2_KPH(0x02BC)										
位	15	14	13	12	11	10	9	8			
名称		PI2_KP[15:8]									
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
复位值	0	0	0	0	0	0	0	0			
			PI2	LKPL(0x02	BD)						
位	7	6	5	4	3	2	1	0			
名称				PI2_K	P[7:0]						
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
复位值	0	0	0	0	0	0	0	0			
位	名称	描述									
[15:0]	PI2_KP	PI2 的比例	PI2 的比例系数								

12.4.19 PI2_KI (0x02BE, 0x02BF)

	PI2_KIH(0x02BE)									
位	15	15 14 13 12 11 10 9 8								
名称		PI2_KI[15:8]								
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
复位值	位值 0 0 0 0 0 0 0									
	PI2_KIL(0x02BF)									

位	7	6	5	4	3	2	1	0		
名称		PI2_KI[7:0]								
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
复位值	0	0	0	0	0	0	0	0		
位	名称				描述					
[15:0]	PI2_KI	PI2 的积分	·系数							

12.4.20 PI2_UKMAX (0x02C0, 0x02C1)

	PI2_UKMAXH(0x02C0)									
位	15	14	13	12	11	10	9	8		
名称		PI2_UKMAX[15:8]								
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
复位值	0	0	0	0	0	0	0	0		
	PI2_UKMAXL(0x02C1)									
位	7	6	5	4	3	2	1	0		
名称				PI2_UKM	IAX[7:0]					
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
复位值	0	0	0	0	0	0	0	0		
位	名称	描述								
[15:0]	PI2_UKM	PI2_UKMAX PI2 的输出允许的最大值								

12.4.21 PI2_UKMIN (0x02C2, 0x02C3)

	PI2_UKMINH(0x02C2)									
位	15	14	13	12	11	10	9	8		
名称		PI2_UKMIN[15:8]								
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
复位值	0	0	0	0	0	0	0	0		
	PI2_UKMINL(0x02C3)									
位	7	6	5	4	3	2	1	0		
名称				PI2_UKN	1IN[7:0]					
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
复位值	0	0	0	0	0	0	0	0		
位	名称		描述							
[15:0]	PI2_UKMIN	N PI2 的输	PI2 的输出允许的最小值							

12.4.22 PI2_EK1 (0x02C4, 0x02C5)

	PI2_EK1H(0x02C4)										
位	15	14	13	12	11	10	9	8			
名称		PI2_EK1[15:8]									
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
复位值	0	0	0	0	0	0	0	0			
	PI2_EK1L(0x02C5)										
位	7	6	5	4	3	2	1	0			
名称				PI2_Ek	(1[7:0]						
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
复位值	0	0	0	0	0	0	0	0			
位	名称				描述						
[15:0]	PI2_EK1	PI2 上一次	PI2 上一次输入的偏差量								

12.4.23 PI2_EK (0x02C6, 0x02C7)

			PI2	_EKH(0x02	C6)					
位	15	14	13	12	11	10	9	8		
名称		PI2_EK[15:8]								
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
复位值	0	0	0	0	0	0	0	0		
	PI2_EKL(0x02C7)									
位	7	6	5	4	3	2	1	0		
名称				PI2_E	K[7:0]					
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
复位值	0	0	0	0	0	0	0	0		
								_		
位	名称				描述					
[15:0]	PI2_EK	PI2 本次输入的偏差量								

12.4.24 PI2_UKH (0x02C8, 0x02C9)

	PI2_UKHH(0x02C8)										
位	15	15 14 13 12 11 10 9 8									
名称		PI2_UKH[15:8]									
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
复位值	0	0 0 0 0 0 0 0									
	PI2_UKHL(0x02C9)										

位	7	6	5	4	3	2	1	0		
名称		PI2_UKH[7:0]								
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
复位值	0	0	0	0	0	0	0	0		
位	名称		描述							
[15:0]	PI2_UKH	PI2 的输	PI2 的输出结果高 16 位							

12.4.25 PI2_UKL (0x02CA, 0x02CB)

			PI2_	UKLH(0x02	2CA)					
位	15	14	13	12	11	10	9	8		
名称		PI2_UKL[15:8]								
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
复位值	0	0	0	0	0	0	0	0		
	PI2_UKLL(0x02CB)									
位	7	6	5	4	3	2	1	0		
名称				PI2_U	KL[7:0]					
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
复位值	0	0	0	0	0	0	0	0		
位	名称	描述								
[15:0]	PI2_UKL	PI2 的输出	PI2 的输出结果低 16 位							

12.4.26 PI2_KD (0x02CC, 0x02CD)

	PI2_KDH(0x02CC)										
位	7	6	5	4	3	2	1	0			
名称		PI2_KD[15:8]									
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
复位值	0	0	0	0	0	0	0	0			
	PI2_KDL(0x02CD)										
位	7	6	5	4	3	2	1	0			
名称				PI2_K	D[7:0]						
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
复位值	0	0	0	0	0	0	0	0			
位	名称				描述						
[15:0]	PI2_KD	PI2 的微分	系数								

12.4.27 PI2_EK2 (0x02CE, 0x02CF)

	PI2_EK2H(0x02CE)										
位	15	14	13	12	11	10	9	8			
名称		PI2_EK2[15:8]									
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
复位值	0	0	0	0	0	0	0	0			
	PI2_EK2L(0x02CF)										
位	7	6	5	4	3	2	1	0			
名称				PI2_Ek	(2[7:0]						
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
复位值	0	0	0	0	0	0	0	0			
位	名称				描述						
[15:0]	PI2_EK2	PI2 上上次输入的偏差量									

12.4.28 PI3_KP (0x02A8, 0x02A9)

			PI3	_KPH(0x02	A8)					
位	15	14	13	12	11	10	9	8		
名称		PI3_KP[15:8]								
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
复位值	0	0	0	0	0	0	0	0		
	PI3_KPL(0x02A9)									
位	7	6	5	4	3	2	1	0		
名称				PI3_K	P[7:0]					
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
复位值	0	0	0	0	0	0	0	0		
位	名称				描述					
[15:0]	PI3_KP	PI3 的比例	PI3 的比例系数							

12.4.29 PI3_KI (0x02AA, 0x02AB)

	PI3_KIH(0x02AA)										
位	15	15 14 13 12 11 10 9 8									
名称		PI3_KI[15:8]									
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
复位值	0 0 0 0 0 0 0										
	PI3_KIL(0x02AB)										

位	7	6	5	4	3	2	1	0		
名称		PI3_KI[7:0]								
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
复位值	0	0	0	0	0	0	0	0		
位	名称				描述					
[15:0]	PI3_KI	PI3 的积分	·系数							

12.4.30 PI3_UKMAX (0x02AC, 0x02AD)

	PI3_UKMAXH(0x02AC)										
位	15	14	13	12	11	10	9	8			
名称				PI3_UKMA	X[15:8]						
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
复位值	0	0	0	0	0	0	0	0			
	PI3_UKMAXL(0x02AD)										
位	7	6	5	4	3	2	1	0			
名称				PI3_UKM	AX[7:0]						
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
复位值	0	0	0	0	0	0	0	0			
位	名称	3称 描述									
[15:0]	PI3_UKMAX	IAX PI3 的输出允许的最大值									

12.4.31 PI3_UKMIN (0x02AE, 0x02AF)

			PI3_U	KMINH(0x0)2AE)					
位	15	14	13	12	11	10	9	8		
名称		PI3_UKMIN[15:8]								
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
复位值	0	0	0	0	0	0	0	0		
	PI3_UKMINL(0x02AF)									
位	7	6	5	4	3	2	1	0		
名称				PI3_UKN	1IN[7:0]					
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
复位值	0	0	0	0	0	0	0	0		
位	名称		描述							
[15:0]	PI3_UKMIN	N PI3 的输	PI3 的输出允许的最小值							

12.4.32 PI3_EK1 (0x02B0, 0x02B1)

	PI3_EK1H(0x02B0)									
位	15	14	13	12	11	10	9	8		
名称				PI3_EK	1[15:8]					
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
复位值	0	0	0	0	0	0	0	0		
	PI3_EK1L(0x02B1)									
位	7	6	5	4	3	2	1	0		
名称				PI3_Ek	(1[7:0]					
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
复位值	0	0	0	0	0	0	0	0		
位	名称				描述					
[15:0]	PI3_EK1	PI3 上一次	输入的偏差	量						

12.4.33 PI3_EK (0x02B2, 0x02B3)

	PI3_EKH(0x02B2)										
位	15	14	13	12	11	10	9	8			
名称				PI3_Ek	([15:8]						
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
复位值	0	0	0	0	0	0	0	0			
	PI3_EKL(0x02B3)										
位	7	6	5	4	3	2	1	0			
名称				PI3_E	K[7:0]						
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
复位值	0	0	0	0	0	0	0	0			
								_			
位	名称				描述						
[15:0]	PI3_EK	PI3 本次输	ì入的偏差量	<u> </u>							

12.4.34 PI3_UKH (0x02B4, 0x02B5)

PI3_UKHH(0x02B4)									
位	15	14	13	12	11	10	9	8	
名称		PI3_UKH[15:8]							
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
复位值	0	0	0	0	0	0	0	0	
	PI3_UKHL(0x02B5)								

位	7	6	5	4	3	2	1	0		
名称		PI3_UKH[7:0]								
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
复位值	0	0	0	0	0	0	0	0		
位	名称		描述							
[15:0]	PI3_UKH	PI3 的输	PI3 的输出结果高 16 位							

12.4.35 PI3_UKL (0x02B6, 0x02B7)

	PI3_UKLH(0x02B6)									
位	15	14	13	12	11	10	9	8		
名称				PI3_UK	L[15:8]					
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
复位值	0	0	0	0	0	0	0	0		
	PI3_UKLL(0x02B7)									
位	7	6	5	4	3	2	1	0		
名称				PI3_U	KL[7:0]					
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
复位值	0	0	0	0	0	0	0	0		
位	名称				描述					
[15:0]	PI3_UKL	PI3 的输出	结果低 16 f	立	·	·	·	·		

12.4.36 PI3_KD (0x02B8, 0x02B9)

	PI3_KDH(0x02B8)									
位	15	14	13	12	11	10	9	8		
名称				PI3_KD)[15:8]					
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
复位值	0	0	0	0	0	0	0	0		
			PI3	_KDL(0x02	B9)					
位	7	6	5	4	3	2	1	0		
名称				PI3_K	D[7:0]					
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
复位值	0	0	0	0	0	0	0	0		
位	名称				描述					
[15:0]	PI3_KD	PI3 的微分	系数							

12.4.37 PI3_EK2 (0x02BA, 0x02BB)

	PI3_EK2H(0x02BA)										
位	15	14	14 13 12 11 10 9 8								
名称				PI3_EK	2[15:8]						
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
复位值	0	0	0	0	0	0	0	0			
	PI3_EK2L(0x02BB)										
位	7	6	5	4	3	2	1	0			
名称				PI3_Ek	(2[7:0]						
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
复位值	0	0	0	0	0	0	0	0			
位	名称				描述						
[15:0]	PI3_EK2	PI3 上上次	(输入的偏差	量							

13 FOC

13.1 FOC 说明

13.1.1 FOC 简介

FOC 模块用于基于无感 FOC,有感 FOC 驱动电机的应用场合,并可用于基于 SVPWM 的电机控制。当 DRV_CR[FOCEN] = 0 时,FOC 模块不工作,FOC 时钟停止,相关寄存器处于复位状态且无法写入。

FOC 模块包含角度估算器,PI 控制器,坐标转换模块,电流采样模块和 PWM 波形输出模块,可硬件实现电流闭环。角度估算器利用电机电流信号估算转子位置,实现基于无感 FOC 的电机控制。也可通过 MCU 处理位置传感器信号获取转子位置,实现基于有感 FOC 的电机控制。

- 无感 FOC 控制: 采用角度估算器估算角度实现坐标变换,同时估算电机速度供 MCU 做速度闭环 控制
- 有感 FOC 控制: FOC 模块提供角度输入接口,MCU 采集位置传感器信号并进行处理,得到角度 并将角度值送入 FOC 模块实现坐标变换。

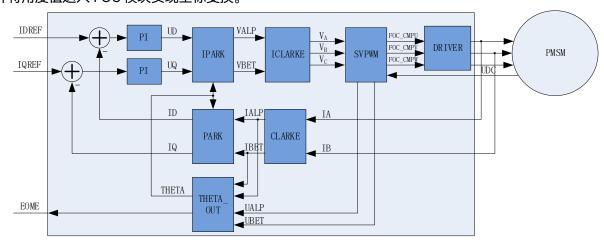


图 13-1 FOC 原理框图

13.1.2 参考输入

FOC 模块使用 d 轴电流参考值 FOC_IDREF 和 q 轴电流参考值 FOC_IQREF 作为电流参考值,使用 d 轴电流采样值 FOC_ID 和 q 轴电流采样值 FOC_IQ 作为电流反馈值,实现电流闭环控制。FOC 模块提供实时估算的电机转速 FOC_EOME,MCU 可将此信号作为反馈输入构建转速 PI 外环并将输出量赋值给 FOC_IQREF,实现速度-电流双闭环控制。

13.1.3 PI 控制器

FOC 模块使用 2 个 PI 控制器, 分别应用于:

- 1. 转子磁通控制: d 轴的电流 PI 控制器。以 d 轴电流指令值 FOC_IDREF 与反馈电流 FOC_ID 的偏差作为输入,比例系数 FOC_DQKP 和积分系数 FOC_DQKI 调节 PI 控制器性能,d 轴输出最大值 FOC_DMAX 和 d 轴输出最小值 FOC_DMIN 对输出进行限幅,最后输出 d 轴电压指令 FOC_UD;
- 2. 转子转矩控制: q 轴的电流 PI 控制器。以 q 轴电流指令值 FOC_IQREF 与反馈电流 FOC_IQ的偏差作为输入,比例系数 FOC_DQKP 和积分系数 FOC_DQKI 调节 PI 控制器性能, q 轴输出最大值 FOC_QMAX 和 q 轴输出最小值 FOC_QMIN 对输出进行限幅,最后输出 q 轴电压指令 FOC_UQ。

13.1.4 坐标转换

13.1.4.1 Park 逆变换

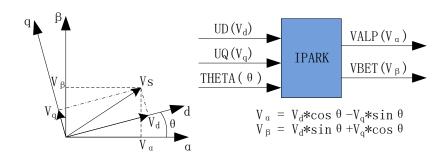


图 13-2 Park 逆变换

d-q 轴电流 PI 控制器运算后得到 d-q 轴下两个电压分量 FOC_UD 和 FOC_UQ。使用 Park 逆变换将电压矢量从两相旋转 d-g 坐标系变换到两相静止 α - β 坐标系。

13.1.4.2 Clarke 逆变换

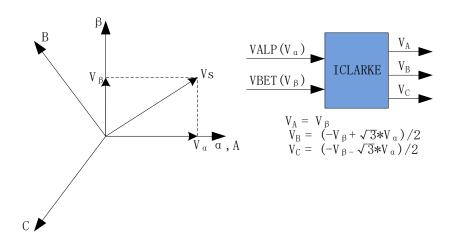


图 13-3 Clarke 逆变换

通过 Clarke 逆变换将电压矢量从两相静止 α - β 坐标系变换到三相静止 A-B-C 坐标系。

13.1.4.3 Clarke 变换

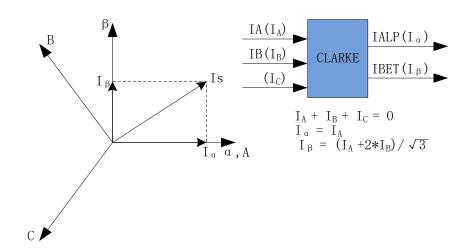


图 13-4 Clarke 变换

Clarke 变换将采样到的 A 相电流和 B 相电流从三相静止 A-B-C 坐标系变换到两相静止 α - β 坐标系。

13.1.4.4 Park 变换

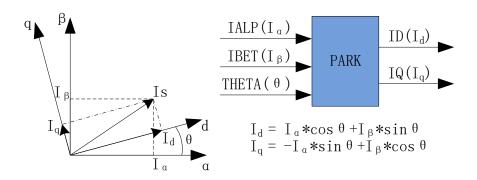


图 13-5 Park 变换

Park 变换将采样电流从两相静止 α-β 坐标系变换到两相旋转 d-q 坐标系,获得 d-q 轴反馈电流 FOC_ID 和 FOC_IQ。

13.1.5 SVPWM

SVPWM 算法是 FOC 控制的重要组成部分,其主要思路是采用逆变器空间电压矢量的切换以获得准圆形旋转磁场。该技术能明显减少逆变器输出电流的谐波分量、电机的谐波损耗和转矩脉动,且电压利用率高。

SVPWM 产生三相电机电压的脉宽调制信号占空比,每相占空比的产生过程都可简化为几个一次方程。由于逆变器上下桥臂不可直通,因此每相相电压有 2 种状态,即上桥打开时电机相线连接至母线电压(用 1 表示)与下桥打开时电机相线连接至地线(用 0 表示)。因此,逆变器电压输出共有 $2^3 = 8$ 种状态。任意一种状态可由 $X_c X_b X_a$ 表示, X_c 代表 C 相状态, X_b 代表 B 相状态, X_d 代表 A 相状态,如 100 代表 C 相相电压连接至母线电压,A、B 两相相电压连接至地。当三相全为 1 或全为 0 时的状态被称为无效状态,此时任意两相间没有电压降,也被称为零矢量。其余六种状态存在电压输出,为相邻状态旋转间隔为 60 度的有效矢量。

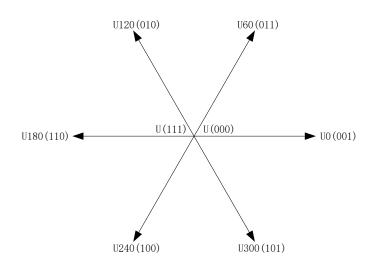


图 13-6 SVPWM 电压矢量

SVPWM的原理为通过两个相邻矢量的和,可表示任意矢量六边形内的空间电压矢量。如图 13-7 所示,U_{OUT}是期望生成的空间电压矢量,该矢量位于 U60 和 U0 之间。根据冲量相等原则,在很短的 PWM 周期 Ts 期间,U0 的输出时间 2*T1 和 U60 的输出时间 2*T2 共同作用的电压矢量等效为它们的 矢量和 U_{OUT}。剩余时间由零矢量填充,为 T0。

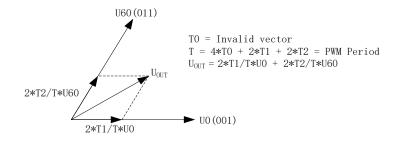


图 13-7 SVPWM 电压合成

表 13-1 空间矢量调制逆变器状态

C相	B相	A相	U _{ALP}	U _{BET}	矢量
0	0	0	0	0	000
0	0	1	2/3*U _{DC}	0	001
0	1	1	1/3*U _{DC}	1/3*U _{DC}	011
0	1	0	-1/3*U _{DC}	1/3*U _{DC}	010
1	1	0	-2/3*U _{DC}	0	110
1	0	0	-1/3*U _{DC}	-1/3*U _{DC}	100
1	0	1	1/3*U _{DC}	-1/3*U _{DC}	101
1	1	1	0	0	111

13.1.5.1 七段式 SVPWM

在单电阻电流采样模式下,FOC 模块固定使用七段式 SVPWM。双/三电阻电流采样模式下,配置 FOC_CR2[F5SEG] = 0 选择七段式 SVPWM。

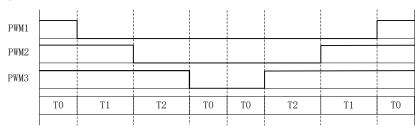


图 13-8 七段式 SVPWM 输出电平

13.1.5.2 五段式 SVPWM

五段式 SVPWM 只能在双/三电阻电流采样模式下使用。配置 FOC_CR2[F5SEG] = 1 使能五段式 SVPWM。

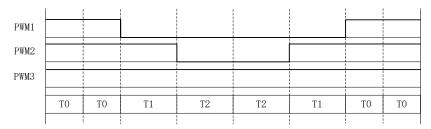


图 13-9 五段式 SVPWM 输出电平

13.1.6 过调制

单/双/三电阻模式下均可使用过调制功能,配置 FOC_CR1[OVMDL] = 1 使能过调制功能。过调制使能后,FOC_UD、FOC_UQ 和相关限幅值均放大 1.15 倍,电压输出放大 1.15 倍。

13.1.7 死区补偿

死区补偿只可用于双/三电阻电流采样模式,配置 FOC_TSMIN 寄存器设置死区补偿值,该功能可有效改善低速时的电流波形正弦度。

13.1.8 电流电压采样

FOC 模块通过硬件自动采集电机的母线电压和三相电流。当 FOC 模块工作之前,使能 ADC 和运放,并配置相关采样控制寄存器,ADC 通道和扫描方式不需要配置。根据 FOC_CR1[CSM]选择单/双/三电阻电流采样模式。在单电阻电流采样模式下默认 ADC 通道 4 为母线电流 itrip 的采样通道。在双电阻电流采样模式下默认通道 0 为 ia 的采样通道,通道 1 为 ib 的采样通道。在三电阻电流采样模式

下默认通道 0 为 ia 的采样通道,通道 1 为 ib 的采样通道,通道 4 为 ic 的采样通道。程序可以选择通道 2 或者通道 14(利用内置分压电阻,直接在内部采样 VCC)为母线电压的采样通道。

13.1.8.1 单电阻采样模式

配置 FOC_CR1[CSM] = 00,选择单电阻电流采样模式。在单电阻电流采样模式下,FOC 模块在 Driver 计数器向上计数的区间对母线电流 itrip(通道 4)进行两次采样,在 Driver 计数器向下计数的区间且 FOC 模块运算完成后对母线电压进行采样。

在死区时间内采样会影响电流采样的准确性, FOC 模块需在去除死区时间的有效矢量施加时间 T1'、T2'中采样。通过配置 FOC_TRGDLY 对采样时间进行提前或者延迟, 保证在 T1'、T2'中完成采样。例: FOC_TRGDLY = 5,则延迟 5*T = 208ns; FOC_TRGDLY = 0xFB(-5),则提前 208ns。



图 13-10 单电阻采样时序

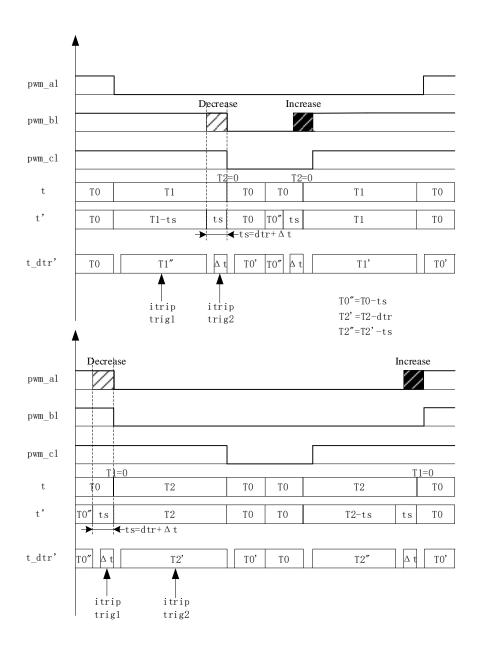


图 13-11 单电阻采样时间补偿

单电阻采样在低调制度以及扇区切换时存在采样窗口不够宽的情况,此时需调整输出波形以保证采样需要的最小采样窗口,用户通过设置 FOC_TSMIN (FOC_TSMIN = 最小采样窗口时间 + 死区时间),FOC 模块会对 PWM 波形自动进行移相处理。

13.1.8.2 双三电阻采样模式

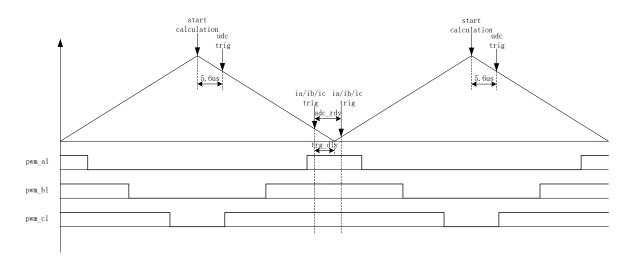


图 13-12 双三电阻电流顺序采样模式

配置 FOC_CR1[CSM] = 10/11 和 FOC_CR2[DSS] = 0,选择双/三电阻电流顺序采样模式。在三电阻电流顺序采样模式下,通过 FOC_TRGDLY 寄存器设置对三相电流的其中一相相电流(根据扇区决定ia/ib/ic)的采样时机,当采样完毕后迅速对另外一相进行采样。在双电阻模式下,通过 FOC_TRGDLY 寄存器设置调整 ia 的采样时机,当采样完毕后迅速对 ib 进行采样。需要注意的是电流采样时机的设置应该使三相电流采样点均在矢量 000 区间。例: FOC_TRGDLY = 0xB2,则当 FOC 计数器向下计数,在下溢事件前 50*T = 2.08µs 对 ia/ib/ic 采样,采样完毕后对另外一相 ia/ib/ic 采样。

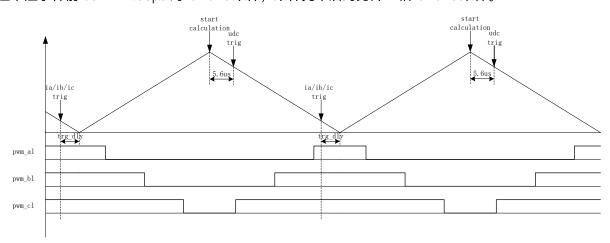


图 13-13 双三电阻电流交替采样模式

配置 FOC_CR1[CSM] = 10/11 和 FOC_CR2[DSS] = 1,即选择双/三电阻电流交替采样模式。在双/三电阻电流交替采样模式下,一个载波周期 FOC 模块运算一次,但只对一相相电流(根据扇区决定是ia/ib/ic)进行采样。前一个载波周期采集 ia/ib/ic 中的一相,后一个载波周期采集另外一相相电流,如此交替对三相中的两相进行电流采样。通过 FOC_TRGDLY 寄存器设置对电流 ia(通道 0),ib(通道 1),

ic(通道 4)的采样时机,需要注意的是电流采样时机的设置应该使 ia/ib/ic 采样点均在矢量 000 区间。例: FOC_TRGDLY = 0xB2,则当 FOC 计数器向下计数,在下溢事件前 50*T = 2.08µs 对电流采样。

双/三电阻电流采样模式在 Driver 计数器向下计数且 FOC 模块运算完成后对母线电压采样。

13.1.8.3 电流采样偏置

因为相电流存在正负值,因此需要加入偏置电压使系统可采样全部范围的电流。电流为 0 时,ADC 的采样值即为电流采样偏置,在运算时将 ADC 采样值减去偏置获得电流采样值。FOC 模块电流采样偏置默认值为 0x4000。由于 ADC 基准电压和硬件板的偏差会导致默认值与实际值不符,因此需要对偏置值进行校准。校准方法如下: 在三相没有相电流时对相应的通道进行多次采样,求平均后写进基准寄存器 FOC_CSO。假设 ADC 的电压范围 0V ~ 5V,偏置为 2.5V,则 FOC_CSO = 2.5V/5V*32768 = 16384(0x4000)。

- 当 FOC_CHC[CSOC] = 00/11 时,写 FOC_CSO 是修改 ITRIP 和 IC 的偏置
- 当 FOC CHC[CSOC] = 01 时,写 FOC CSO 是修改 IA 的偏置
- 当 FOC_CHC[CSOC] = 10 时,写 FOC_CSO 是修改 IB 的偏置

13.1.9 角度模式

角度模块包含角度估算模块、爬坡模块、估算角度平滑切换模块。角度的来源分四种情况:

- 爬坡强制角度
- 强拉角度
- 估算器估算角度
- 估算器强制角度

表 13-2 角度来源

FOC_CR1[RFAE]	FOC_CR1[ANGM]	FOC_CR1[EFAE]	角度来源
1	X	X	爬坡强制角度
0	0	X	强拉角度
0	1	0	估算器估算角度
			瞬时估算速度 > FOC_EFREQMIN: 估算
0	1	4	器估算角度
0		l	瞬时估算速度 < FOC_EFREQMIN: 估算
			器强制角度

13.1.9.1 爬坡强制角度

爬坡强制角度由角度寄存器 FOC_THETA, 速度寄存器 FOC_RTHESTEP, 加速度寄存器 FOC_RTHEACC, 以及爬坡次数上限 FOC_RTHECNT 共同控制。爬坡公式为:

FOC_RTHESTEP(32 位) = FOC_RTHESTEP(32 位) + FOC_RTHEACC(低 16 位)

THETA_OL(16 位) = THETA_OL(16 位) + FOC__RTHESTEP(高 16 位)

其中, THETA_OL 为芯片内部信号。爬坡强制角度模式时, 计算出的 THETA_OL 会直接送入 FOC THETA 作为最终输出角度。写 FOC THETA 会将值同时写入 THETA OL。

爬坡强制角度的优先级最高,配置 FOC_CR1[RFAE] = 1,使能爬坡功能。爬坡模块每个载波周期进行一次角度运算,同时爬坡计数器加 1,当计数值达到设定值(由 FOC_RTHECNT 配置)后,FOC_CR1[RFAE]硬件清 0,爬坡结束。爬坡结束后,根据 FOC_CR1[ANGM]的配置选择角度模式。FOC_CR1[ANGM] = 1 时,角度来自估算器;FOC_CR1[ANGM] = 0 时,角度来自强拉角度。

13.1.9.2 强拉角度

强拉角度由角度 FOC_THETA 和速度 FOC_RTHESTEP 共同控制。公式为:

THETA_OL(16 位) = THETA_OL(16 位) + FOC__RTHESTEP(高 16 位)

其中,THETA_OL 为芯片内部信号。强拉角度模式时,计算出的 THETA_OL 会直接送入 FOC_THETA 作为最终输出角度。写 FOC_THETA 会将值同时写入 THETA_OL。

- FOC_CR1[RFAE] = 1, FOC_CR1[ANGM] = 0 时, 爬坡强制角度模式后切换强拉角度模式, 此时的速度为爬坡结束时的累加速度。此模式可实现强拖匀速驱动。
- FOC_CR1[RFAE] = 0, FOC_CR1[ANGM] = 0 时, 角度直接来自强拉角度,速度 FOC_RTHESTEP 为软件直接写入寄存器的初始速度。写入速度 FOC_RTHESTEP = 0,可 实现预定位功能。通过写入速度 FOC_RTHESTEP 更新速度,可实现有感 FOC 驱动(有感 FOC 控制原理: 软件写入 FOC_THETA 和 FOC_RTHESTEP。FOC 模块根据写入的速度和角度在每个载波周期产生角度驱动电机)。

13.1.9.3 估算器角度

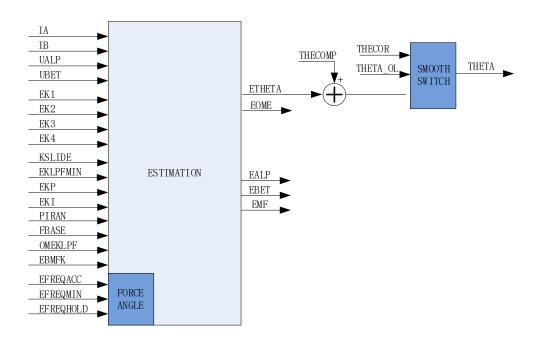


图 13-14 估算器原理框图

13.1.9.3.1 估算器估算角度

估算器根据用户输入的电机参数和控制参数构建电机模型,根据采集的电机电流和电压进行估算,输出与实际情况相符合的角度。估算器可选择 PLL 模式和 SMO 模式,通过 FOC_CR2[ESEL]进行选择。

13.1.9.3.2 估算器强制角度

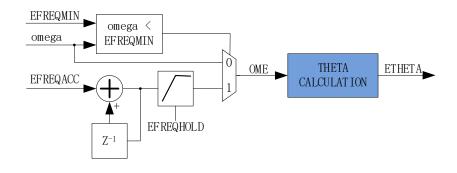


图 13-15 估算器强制角度原理框图

此功能与爬坡功能类似。电机启动时电机的输出较小,采集的电流小,估算器模型估算的角度和 速度与实际值存在较大的误差,可能令电机启动失败。在这种情况下,估算器输出强制角度,可保证 电机顺利启动。

配置 FOC_CR1[RFAE] = 0, FOC_CR1[ANGM] = 1, FOC_CR1[EFAE] = 1, 使能估算器强制角度功能。如图 13-15 所示通过判断估算器的瞬时估算速度 omega(芯片内部信号)与 FOC_EFREQMIN 的大小,选择不同速度作为最终速度 OME 供角度计算模块算出估算器角度 FOC_ETHETA。当 omega < FOC_EFREQMIN 时,使用估算器强制速度,强制速度从 0 开始,每个载波周期与速度增量 FOC_EFREQACC 相加,实现加速,同时以 FOC_EFREQHOLD 限制速度的最大值。当 omega ≥ FOC_EFREQMIN 时,omega 作为 OME。

估算器估算速度 FOC EOME 由 OME 经过 FOC OMEKLPF 低通滤波获得。

13.1.9.3.3 角度平滑切换

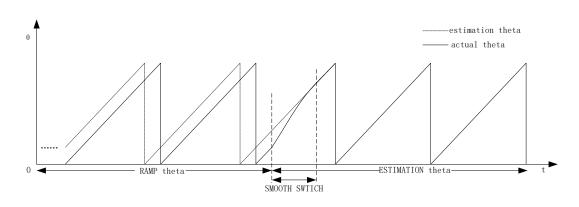


图 13-16 角度平滑切换曲线

配置 FOC_CR1[RFAE] = 1, FOC_CR1[ANGM] = 1, 使能爬坡功能启动电机, 爬坡结束后切换为估算器模式。爬坡的过程中, 估算器同时估算角度, 但估算角度通常与爬坡强制角度存在偏差。爬坡结束后, 角度从爬坡强制角度直接切换成估算角度时, 会由于角度的突变引起电机抖动。平滑切换模块可有效解决上述问题。

爬坡结束时,当估算角度 FOC_ETHETA 和爬坡强制角度 THETA_OL 的偏差小于等于 FOC_THECOR,直接切换 FOC_ETHETA 作为角度输出。当偏差大于 FOC_THECOR,则每个载波周期以 FOC_THECOR 作为步进值对 THETA_OL 进行修正,使其逐步向 FOC_ETHETA 的值逼近。当偏差小于 FOC_THECOR 时,直接切换 FOC_ETHETA 作为角度输出。

13.1.9.3.4 角度补偿

补偿值FOC_THECOMP对估算角度FOC_ETHETA进行补偿并输出。FOC_THECOMP为负值时,补偿的是滞后角;FOC_THECOMP为正值时,补偿的是超前角。

13.1.10 电机实时参数

FOC 驱动电机运行时,用户可实时查看电机的实时参数判断电机的运行状态。FOC 模块提供的

实时参数有:

- 输出角度值 FOC_THETA
- 估算器角度 FOC_ETHETA,估算速度 FOC_EOME
- d 轴电压 FOC_UD, q 轴电压 FOC_UQ
- d 轴电流 FOC_ID, q 轴电流 FOC_IQ
- α 轴电压 FOC_VALP, β 轴电压 FOC_VBET
- 母线电压 FOC UDCFLT
- 三相电流 FOC_IA、FOC_IB、FOC_IC 和三相电流最大值 FOC_IAMAX、FOC_IBMAX、FOC_ICMAX
- α 轴电流(等于 FOC IA), β 轴电流 FOC IBET
- α 轴反电动势 FOC_EALP, β 轴反电动势 FOC_EBET
- 反电动势幅值 FOC_EMF
- 电机功率 FOC_POW

13.1.10.1 顺风逆风检测

FOC提供专用的顺风逆风检测功能。配置FOC_CR0[ESCMS] = 1,同时配置电流指令FOC_IDREF、FOC_IQREF 均为 0,并启动 FOC 模块,通过估算角度 FOC_ETHETA 和估算速度 FOC_EOME 的值可判断电机的状态。当 FOC_ETHETA 向下递减或 FOC_EOME 为负值,为逆风转动状态,需要先刹车,再以爬坡强制角度启动电机。当 FOC_ETHETA 向上递增或 FOC_EOME 为正值,为顺风转动状态,可直接使用估算器强制角度启动电机。

13.1.10.2 反电动势检测

估算器根据输入的电机参数估算出 α 轴反电动势 FOC_EALP 和 β 轴反电动势 FOC_EBET,并计算向量的模长 FOC_EMF。用户可根据 FOC_EMF 的值判断电机的状态,实现堵转保护、缺相保护等功能。

13.1.10.3 电机功率

FOC 根据采样电流、输出电压的调制度以及滤波后的母线电压,经过计算得到电机功率。

13.1.11 FG 输出产生

FG 信号由 FOC 模块和 Timer4 共同作用产生,FOC 模块每个载波周期根据频率基准 fbase,低通滤波后的估算速度 FOC_EOMELPF 和 FG 系数 FOC_KFG 计算出 FG 结果值,同时自动更新至 TIM4_ARR,并将 TIM4_ARR/2 更新至 TIM4_DR。Timer4 需配置为输出模式,并根据电机运行最大转速设置合适的时钟分频系数。FOC_KFG 的计算公式为: FOC_KFG =

SYSCLK/(2^TIM4_CR0[T4PSC]*fbase*x)。其中, x 为一个电周期内期望输出的 FG 信号的个数。如果计算结果超过 65535,需调整 Timer4 的时钟分频系数 TIM4_CR0[T4PSC]。

FOC_KFG = 0 时为不使能此功能,TIM4_ARR 和 TIM4_DR 不会自动更新。

13.2 FOC 寄存器

13.2.1 FOC_CR0 (0x409F)

位	7	6	5	4	3	2	1	0	
名称	OMIF	OMAF	MEI	RRS	UCSEL	OMAS	ESCMS	EDIS	
类型	R	R	R/W	R/W	R/W	R/W	R/W	R/W	
复位值	0	0	0	0	0	0	0	0	
位	名	称			描	述			
[7]	ON	ИIF	该标志位係	太然生效		ī,即使 FO	C_CR1[EFAI	三不为 1,	
			•	≥ FOC_EFR < FOC_EFR					
			omega > I	OC_EFREC	QMAX 标志(立			
[6]	OMAF 0: omega ≤ FOC_EFREQMAX								
			1: omega	> FOC_EFR	EQMAX				
			滑膜算法的	的最大误差的	选择				
	00: 0.5								
[5:4]	MEI	RRS	01: 0.25						
			10: 0.125						
			11: 1.0						
			母线电压 UDC 采样通道选择						
			使能 FOC	模式并使能	能 Driver 梼	莫块计数器,	硬件自动系	样母线电	
			压,FOC_CR0[UCSEL]选择采样母线电压的通道。						
			0: ADC 通道 2						
[3]	UC	SEL	1: ADC 通道 14						
			ADC 通道 14 为芯片内部专用的母线采样通道,配置						
			ADC_CR[ADCRATIO]选择分压比。如果采用外部分压电阻,则选						
			择 ADC 通	道 2。					
			注: ADC_N	1ASK 中对区	立的使能位列	·需配置为 ′			
			估算器速度	度过大时输出	出选择				
[2]	0	145	omega[15	5:8]大于 FO	C_EFREQM	AX 时,最终	冬輸出 OME	为:	
[4]		OMAS		0: FOC_EFREQMAX*256					

1: FOC_EFREQHOLD

		角度输出模式选择
[1]	ESCMS	0: 内部测试模式
		1: 推荐模式
		禁止 FOC_EALP/FOC_EBET 自动计算
[0]	EDIS	0: 不禁止
		1: 禁止

13.2.2 FOC_CR1 (0x40A0)

位	7	6	5	4	3	2	1	0
名称	OVMDL	EFAE	RFAE	ANGM	CS	SM	RSV	SVPWMEN
类型	R/W	R/W	R/W	R/W	R/W	R/W	-	R/W
复位值	0	0	0	0	0	0	-	0

位	名称	描述
		过调制使能
[7]	OVMDL	0: 不使能
		1: 使能
		估算器强制角度使能
[6]	EFAE	使能后,角度由估算器强制给出,并自动切换到估算器估算角度
[0]	LFAL	0: 不使能
		1: 使能
		强制爬坡角度使能
		使能后,角度由爬坡模块强制给出,爬坡结束后根据
[5]	RFAE	FOC_CR1[ANGM]位自动切换到估算器模式或强拉模式,同时
[5]		FOC_CR1[RFAE]硬件清 0。
		0: 不使能
		1: 使能
		角度模式
		FOC_CR1[RFAE] = 0 时,角度根据此位来源于估算器或强拉
[4]	ANGM	FOC_CR1[RFAE] = 1 时,爬坡结束后角度根据此位切换估算器或
[4]	ANGM	强拉
		0: 强拉模式
		1: 估算器模式
		电流采样模式
		00: 单电阻采样
[3:2]	CSM	01: 双电阻采样
		10: 保留
		11: 三电阻采样

[1]	RSV	保留
		SVPWM 模块使能
[0]	SVPWMEN	0: 不使能
		1: 使能

13.2.3 FC	13.2.3 FOC_CR2 (0x40A1)							
位	7	6 5 4 3 2 1 0						0
名称	ESEL	ICLR	F5SEG	DSS	CS	ОС	UQD	UDD
类型	R/W	R/W1	R/W	R/W	R/W	R/W	R/W	R/W
复位值	0	0	0	0	0	0	0	0
位	名称				描述			
		角度估算器	模式选择					
[7]	ESEL	0: SMO						
[/]	LOLL	1: PLL, 此时 FOC_KSILDE 寄存器为 PLL 的 PI 控制器的 FOC_P						
		FOC_KLPF	MIN 寄存器	为 PLL 的 P	l 控制器的	FOC_PLLKI		
		FOC_IAM	AX/FOC_IE	BMAX/FOC_	_ICMAX 清	0		
[6]	ICLR	0: 无意义						
		1: 对 FOC_	_IAMAX/FC	C_IBMAX/	FOC_ICM	AX 清 0 后设	该位自动清()
		SVPWM 模	式选择					
[5]	F5SEG	0: 7 段式 SVPWM						
	1: 5 段式 SVPWM(单电阻电流采样模式禁止选择)							
		双/三电阻	电流采样模式	. t				
[4]	DSS	0: 顺序采档	É模式,一个	`载波周期采	样两相电流	<u> </u>		
[4]	DSS	1: 交替采村	羊模式,每个	载波周期采	样一相电流	,相邻两个	周期交替采	《样两相电

流,FOC 运算在每个载波周期进行一次。

配置该位,选择 FOC_CSO 写入的校准值。单电阻采样时,配置为 00 或 11 对 itrip 校准。双电阻采样时,配置为 01 对 ia 校准,配置为 10 对 ib 校准。三电阻采样时,配置为 01 对 ia 校准,配置为 10 对 ib 校准,配置 00 或 11 对 ic 校

电流采样偏置校准

[3:2]

[1]

CSOC

UQD

准。

01: ia 10: ib

00: itrip 和 ic

11: itrip 和 ic

0: 不禁止1: 禁止

q 轴 PI 控制器禁止,禁止时,FOC_UQ 的值不再由 PI 控制器更新

		d 轴 PI 控制器禁止,禁止时,FOC_UD 的值不再由 PI 控制器更新
[0]	UDD	0: 不禁止
		1: 禁止

13.2.4 FOC_TSMIN (0x40A2)

位	7	6	5	4	3	2	1	0
名称		FOC_TSMIN						
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
复位值	0	0	0	0	0	0	0	0
位	名	称			描	述		
			单电阻采样模式下: 电流采样最小窗口					
			双三电阻采样模式下: 死区补偿值					
[7.0]	F00 7	COMINI	取值范围[0,255]					
[7:0]	FOC_TSMIN		TSMIN = 3	采样窗口 Twi	ndow + 死区E	付间 T _{DT}		
			例: T _{window} :	= 1μs, T _{DT} =	= 1μs, TSM	1IN = 2μs,	载波周期为	62.5μs,
		FOC_TSMIN = (1 + 1)/62.5*4096 = 131						

13.2.5 FOC_TGLI (0x40A3)

位	7	6	5	4	3	2	1	0
名称				FOC_	_TGLI			
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
复位值	0	0	0	0	0	0	0	0
位	名称	T			描述	<u>术</u>		
[7:0]	FOC_I	⁻ GLI	上桥导通窄服 此功能用于高 大于一定值的 取值范围[0,2 例: 消除小于 62.5µs FOC_TGLI=	高压应用,高 匀要求。设置 255] 1µs 的窄脉	置此寄存器, 《冲,死区时	导通脉冲小 :间 Τ _{DT} = 1μ	小于设定值的	才不导通。

13.2.6 FOC_TBLO (0x40A4)

位	7	6	5	4	3	2	1	0
名称		FOC_TBLO						
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
复位值	0	0	0	0	0	0	0	0

位	名称	描述
		三电阻电流采样模式下采样屏蔽时间,当下桥导通的时间小于
		FOC_TBLO,则不采样该相的电流,采用特殊处理得到电流。
[7:0]	FOC_TBLO	取值范围[0,255]
		例: 下桥导通时间小于 1μs 不采样,FOC_TBLO = 1000ns/41.67ns
		= 24

13.2.7 FOC_TRGDLY (0x40A5)

位	7	6	5	4	3	2	1	0	
名称				FOC_T	RGDLY				
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
复位值	0	0	0	0	0	0	0	0	
位	名	称			描	述			
[7:0]	FOC_T	RGDLY	单电阻采标 双/三电阻 取值范围[单电阻采 FOC_TRGI 208ns; 双三电阻 7 位为绝对 208ns 进	RGDLY = 0,	与有效矢量 FOC_TRGD 3(补码) FOC_TRGD Driver 计数 PC_TRGDLY	点(Driver 计)(Y = 5, 则 或 FOC_TR)(Y = 0x85 器向下计数 = 5, 则当		,则提前 号位,剩下 件前 5*T=	

13.2.8 FOC_CSO (0x40A6, 0x40A7)

	FOC_CSOH(0x40A6)											
位	15	15 14 13 12 11 10 9 8										
名称	FOC_CSO[15:8]											
类型	R	R R/W R/W R/W R/W R/W R/W										
复位值	0	0 1 0 0 0 0 0										
			FOC	_CSOL(0x4	0A7)							
位	7	6	5	4	3	2	1	0				
名称				FOC_C	SO[7:0]							
类型	R/W	R/W R/W R/W R/W R/W R/W R/W										
复位值												

位	名称	描述
		电流采样偏置
		配置 FOC_CR2[CSOC],校准单电阻采样模式的 itrip,双电阻采样
[15.0]	FOC CSO	模式的 ia,ib,三电阻采样模式的 ia,ib,ic。
[15:0]	FOC_CSO	取值范围[0,32767],最高位恒为 0
		例: ADC 的电压范围 0V ~ 5V,基准为 2.5V
		则 FOC_CSO = 2.5V/5V*32768 = 16384(0x4000)

13.2.9 FOC__RTHESTEP (0x40A8, 0x40A9)

	FOC_RTHESTEPH(0x40A8)											
位	15	14	13	12	11	10	9	8				
名称				FOC_RTHE	STEP[15:8]							
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W				
复位值	0	0	0	0	0	0	0	0				
			FOC_R	THESTEPL(0x40A9)							
位	7	6	5	4	3	2	1	0				
名称		FOC_RTHESTEP[7:0]										
类型	R/W	R/W R/W R/W R/W R/W R/W R/W										
复位值	0	0	0	0	0	0	0	0				
位	名称	T			描述	<u>k</u>						
			爬坡模块的	速度,FOC_	_RTHESTEF	内部为 32	位,最高位	为符号				
			位。软件写力	入高 16 位								
[15:0]	EOC DTI	取值范围[-32768,32767]										
[15.0]	FOC_KII	FOC_RTHESTEP FOC_RTHESTEP(32 位) +										
		FOC_RTHEACC(低 16 位)										
			THETA_OL(16 位) = THI	ETA_OL(16	位) + FOC_	_RTHESTEP	(高 16 位)				

13.2.10 FOC_RTHEACC (0x40AA, 0x40AB)

	FOC_RTHEACCH(0x40AA)										
位	15	15 14 13 12 11 10 9 8									
名称		FOC_RTHEACC[15:8]									
类型	W	w w w w w w									
复位值	0	0	0	0	0	0	0	0			
			FOC_R	THEACCL(0	x40AB)						
位	7 6 5 4 3 2 1 0										
名称	FOC_RTHEACC[7:0]										

类型	W	W	W	W	W	W	W	W			
复位值	0	0	0	0 0 0 0							
位	名和	T	描述								
[15:0]	FOC_RTI	HEACC	爬坡模块的加 位。软件写力 取值范围[-3 FOCRTHE FOC_RTHEA THETA_OL(入低 16 位。 2768,3276 STEP(32 位 ACC(低 16 位	- 高 16 位恒; 7]) = FOC_R [;] 〕)	为 0 THESTEP(3	2 位) +				

13.2.11 FOC_EOMELPF (0x40AA, 0x40AB)

			FOC_EC	MELPFH(C	x40AA)					
位	15	14	13	12	11	10	9	8		
名称				FOC_EOMI	ELPF[15:8]					
类型	R	R	R	R	R	R	R	R		
复位值	0	0 0 0 0 0 0 0 0								
		FOC_EOMELPFL(0x40AB)								
位	7	7 6 5 4 3 2 1 0								
名称				FOC_EOM	ELPF[7:0]					
类型	R	R	R	R	R	R	R	R		
复位值	0	0	0	0	0	0	0	0		
位	名	名称 描述								
	低通滤波后的估算器估算速度									
[15:0]	FOC_EOMELPF 滤波系数为 FOC_EOMEKLPF,LPF 的计算频率为载波周期									
			取值范围[-32768,327	67]					

13.2.12 FOC_RTHECNT (0x40AC)

位	7	6	5	4	3	2	1	0			
名称		FOC_RTHECNT									
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
复位值	0	0 0 0 0 0 0 0 0									
位	名	称			描	述					
[7:0]	FOC_RT	INCE 爬坡次数上限 = FOC_RTHECNT*256 FOC_RTHECNT 爬坡功能使能后,每个载波周期进行一次爬坡运算,当爬坡次数达到 FOC_RTHECNT*256 后,爬坡结束									

13.2.13 FOC_THECOR (0x40AD)

位	7	6	5	4	3	2	1	0		
名称				FOC_TH	IECOR					
类型	R/W									
复位值	0	0	0	0	0	0	0	1		
位	名	称			描	述				
			角度切换平	F滑过渡修Ⅱ	E值:					
[7:0]	FOC TI	JECOR	爬坡结束	后切换到估	算模式时的	角度平滑	切换步进值	,格式与		
[7.0]	FUC_IF	FOC_THECOR FOC_THETA 一致								
			取值范围[(0,255]						

13.2.14 FOC_EMF (0x40AE, 0x40AF)

			FOC_	_EMFH(0x4	OAE)					
位	15	14	13	12	11	10	9	8		
名称				FOC_EN	4F[15:8]					
类型	R	R	R	R	R	R	R	R		
复位值	0 0 0 0 0 0 0									
		FOC_EMFL(0x40AF)								
位	7	7 6 5 4 3 2 1 0								
名称				FOC_E	MF[7:0]					
类型	R	R	R	R	R	R	R	R		
复位值	0	0	0	0	0	0	0	0		
位	名称 描述									
	估算器估算的反电动势									
[15:0]	FOC_	FOC_EMF 等于 FOC_EALP 的平方加 FOC_EBETA 的平方开根号								
			取值范围[6	0,32767]						

13.2.15 FOC_THECOMP (0x40AE, 0x40AF)

	FOC_THECOMPH(0x40AE)										
位	15	15 14 13 12 11 10 9 8									
名称				FOC_THEC	OMP[15:8]						
类型	W	W W W W W W									
复位值	0	0	0	0	0	0	0	0			
	FOC_THECOMPL(0x40AF)										
位	7	7 6 5 4 3 2 1 0									

名称				FOC_THE	COMP[7:0]						
类型	W										
复位值	0	0 0 0 0 0 0 0									
位	名	名称 描述									
[15:0]	FOC_TH	IECOMP	角度 FOC_	章角度 FOC	- 各式与 FOC_		值作为估算 致	器最终输出			

13.2.16 FOC_DMAX (0x40B0, 0x40B1)

			FOC_I	DMAXH(0x	40B0)			
位	15	14	13	12	11	10	9	8
名称		FOC_DMAX[15:8]						
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
复位值	0	0	0	0	0	0	0	0
		FOC_DMAXL(0x40B1)						
位	7	7 6 5 4 3 2 1 0						
名称				FOC_DM	1AX[7:0]			
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
复位值	0	0	0	0	0	0	0	0
位	名称 描述							
[15:0]	EOC I	DMAX	d 轴 PI 控制器的输出最大值					
[13.0]	۲۵۵_۱	JIYIAA	取值范围[-	-32768,327	67]			

13.2.17 FOC_DMIN (0x40B2, 0x40B3)

	FOC_DMINH(0x40B2)								
位	15	14	13	12	11	10	9	8	
名称	FOC_DMIN[15:8]								
类型	R/W	/W R/W R/W R/W R/W R/W R/W							
复位值	0	0 0 0 0 0 0 0							
			FOC_	DMINL(0x4	40B3)				
位	7	6	5	4	3	2	1	0	
名称		FOC_DMIN[7:0]							
类型	R/W	R/W R/W R/W R/W R/W R/W R/W							
复位值	0	0	0	0	0	0	0	0	

位	名称	描述
[15.0]	[15.0] FOC DMIN	d 轴 PI 控制器的输出最小值
[15:0]	FOC_DMIN	取值范围[-32768,32767]

13.2.18 FOC_QMAX (0x40B4, 0x40B5)

	FOC_QMAXH(0x40B4)							
位	15	14	13	12	11	10	9	8
名称		FOC_QMAX[15:8]						
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
复位值	0	0	0	0	0	0	0	0
		FOC_QMAXL(0x40B5)						
位	7	7 6 5 4 3 2 1 0						
名称				FOC_QM	1AX[7:0]			
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
复位值	0	0	0	0	0	0	0	0
位	名称 描述							
[15:0]	q 轴 PI 控制器的输出最大值 取值范围[-32768,32767]							

13.2.19 FOC_QMIN (0x40B6, 0x40B7)

	FOC_QMINH(0x40B6)							
位	15	14	13	12	11	10	9	8
名称		FOC_QMIN[15:8]						
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
复位值	0	0	0	0	0	0	0	0
		FOC_QMINL(0x40B7)						
位	7	7 6 5 4 3 2 1 0						
名称				FOC_QN	4IN[7:0]			
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
复位值	0	0	0	0	0	0	0	0
位	名称 描述							
[15:0]	FOC_	QMIN	q 轴 PI 控制器的输出最小值 取值范围[-32768,32767]					

13.2.20 FOC_UD (0x40B8, 0x40B9)

	FOC_UDH(0x40B8)							
位	15	14	13	12	11	10	9	8
名称		FOC_UD[15:8]						
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
复位值	0	0	0	0	0	0	0	0
		FOC_UDL(0x40B9)						
位	7	7 6 5 4 3 2 1 0						
名称				FOC_L	JD[7:0]			
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
复位值	0	0	0	0	0	0	0	0
		<u> </u>	<u> </u>					
位	名称 描述							
[15:0]	d 轴 PI 控制器算出的 d 轴电压 取值范围[-32768,32767]							

13.2.21 FOC_UQ (0x40BA, 0x40BB)

	FOC_UQH(0x40BA)							
位	15	14	13	12	11	10	9	8
名称		FOC_UQ[15:8]						
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
复位值	0	0	0	0	0	0	0	0
		FOC_UQL(0x40BB)						
位	7	7 6 5 4 3 2 1 0						
名称				FOC_L	JQ[7:0]			
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
复位值	0	0	0	0	0	0	0	0
位	名称 描述 描述 描述							
[15:0]	FOC.	_UQ		制器算出的 -32768,327	•			

13.2.22 FOC_ID (0x40BC, 0x40BD)

	FOC_IDH(0x40BC)							
位	15	14	13	12	11	10	9	8
名称		FOC_ID[15:8]						
类型	R	R	R	R	R	R	R	R
复位值	0	0 0 0 0 0 0 0						
	FOC_IDL(0x40BD)							

位	7	6	5	4	3	2	1	0	
名称		FOC_ID[7:0]							
类型	R	R	R	R	R	R	R	R	
复位值	0	0 0 0 0 0 0 0							
位	名	名称 描述							
[15.0]	F00	. 10	采样电流经过坐标变换得到的 d 轴电流						
[15:0]	FUC	:_ID	取值范围[-32768,32767]						

13.2.23 FOC_IQ (0x40BE, 0x40BF)

	FOC_IQH(0x40BE)								
位	15	14	13	12	11	10	9	8	
名称		FOC_IQ[15:8]							
类型	R	R	R	R	R	R	R	R	
复位值	0	0	0	0	0	0	0	0	
		FOC_IQL(0x40BF)							
位	7	7 6 5 4 3 2 1 0							
名称				FOC	Q[7:0]				
类型	R	R	R	R	R	R	R	R	
复位值	0	0	0	0	0	0	0	0	
位	名称 描述								
[15.0]	F00	. 10	采样电流经过坐标变换得到的 q 轴电流						
[15:0]	FUC	:_IQ	取值范围[-	-32768,327	67]				

13.2.24 FOC_IBET (0x40C0, 0x40C1)

	FOC_IBETH(0x40C0)								
位	15	15 14 13 12 11 10 9 8							
名称	尔 FOC_IBET[15:8]								
类型	R	R	R	R	R	R	R	R	
复位值	0	0 0 0 0 0 0 0							
	FOC_IBETL(0x40C1)								
位	7	6	5	4	3	2	1	0	
名称				FOC_IE	BET[7:0]				
类型	R	R R R R R R							
复位值	0	0	0	0	0	0	0	0	

位	名称	描述
[15:0]	I FOC IDET	采样电流经过坐标变换得到的β轴电流
[15.0]	FOC_IBET	取值范围[-32768,32767]

13.2.25 FOC_VBET (0x40C2, 0x40C3)

	FOC_VBETH(0x40C2)									
位	15	14	13	12	11	10	9	8		
名称		FOC_VBET[15:8]								
类型	R	R R R R R R								
复位值	0	0	0	0	0	0	0	0		
			FOC_	_VBETL(0x4	40C3)					
位	7	7 6 5 4 3 2 1 0								
名称				FOC_VI	BET[7:0]					
类型	R	R	R	R	R	R	R	R		
复位值	0	0	0	0	0	0	0	0		
位	名	称	描述							
[15:0]	FOC_	VRET	FOC 模块输出β轴电压							
[13.0]	FOC_	_v DL 1	取值范围[-	-32768,327	'67]					

13.2.26 FOC_VALP (0x40C4, 0x40C5)

	FOC_VALPH(0x40C4)										
位	15	14	13	12	11	10	9	8			
名称		FOC_VALP[15:8]									
类型	R	R R R R R R									
复位值	0	0	0	0	0	0	0	0			
			FOC_	_VALPL(0x4	40C5)						
位	7	6	5	4	3	2	1	0			
名称				FOC_V	ALP[7:0]						
类型	R	R	R	R	R	R	R	R			
复位值	0	0	0	0	0	0	0	0			
位	名	称	描述								
[15.0]	FOC	FOC 模块输出α轴电压 OC_VALP									
[15:0]	FUC_	_VALP	取值范围[-	-32768,327	[67]						

13.2.27 FOC_UDCPS (0x40C2, 0x40C3)

	FOC_UDCPSH(0x40C2)									
位	15	14	13	12	11	10	9	8		
名称				FOC_UD(CPS[15:8]					
类型	W	W W W W W W W								
复位值	0	0	0	0	0	0	0	0		
		FOC_UDCPSL(0x40C3)								
位	7	7 6 5 4 3 2 1 0								
名称				FOC_UD	CPS[7:0]					
类型	W	W	W	W	W	W	W	W		
复位值	0	0	0	0	0	0	0	0		
位	名称 描述									
	d 轴电压补偿值									
[15:0]	FOC_UDCPS d 轴 PI 计算的结果 FOC_UD 与 FOC_UDCPS 相加后送到下一模块									
			取值范围[-32768,327	67]					

13.2.28 FOC_UQCPS (0x40C4, 0x40C5)

	FOC_UQCPSH(0x40C4)										
位	15	14	13	12	11	10	9	8			
名称				FOC_UQC	:PS[15:8]						
类型	W	W W W W W W									
复位值	0	0	0	0	0	0	0	0			
	FOC_UQCPSL(0x40C5)										
位	7	6	5	4	3	2	1	0			
名称				FOC_UQ	CPS[7:0]						
类型	W	W	W	W	W	W	W	W			
复位值	0	0	0	0	0	0	0	0			
位	名	称			描	述					
[15:0]	q 轴的电压补偿值 q 轴 PI 计算的结果 FOC_UQ 与 FOC_UQCPS 相加后送到下一块 取值范围[-32768,32767]						美到下一模				

13.2.29 FOC_IC (0x40C6, 0x40C7)

	FOC_ICH(0x40C6)									
位	15	14	13	12	11	10	9	8		
名称		FOC_IC[15:8]								
类型	R	R R R R R R								
复位值	0	0	0	0	0	0	0	0		
			FOO	C_ICL(0x40	C7)					
位	7	6	5	4	3	2	1	0		
名称				FOC	IC[7:0]					
类型	R	R	R	R	R	R	R	R		
复位值	0	0	0	0	0	0	0	0		
位	名	称	描述							
[15:0]	FOC	采样获得的 C 相相电流 FOC_IC								
[13.0]	۲۵۵	,IC	取值范围[-	-32768,327	67]					

13.2.30 FOC_IB (0x40C8, 0x40C9)

	FOC_IBH(0x40C8)										
位	15	14	13	12	11	10	9	8			
名称		FOC_IB[15:8]									
类型	R	R R R R R R									
复位值	0	0	0	0	0	0	0	0			
			FOC	C_IBL(0x40	C9)						
位	7	7 6 5 4 3 2 1 0									
名称				FOC_	IB[7:0]						
类型	R	R	R	R	R	R	R	R			
复位值	0	0	0	0	0	0	0	0			
位	名	称	描述								
[15.0]	采样获得的 B 相相电流 FOC_IB										
[15:0]	FOC	,ID	取值范围[-	-32768,327	67]						

13.2.31 FOC_IA (0x40CA, 0x40CB)

FOC_IAH(0x40CA)										
位	15	14	13	12	11	10	9	8		
名称		FOC_IA[15:8]								
类型	R	R R R R R R								
复位值	0	0	0	0	0	0	0	0		

FOC_IAL(0x40CB)									
位	7	7 6 5 4 3 2 1 0							
名称		FOC_IA[7:0]							
类型	R	R R R R R R							
复位值	0	0 0 0 0 0 0 0							
位	名	名称 描述							
[15:0]	F00	采样获得的 A 相相电流							
[15.0]	FOC_IA 取值范围[-32768,32767]								

13.2.32 FOC_THETA (0x40CC, 0x40CD)

			FOC_	THETAH(0×	40CC)					
位	15	14	13	12	11	10	9	8		
名称				FOC_TH	ETA[15:8]					
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
复位值	0	0 0 0 0 0 0 0								
			FOC_	THETAL(0x	40CD)					
位	7	7 6 5 4 3 2 1 0								
名称		FOC_THETA[7:0]								
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
复位值	0	0	0	0	0	0	0	0		
位	名	称			描	述				
		FOC 输出角度								
[15:0]	取值范围[-32768,32767]									
[15:0]	FUC_	INEIA	-32768 ~	32767 对应	767 对应-180°~ 180°					
			例: FOC	ГНЕТА = 81	92,对应角	度为 8192/	32768*180	°= 45°		

13.2.33 FOC_ETHETA (0x40CE, 0x40CF)

	FOC_ETHETAH(0x40CE)										
位	15	15 14 13 12 11 10 9 8									
名称				FOC_ETH	IETA[15:8]						
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
复位值	0	0 0 0 0 0 0 0									
			FOC_E	ETHETAL(0	x40CF)						
位	7	6	5	4	3	2	1	0			
名称		FOC_ETHETA[7:0]									
类型	R/W	R/W R/W R/W R/W R/W R/W R/W									
复位值	0	0	0	0	0	0	0	0			

位	名称	描述
		读: 估算器输出角度(补偿 FOC_THECOMP 前的角度)格式与
[15:0]	FOC ETHETA	FOC_THETA 一致
		写: 估算器初始角度
		取值范围[-32768,32767]

13.2.34 FOC_EALP (0x40D0, 0x40D1)

	FOC_EALPH(0x40D0)										
位	15	14	13	12	11	10	9	8			
名称		FOC_EALP[15:8]									
类型	R	R R R R R R									
复位值	0	0	0	0	0	0	0	0			
		FOC_EALPL(0x40D1)									
位	7	6	5	4	3	2	1	0			
名称				FOC_E	ALP[7:0]						
类型	R	R	R	R	R	R	R	R			
复位值	0	0	0	0	0	0	0	0			
位	名	称	描述								
[15:0]	FOC	估算器估算的α轴反电动势 FOC_EALP									
[15.0]	FUC_	_CALY	取值范围[-	-32768,327	67]						

13.2.35 FOC_EBET (0x40D2, 0x40D3)

	FOC_EBETH(0x40D2)										
位	15	14	13	12	11	10	9	8			
名称				FOC_EB	ET[15:8]						
类型	R	R R R R R R									
复位值	0	0	0	0	0	0	0	0			
FOC_EBETL(0x40D3)											
位	7	6	5	4	3	2	1	0			
名称				FOC_E	BET[7:0]						
类型	R	R	R	R	R	R	R	R			
复位值	0	0	0	0	0	0	0	0			
位	名	称	描述								
[15.0]	FOC	CDCT	估算器估算的β轴反电动势								
[15:0]	FUC_	EBET	取值范围[-	207/0 207	/ 71						

13.2.36 FOC_EOME (0x40D4, 0x40D5)

			FOC_	EOMEH(0x	40D4)				
位	15	14	13	12	11	10	9	8	
名称				FOC_EO	ME[15:8]				
类型	R/W	R/W R/W R/W R/W R/W R/W							
复位值	0	0	0	0	0	0	0	0	
FOC_EOMEL(0x40D5)									
位	7	6	5	4	3	2	1	0	
名称				FOC_EC	ME[7:0]				
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
复位值	0	0	0	0	0	0	0	0	
位	名	称	描述						
[15:0]	foc_eome 估算器输出速度								
[13.0]	取值范围[-32768,32767]								

13.2.37 FOC_UQEX (0x40D6, 0x40D7)

			FOC_	UQEXH(0x	40D6)				
位	15	14	13	12	11	10	9	8	
名称				FOC_UC	EX[15:8]				
类型	R	R	R	R	R	R	R	R	
复位值	0	0	0	0	0	0	0	0	
FOC_UQEXL(0x40D7)									
位	7	6	5	4	3	2	1	0	
名称		FOC_UQEX[7:0]							
类型	R	R	R	R	R	R	R	R	
复位值	0	0	0	0	0	0	0	0	
位	名	称			描	述			
[15:0]	FOC_	UQEX	公式: FOC 当 FOC_L 当 FOC_L 使用 FOC_	制器溢出值 UQ - FOC_C JQ > FOC_C JQ < FOC_C _UQEX 可写 -32768,327	C_QMAX QMAX,FOO QMAX,FOO C现弱磁控制	C_UQEX 为			

13.2.38 FOC_KFG (0x40D6, 0x40D7)

			FOC.	_KFGH(0x4	0D6)					
位	15	14	13	12	11	10	9	8		
名称				FOC_KF	G[15:8]					
类型	W	W	W	W	W	W	W	W		
复位值	0	0	0	0	0	0	0	0		
			FOC	_KFGL(0x4	0D7)					
位	7	6	5	4	3	2	1	0		
名称		FOC_KFG[7:0]								
类型	W	W	W	W	W	W	W	W		
复位值	0	0	0	0	0	0	0	0		
位	名	称			描	i述				
[15:0]	FOC <u>.</u>	_KFG	每个载波周 计算公式证 取值范围[ci	FOC_EOME 周期更新到 ¹ 青参考 FG 输 0,65535]	TIM4_ARR ì出产生 不使能此功i	,TIM4_AF 能,如果 FC	出 FG 对应的 RR/2 更新到 DC_KFG 溢b	TIM4_DR		

13.2.39 FOC_POW (0x40D8, 0x40D9)

			FOC_	_POWH(0x4	40D8)					
位	15	14	13	12	11	10	9	8		
名称				FOC_PC)W[15:8]					
类型	R	R	R	R	R	R	R	R		
复位值	0	0	0	0	0	0	0	0		
	FOC_POWL(0x40D9)									
位	7	6	5	4	3	2	1	0		
名称				FOC_P	OW[7:0]					
类型	R	R	R	R	R	R	R	R		
复位值	0	0	0	0	0	0	0	0		
位	名	称	描述							
[15:0]	FOC_	_POW	电机功率 取值范围[-32768,32767]							

13.2.40 FOC_EOMEKLPF (0x40D8)

位	7	6	5	4	3	2	1	0			
名称		FOC_EOMEKLPF									
类型	W	W	W	W	W	W	W	W			
复位值	0	0	0	0	0	0	0	0			
位	名	称	描述								
			估算器滤波	支估算速度 [OC_EOME	LPF 的低通	滤波系数				
[7:0]	FOC_EO	MEKLPF	LPF 的计算频率为载波周期								
			范围[1,25	5]对应滤波	系数范围[1/	32768,255	′32768]				

13.2.41 FOC_IAMAX (0x40DA, 0x40DB)

			FOC_	IAMAXH(0×	40DA)						
位	15	14	13	12	11	10	9	8			
名称				FOC_IAN	1AX[15:8]						
类型	R	R	R	R	R	R	R	R			
复位值	0	0	0	0	0	0	0	0			
	FOC_IAMAXL(0x40DB)										
位	7	6	5	4	3	2	1	0			
名称				FOC_IAN	MAX[7:0]						
类型	R	R	R	R	R	R	R	R			
复位值	0	0	0	0	0	0	0	0			
位	名	称			描	述					
			A 相电流量	是大值							
			记录的 A 相	相电流最大值	直,使用时需	需经过一个日	电周期才能 得	寻到可靠的			
[15:0]	FOC	IAMAX	值,否则得	导到的值可能							
[15.0]	FOC	IAMAX	电流最大值不会自动清 0, 需设置 FOC_CR2[ICLR] = 1 对								
			FOC_IAM	IAX清0							
			取值范围[-32768,327	67]						

13.2.42 FOC_IBMAX (0x40DC, 0x40DD)

FOC_IBMAXH(0x40DC)										
位	15	14	13	12	11	10	9	8		
名称		FOC_IBMAX[15:8]								
类型	R	R	R	R	R	R	R	R		
复位值	0	0	0	0	0	0	0	0		

	FOC_IBMAXL(0x40DD)										
位	7	6	5	4	3	2	1	0			
名称				FOC_IBI	MAX[7:0]						
类型	R	R R R R R R									
复位值	0	0 0 0 0 0 0 0									
位	名	名称 描述									
[15:0]	FOC_	IBMAX	值,否则得 电流最大 FOC_IBM	目电流最大的 导到的值可能 值不会自	的 比会偏小 动清 0,需		电周期才能和 C_CR2[ICLF				

13.2.43 FOC_ICMAX (0x40DE, 0x40DF)

			FOC_	ICMAXH(0x	(40DE)				
位	15	14	13	12	11	10	9	8	
名称				FOC_ICN	1AX[15:8]				
类型	R	R	R	R	R	R	R	R	
复位值	0	0	0	0	0	0	0	0	
			FOC_	ICMAXL(0x	40DF)				
位	7	6	5	4	3	2	1	0	
名称		FOC_ICMAX[7:0]							
类型	R	R	R	R	R	R	R	R	
复位值	0	0	0	0	0	0	0	0	
位	名	称			描	述			
			C相电流量		+ /+	=/2>4 ^ -	- m +n -1 4v 4	9 T. 1 - T 4	
				目电流最大(Bayleta (まつ)	•	需经过一个日	电局期 才能得	导到可靠的	
[15:0]	FOC_	值,否则得到的值可能会偏小 FOC_ICMAX							
			FOC_ICM	IAX清0					
			取值范围[-32768,327	67]				

13.2.44 FOC_EFREQMAX (0x406F)

位	7	6	5	4	3	2	1	0			
名称				FOC_EFRE	QMAX[7:0]						
类型	R/W										
复位值	0	1	1	1	1	1	1	1			
位	名	称			描	述					
[7:0]	FOC_EFF	REQMAX	FOC_CR0[FOC_CR0[取值范围[0 ~ 127 对	€ omega[19 OMAS] = 0 OMAS] = 1	: FOC_EFRE : FOC_EFRE 32767	直时,最终输 EQMAX*256 EQHOLD		1E 为			

13.2.45 FOC_EKP (0x4074, 0x4075)

			FOC.	_EKPH(0x4	074)					
位	15	14	13	12	11	10	9	8		
名称				FOC_Ek	(P[15:8]					
类型	R	R R/W R/W R/W R/W R/W R/W								
复位值	0	0	0	0	0	0	0	0		
	FOC_EKPL(0x4075)									
位	7	6	5	4	3	2	1	0		
名称				FOC_E	KP[7:0]					
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
复位值	0	0	0	0	0	0	0	0		
位	名	称	描述							
[15:0]	估算器的角度估算 PI 控制器的 KP 系数,最高位恒为 0,Q12 格式 FOC_EKP									
[15:0]	FOC	_ENF	取值范围[0,32767]						

13.2.46 FOC_EKI (0x4076, 0x4077)

	FOC_EKIH(0x4076)											
位	15	15 14 13 12 11 10 9 8										
名称		FOC_EKI[15:8]										
类型	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W				
复位值	0	0	0	0	0	0	0	0				

	FOC_EKIL(0x4077)										
位	7	7 6 5 4 3 2 1 0									
名称		FOC_EKI[7:0]									
类型	R/W	/ R/W R/W R/W R/W R/W R/W									
复位值	0	0	0	0 0 0 0 0 0							
位	名	称			描	i述					
[15:0]	FOC	_EKI	估算器的角度估算 PI 控制器的 KI 系数,最高位恒为 0,Q15 格取值范围[0,32767]								

13.2.47 FOC_EBMFK (0x407C, 0x407D)

			FOC_E	BMFKH(0x	407C)					
位	15	14	13	12	11	10	9	8		
名称				FOC_EBM	IFK[15:8]					
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
复位值	0	0 0 0 0 0 0 0								
	FOC_EBMFKL(0x407D)									
位	7	7 6 5 4 3 2 1 0								
名称		FOC_EBMFK[7:0]								
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
复位值	0	0	0	0	0	0	0	0		
位	名	称			描	述				
			估算器的信	古算反电动势		器系数 EKLF	PF 的系数,	Q15 格式		
[15.0]	FOC F	DMEK	取值范围[0,32767]						
[15:0]	FUC_E	FOC_EBMFK EKLPF = FOC_EBMFK*FOC_EOME								
			FOC_EBM	FK = 2*π*fl	oase*Ts					

13.2.48 FOC_KSLIDE (0x4078, 0x4079)

	FOC_KSLIDEH(0x4078)											
位	15	15 14 13 12 11 10 9 8										
名称	FOC_KSLIDE/FOC_PLLKP[15:8]											
类型	R	R R/W R/W R/W R/W R/W R/W										
复位值	0	0 0 0 0 0 0 0										
			FOC_KSLII	DEL(0x407	79)							
位	7	6	5	4	3	2	1	0				
名称			FOC_KSL	IDE/FOC_F	PLLKP [7:0]						
类型	R/W	R/W R/W R/W R/W R/W R/W R/W										
复位值	0	0	0	0	0	0	0	0				

位	名称	描述
	FOC KSLIDE/	FOC_CR2[ESEL] = 0: 为 SMO 的增益系数,Q15 格式
[15:0]	FOC PLLKP	FOC_CR2[ESEL] = 1: 为 PLL 的 PI 控制器的 KP 系数,Q12 格式
	FOC_PLLKP	取值范围[0,32767],最高位恒为 0

13.2.49 FOC_EKLPFMIN (0x407A, 0x407B)

		FO	C_EKLPFMI	NH(0x407	'A)					
位	15	14	13	12	11	10	9	8		
名称	FOC_EKLPFMIN/FOC_PLLKPI[15:8]									
类型	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
复位值	0	0	0	0	0	0	0	0		
	FOC_EKLPFMINH(0x407B)									
位	7	6	5	4	3	2	1	0		
名称	FOC_EKLPFMIN/FOC_PLLKPI[7:0]									
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
复位值	0	0	0	0	0	0	0	0		
位	名和	x			描述	述				
			FOC_CR2[ESEL] = 0	: 为 SMO i	的反电动势	9低通滤波	系数的最		
			小值。当信	5算器算出	的低通滤流	皮系数小于	·该值时,	强制等于		
[15:0]	FOC_EKLPFMI	N/FOC_PLLKI	最小值,Q15 格式。							
			FOC_CR2[ESEL] = 1:	PLL 的 PI	控制器的	KI 系数,(Q15 格式		
			取值范围[(),32767],	最高位恒	为 0				

13.2.50 FOC_OMEKLPF (0x407E, 0x407F)

	FOC_OMEKLPFH(0x407E)											
位	15	15 14 13 12 11 10 9 8										
名称	FOC_OMEKLPF[15:8]											
类型	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W				
复位值	0	0 0 0 0 0 0 0										
	FOC_OMEKLPFL(0x407F)											
位	7	6	5	4	3	2	1	0				
名称				FOC_OME	KLPF[7:0]							
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W				
复位值	复位值 0 0 0 0 0 0 0											

位	名称	描述
[15:0]	FOC OMEKLDE	估算器估算速度的低通滤波系数,最高位恒为 0,Q15 格式
[15.0]	FOC_OMEKLPF	取值范围[0,32767]

13.2.51 FOC_FBASE (0x4080, 0x4081)

			FOC_I	FBASEH(0x	4080)						
位	15	14	13	12	11	10	9	8			
名称		FOC_FBASE[15:8]									
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
复位值	0	0	0	0	0	0	0	0			
	FOC_FBASEL(0x4081)										
位	7	6 5 4 3 2 1 0									
名称		FOC_FBASE[7:0]									
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
复位值	0	0	0	0	0	0	0	0			
位	名	称			描	述					
			估算器的数	页率基准设定	官值						
			取值范围[0,32767]							
[15:0]	FOC_F	BASE	FOC_FBAS	SE = fbase*	Ts*32768						
			例: fbase =	= 200Hz,Ts	= 62.5µs, ∫	则 FOC_FBA	SE =				
			200*0.000	0625*3276	8 = 409(0x)	199)					

13.2.52 FOC_EFREQACC (0x4082, 0x4083)

	FOC_EFREQACCH(0x4082)											
位	15	14	13	12	11	10	9	8				
名称			F	OC_EFREC	(ACC[15:8]							
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W				
复位值	0	0	0	0	0	0	0	0				
	FOC_EFREQACCL(0x4083)											
位	7	6	5	4	3	2	1	0				
名称		FOC_EFREQACC[7:0]										
类型	R/W	R/W R/W R/W R/W R/W										
复位值	0	0	0	0	0	0	0	0				
位	名	称			描	述						
[15:0]	FOC_EFI	REQACC	位,最高的例: fbase 60*fbase/	制角度模式的 立为符号位。 = 200Hz,标 pp = 3000r EQACC = 3 0C4)。	,软件写入(吸对数 pp = pm。设置)	低 16 位。耳 4,则 spe 速度增量为	X值范围[0,6 ed_base = 3rpm,则					

13.2.53 FOC_EFREQMIN (0x4084, 0x4085)

FOC_EFREQMINH(0x4084)											
位	15	14	13	12	11	10	9	8			
名称				FOC_EFRE	QMIN[15:8]						
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
复位值	0	0	0	0	0	0	0	0			
FOC_EFREQMINL(0x4085)											
位	7	6	5	4	3	2	1	0			
名称				FOC_EFREQMIN[7:0]							
类型	R/W	R/W	R/W	R/W R/W R/W R/W R/W R/							
复位值	0	0	0	0 0 0 0 0							
位	名	称			描	述					
[15:0]	FOC_EFI	REQMIN	号位。软件 估算器强制 制角度 取值范围[- 例: fbase = 60*fbase/	‡写入高 16 削角度模式値 -32768,327 = 200Hz, f pp = 3000r 則 FOC_EFR	位 走能,当估算 67]。 及对数 pp = pm。设置切	MIN 内部为 算速度小于设 4,则 spee O估算速度的 Orpm/speed	亥值时,输出 d_base = d最小切环转	d估算器强 i速为			

13.2.54 FOC_EFREQHOLD (0x4086, 0x4087)

			FOC_EFR	REQHOLDH	(0x4086)				
位	15	14	13	12	11	10	9	8	
名称			F	OC_EFREQ	HOLD[15:8	3]			
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
复位值	0	0	0	0	0	0	0	0	
			FOC_EFF	REQHOLDL	(0x4087)				
位	7	6	5	4	3	2	1	0	
名称		FOC_EFREQHOLD[7:0]							
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
复位值	0	0	0	0	0	0	0	0	
位	名	称			描	述			
[15:0]	FOC_EFR	EQHOLD	估算器强制速度最大值,FOC_EFREQHOLD 内部为 24 位,最高位为符号位。软件写入高 16 位当估算器估算速度小于 FOC_EFREQMIN,强制速度增加到等于该值时,不再增加						

取值范围[-32768,32767]
例: fbase = 200Hz,极对数 pp = 4,则 speed_base =
60*fbase/pp = 3000rpm。设置强制速度最大值为 60rpm,则
FOC_EFREQHOLD = 60rpm/speed_base*32768 =
655(0x028F)。

13.2.55 FOC_EK3 (0x4088, 0x4089)

FOC_EK3H(0x4088)									
位	15	14	13	12	11	10	9	8	
名称	FOC_EK3[15:8]								
类型	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
复位值	0	0	0	0	0	0	0	0	
	FOC_EK3L(0x4089)								
位	7	6	5	4	3	2	1	0	
名称	FOC_EK3[7:0]								
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
复位值	0	0	0	0	0	0	0	0	
位	名	称	描述						
[15:0] FOC_EK3			估算器估算电流的第三个系数,最高位恒为 0, Q15 格式						
			取值范围[0,32767]						

13.2.56 FOC_EK4 (0x408A, 0x408B)

FOC_EK4H(0x408A)										
位	15	14	13	12	11	10	9	8		
名称	FOC_EK4[15:8]									
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
复位值	0	0	0	0	0	0	0	0		
FOC_EK4L(0x408B)										
位	7	6	5	4	3	2	1	0		
名称	FOC_EK4[7:0]									
类型	R/W	R/W	R/W R/W R/W R/W					R/W		
复位值	0	0	0	0	0	0	0	0		
位	名	称	描述							
[15:0]	FOC	FOC_EK4		估算器估算电流的第四个系数,Q15 格式						
[15:0]	FUC.	_Er\4	取值范围[-32768,32767]							

13.2.57 FOC_EK1 (0x408C, 0x408D)

FOC_EK1H(0x408C)									
位	15	14	13	12	11	10	9	8	
名称	FOC_EK1[15:8]								
类型	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
复位值	0	0	0	0	0	0	0	0	
FOC_EK1L(0x408D)									
位	7	6	5	4	3	2	1	0	
名称	FOC_EK1[7:0]								
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
复位值	0	0	0	0	0	0	0	0	
位	名	称	描述						
[15:0]	FOC	_EK1	估算器估算电流的第一个系数,最高位恒为 0,Q15 格式 取值范围[0,32767]					t	

13.2.58 FOC_EK2 (0x408E, 0x408F)

FOC_EK2H(0x408E)										
位	15	14	13	12	11	10	9	8		
名称	FOC_EK2[15:8]									
类型	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
复位值	0	0	0	0	0	0	0	0		
	FOC_EK2L(0x408F)									
位	7	6	5	4	3	2	1	0		
名称				FOC_E	K2[7:0]					
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
复位值	0	0	0	0	0	0	0	0		
位	名	称	描述							
[15:0]	FOC_EK2		估算器估算电流的第二个系数,最高位恒为 0,Q15 格式							
[13.0]	100	_L1\L	取值范围[0,32767]							

13.2.59 FOC_IDREF (0x4090, 0x4091)

			FOC_	IDREFH(0x	4090)				
位	15	15 14 13 12 11 10 9 8							
名称		FOC_IDREF[15:8]							
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
复位值	0	0	0	0	0	0	0	0	
			FOC_	IDREFL(0x4	4091)				
位	7	6	5	4	3	2	1	0	
名称				FOC_IDI	REF[7:0]				
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
复位值	0	0	0	0	0	0	0	0	
位	名	称			描	述			
[15:0]	FOC_I	DREF		勺 d 轴电流排 -32768,327					

13.2.60 FOC_IQREF (0x4092, 0x4093)

			FOC_	IQREFH(0x	4092)				
位	15	14	13	12	11	10	9	8	
名称		FOC_IQREF[15:8]							
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
复位值	0	0	0	0	0	0	0	0	
			FOC_	IQREFL(0x4	4093)				
位	7	6	5	4	3	2	1	0	
名称				FOC_IQI	REF[7:0]				
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
复位值	0	0	0	0	0	0	0	0	
位	名	称			描	述			
[15:0]	FOC_I	QREF		勺 q 轴电流排 -32768,327					

13.2.61 FOC_DQKP (0x4094, 0x4095)

	FOC_DQKPH(0x4094)									
位	15	15 14 13 12 11 10 9 8								
名称				FOC_DQ	KP[15:8]					
类型	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
复位值	0	0 0 0 0 0 0 0								
	FOC_DQKPL(0x4095)									

位	7	6	5	4	3	2	1	0	
名称		FOC_DQKP[7:0]							
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
复位值	0	0	0	0	0	0	0	0	
位	名	称			描	述			
[15.0]	d-q 轴 PI 控制器的 KP 系数,最高位恒为 0,Q12 格式								
[15:0]	FOC_I	DUKP	取值范围[6	0,32767],	对应 Q12 取	₹值范围[0,8]		

13.2.62 FOC_DQKI (0x4096, 0x4097)

			FOC_	DQKIH(0x4	1096)					
位	15	15 14 13 12 11 10 9 8								
名称				FOC_DQ	KI[15:8]					
类型	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
复位值	0	0	0	0	0	0	0	0		
			FOC_	_DQKIL(0x4	097)					
位	7	6	5	4	3	2	1	0		
名称				FOC_DO	QKI[7:0]					
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
复位值	0	0	0	0	0	0	0	0		
位	名	称			描	述				
[15:0]	FOC	DOKI	d-q 轴 PI i	控制器的 KI	系数,最高	位恒为 0,	Q15 格式			
[13.0]	FUC_	DQNI	取值范围[0	0,32767],	对应 Q15 取	(值范围[0,1]]			

13.2.63 FOC_UDCFLT (0x4098, 0x4099)

	FOC_UDCFLTH(0x4098)								
位	15	15 14 13 12 11 10 9 8							
名称				FOC_UD	CFLT[15:8]				
类型	R	R	R	R	R	R	R	R	
复位值	0	0	0	0	0	0	0	0	
			FOC_	UDCFLTL(0	x4099)				
位	7	6	5	4	3	2	1	0	
名称				FOC_UD	CFLT[7:0]				
类型	R	R	R	R	R	R	R	R	
复位值	0	0	0	0	0	0	0	0	
位	名	称			描	述			

		滤波后的母线电压
		FOC 模块对母线电压采样,滤波后得到 FOC_UDCFLT。可以选择
		ADC 通道 2(外部电阻分压)或者通道 14(内部电阻分压)。
[15:0]	FOC_UDCFLT	取值范围[0,32767]
		例: 母线电压 1/6 分压送进 ADC,ADC 的参考电压为 5V,即母线
		电压的采样范围为 0V~30V,FOC_UDCFLT 为 19661(0x4CCD),
		则母线电压 = 19661/32768*5V*6 = 18V。

14 Timer1

14.1 Timer1 操作说明

Timer1 包含一个 16 位向上计数的基本计数器和一个 16 位向上计数的重载计数器。Timer1 主要用于 BLDC 电机方波驱动。Timer1 具有如下特性:

- 16 位向上计数的基本计数器用于记录两次位置检测或两次换相之间的时间(即 60 度时间), 也可用于位置检测失败时强制换相的时间。
- 16 位向上计数的重载计数器用于控制位置检测成功到换相的时间,以及换相后的续流屏蔽时间(禁止位置检测时间)。
- 3 位可编程分频器对系统时钟进行分频,分频时钟作为两个计数器的时钟源
- 位置检测信号的滤波和采样延迟可配置(由于引脚有限、FU6332N 不支持此功能)
- 位置检测模块根据输入信号产生换相所需的位置信号(由于引脚有限, FU6332N 不支持此功能)
- 7组状态寄存器控制比较器和输出
- 6个中断源

Timer1 内部结构如图 14-1 所示。

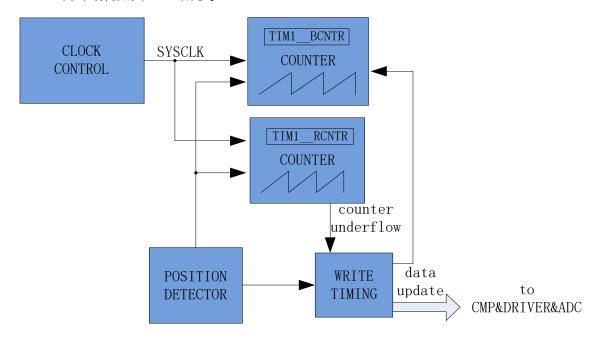


图 14-1 Timer1 内部结构

14.1.1 Timer1 计数单元

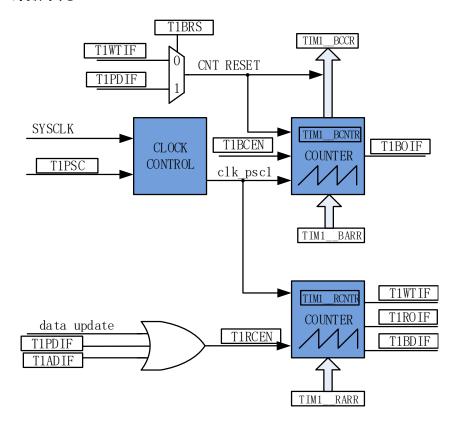


图 14-2 时基单元

Timer1包含一个分频器,一个16位向上计数的基本计数器,一个16位向上计数的重载计数器。

14.1.1.1 分频器

011

8

分频器对系统时钟进行分频,产生基本计数器和重载计数器的计数时钟源。分频器由 TIM1_CR3[T1PSC]控制,可选择 8 种分频系数。由于这个控制寄存器没有缓冲器,分频系数更新后会 立刻改变时钟源频率,所以应在基本计数器和重载计数器都不工作时更新分频系数。时钟源的频率为 clk_psc1 = SYSCLK/(2^TIM1_CR3[T1PSC])。分频后的时钟源频率与 TIM1_CR3[T1PSC]的关系如表 14-1 所示。

TIM1_CR3[T1PSC]	分频系数	clk_psc1(Hz)	TIM1_CR3[T1PSC]	分频系数	clk_psc1(Hz)
000	1	24M	100	16	1.5M
001	2	12M	101	32	750k
010	4	6M	110	64	375k

111

128

187.5k

3M

表 14-1 分频后的寄存器 TIM1_CR3[T1PSC]不同值对应的时钟频率

14.1.1.2 基本计数器

基本计数器为一个 16 位向上计数的计数器,计数值为 TIM1_BCNTR。当位置检测中断 TIM1_SR[T1PDIF]或者是写入时序中断 TIM1_SR[T1WTIF](由 TIM1_CR2[T1BRS]选择)产生时, TIM1_BCNTR 当前的计数值被存进捕获寄存器 TIM1_BCCR,同时 TIM1_BCNTR 清 0 并重新开始计数。TIM1_BCCR 记录的数为两次位置检测中断或两次写入时序中断之间的时间(即 60 度的时间)。该时间可经过多次求平均后作为 60 度基准存入 TIM1_BCOR 寄存器,次数通过 TIM1_CR0[T1CFLT]设定。当 TIM1_BARR 自动装载使能(TIM1_CR1[BAPE] = 1)时,TIM1_BCOR 的值被转入 TIM1_BARR 寄存器。当 TIM1_BCNTR 计数值等于 TIM1_BARR 时,基本计数器上溢中断事件标志位 TIM1_SR[T1BOIF]置 1。如果使能强制换相,则产生换相动作,基本计数器清 0。如果不使能强制换相,则基本计数器不会清 0,一直计数到 0xFFFF 溢出后自动清 0。

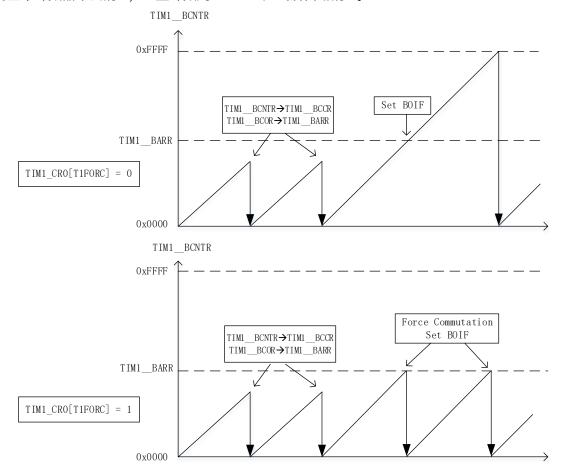


图 14-3 基本计数器计数波形图

手动模式(TIM1_IER[T1MAME] = 1)时,TIM1_BCNTR 不再由 TIM1_CR2[T1BRS]控制复位,而是由基本计数器上溢事件复位。

14.1.1.3 重载计数器

重载计数器包含一个 16 位向上计数的计数器,计数值为 TIM1_RCNTR。当计数到 TIM1_RARR 的设定值时,产生上溢事件,重载计数器上溢中断事件标志位 TIM1_SR[T1ROIF]置 1,TIM1_RCNTR 清 0,此时使能位 TIM1_CR0[T1RCEN]被清 0,重载计数器停止动作。位置检测中断和写入时序中断可将 TIM1 CR0[T1RCEN]置 1,重载计数器自动重新开始计数。

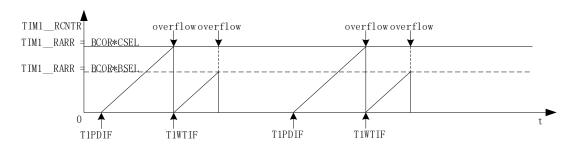


图 14-4 重载计数器计数波形图

14.1.2 位置检测(因引脚有限, FU6332N 不支持此功能)

14.1.2.1 位置检测信号

TIM1_CR3[T1TIS]选择位置检测信号来自 CMP0/1/2(CMP 位置检测)、GPIO(Hall 传感器位置检测)、ADC(ADC 位置检测)。配置 CMP_CR1[HALLSEL]选择 GPIO 来源于 P1.4/P1.6/P2.1(功能转移后的 Hall 信号输入端口)或 P0.2/P3.7/P3.6。TIM1_CR3[T1INM]选择是否对 CMP/GPIO 的信号进行滤波。当位置检测成功,触发位置检测事件。位置检测事件分为 CMP/GPIO 位置检测事件和 ADC 位置检测事件。

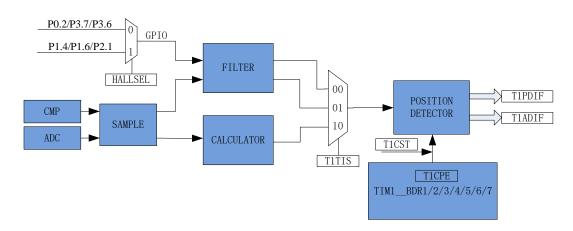


图 14-5 位置检测功能框图

14.1.2.2 CMP/GPIO 位置检测事件

配置寄存器组 TIM1_DBR1/2/3/4/5/6/7[T1CPE],选择位置检测信号的有效沿;当输入的

CMP/GPIO 位置检测信号的有效沿到来时,位置检测成功,CMP/GPIO 位置检测事件标志位 TIM1_SR[T1PDIF]被置 1。TIM1_CR4[T1CST]控制 TIM1_DBR1/2/3/4/5/6/7[T1CPE]的顺序。

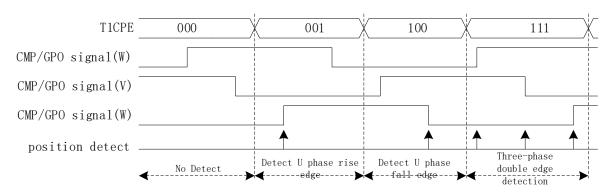


图 14-6 位置检测时序图

TIM1 DBR1/2/3/4/5/6/7[T1CPE]决定输入的有效沿如表 14-2 所示。

表 14-2 不同 TIM1_DBR1/2/3/4/5/6/7[T1CPE]下的有效沿

CPE	描述	CPE	描述
000	0	100	检测 U 相下降沿,U 相对应比较器使能
001	检测 U 相上升沿,U 相对应比较器使能	101	检测 W 相上升沿,W 相对应比较器使能
010	检测 W 相下降沿,W 相对应比较器使能	110	检测 V 相下降沿,V 相对应比较器使能
011	检测 V 相上升沿,V 相对应比较器使能	111	检测三相双沿,三相对应比较器使能

14.1.2.3 ADC 位置检测事件

TIM1_CR3[T1TIS]选择位置检测信号输入源来自 ADC 时,Timer1 控制 ADC 采集导通相电压和悬空相电压,并计算如下公式:

$$TIM1_URES = K \times TIM1_UCOP - TIM1_UFLP$$

其中,

K: ADC 位置检测系数

TIM1_UCOP. 导通相电压的 ADC 采样值

TIM1 UFLP. 悬空相电压的 ADC 采样值

TIM1_DBR1/2/3/4/5/6/7[T1CPE]决定 K、TIM1_UCOP 和 TIM1_UFLP 的具体含义,具体如表 14-3 所示。

表 14-3 TIM1_DBR1/2/3/4/5/6/7[T1CPE]与 K、TIM1_UCOP 和 TIM1_UFLP 的关系

СРЕ	描述
000	保留
001	K 为 TIM1_KR,TIM1_UCOP 为 W 相电压,TIM1_UFLP 为 U 相电压

CPE	描述
010	K 为 TIM1_KF,TIM1_UCOP 为 U 相电压,TIM1_UFLP 为 W 相电压
011	K 为 TIM1_KR,TIM1_UCOP 为 U 相电压,TIM1_UFLP 为 V 相电压
100	K 为 TIM1_KF,TIM1_UCOP 为 V 相电压,TIM1_UFLP 为 U 相电压
101	K 为 TIM1_KR,TIM1_UCOP 为 V 相电压,TIM1_UFLP 为 W 相电压
110	K 为 TIM1_KF,TIM1_UCOP 为 W 相电压,TIM1_UFLP 为 V 相电压
111	保留

当 TIM1_URES 发生正负变化时,触发 ADC 位置检测事件,ADC 位置检测中断事件标志位 TIM1_SR[T1ADIF]置 1。改变 ADC 位置检测系数 K 可改变 ADC 位置检测事件触发的位置,从而灵活控制换相点。

14.1.2.4 采样

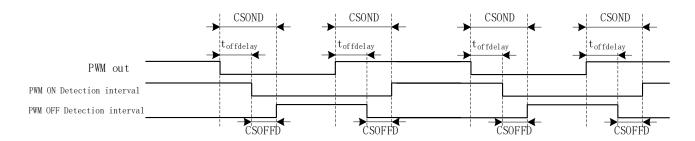


图 14-7 采样区间图

由于受到功率器件开关速度的影响,反电动势信号滞后于芯片的 PWM 输出。通过设置 CMP_SAMR[CSOFFD]和 CMP_SAMR[CSOND]以及 CMP_CR4[FAEN],可调节反电动势采样区间以获得有效的位置检测信号。当 TIM1_CR3[T1TIS]设置为 01 或 10 时,Timer1 在该采样区间内使能 CMP0/1/2 输出反电动势与中性点电势的比较结果或启动 ADC 采集悬空相电压。

详细采样区间设置,请参考 28.1.4 章节。

14.1.2.5 滤波

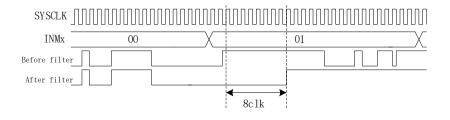


图 14-8 滤波模块时序图

滤波电路根据 TIM1_CR3[T1INM]与 CMP_CR4[FAEN]可选择滤除脉宽为 8/16/24/32/64/96 个

时钟周期的 CMP/GPIO 的输入噪声。使能滤波功能,滤波后的信号会比滤波前的信号大概延迟 8/16/24/32/64/96 个时钟周期。

14.1.3 写入时序中断

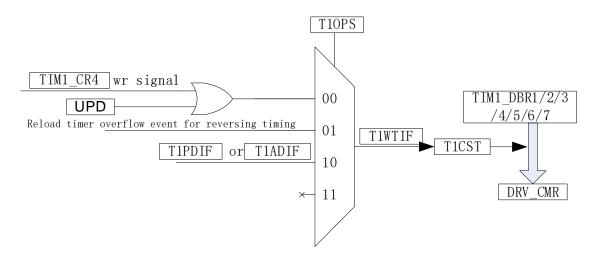


图 14-9 写入时序框图

将 TIM1_DBR1/2/3/4/5/6/7 中预设的控制信号送入驱动模块 DRV_CMR 后,写入时序中断触发。写入时序中断由 TIM1_CR0[T1OPS]选择触发信号,可选择软件触发、重载计数器上溢触发或位置检测中断触发。写入时序中断发生后,写入时序中断事件标志位 TIM1_SR[T1WTIF]置 1,同时如果 TIM1_CR4[T1CST]在 001 ~ 110 之间,TIM1_CR4[T1CST]自动加 1。

14.1.4 Timer1 中断

Timer1有6个中断请求源:

- 基本计数器的上溢中断
- 重载计数器的上溢中断
- 写入时序中断
- 屏蔽续流结束中断
- CMP/GPIO位置检测中断
- ADC位置检测中断

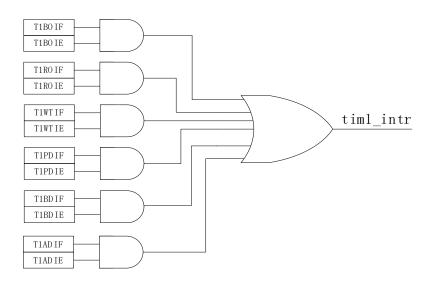


图 14-10 Timer1 中断源

14.2 BLDC 电机方波驱动

针对 BLDC 电机方波驱动,Timer1 配合 CMP0/1/2 和 Driver 模块实现如下功能:

- 自动记录 60 度时间,滤波后作为 60 度基准时间
- 当检测不到位置信号时,可自动强制换相
- 自动续流屏蔽,即在续流时间内,停止比较器采样
- 自动控制从位置检测成功到换相的时间,实现自动换相
- 接管 CMP_CR2[CMP0SEL], 自动控制 CMP0/1/2
- 可设置比较器信号避开功率器件开关振铃进行采样,信号采样后可配置滤波
- 接管 DRV_CMR 寄存器, 自动控制 6 路 PWM 输出

14.2.1 方波驱动的六步换相

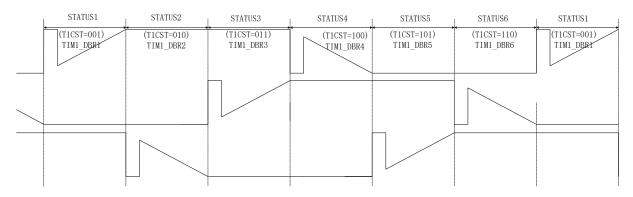


图 14-11 方波的六步换相图

TIM1_CR4[T1CST]是换相状态机。其中状态 0 用于输出关闭状态,状态 7 可自定义,用于实现 刹车,预充电,预定位,启动等功能。状态 1~6 用于六步自动换相,换相动作后,状态机 TIM1_CR4[T1CST]自动加 1。

状态 1~7 对应 TIM1_DBR1~7 寄存器,当写入时序中断发生时,当前状态对应的 TIM1_DBRx 会自动传输到 DRV_CMR 寄存器和 CMP_CR2[CMP0SEL],实现换相和位置检测。

14.2.2 方波驱动的工作原理

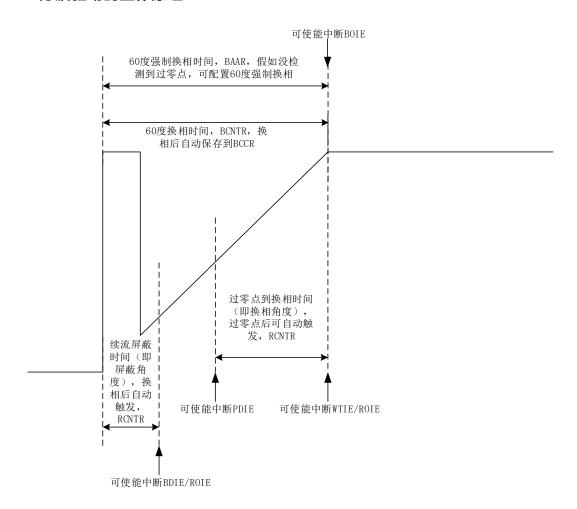


图 14-12 BLDC 的工作原理

14.2.2.1 60 度基准时间

TIM1_BCCR 捕获上一次的 60 度时间。设置 TIM1_CR2[T1BRS] = 0,捕获两次写入时序中断之间的时间,设置 TIM1_CR2[T1BRS] = 1,捕获两次位置检测中断之间的时间。

TIM1_BCOR 为滤波后的 60 度时间,即 60 度基准时间。TIM1_CR0[T1CFLT]可选择前 1/2/4/8 个 TIM1_BCCR 平均后得到 TIM1_BCOR。

方波驱动时,根据 60 度基准时间 TIM1_BCOR 决定续流屏蔽时间、位置检测成功到换相的时间,以及强制换相的时间。

如果基本计数器自动装载使能(TIM1_CR1[T1BAPE] = 1), 当基本计数器因位置检测中断或写入时序中断而复位时, TIM1_BCOR 的值被传送到 TIM1_BARR, 以控制强制换相。

14.2.2.2 60 度强制换相

电机在平稳转动的时候,一般在换相之后的 30 度即可检测到过零点(ZCP),产生位置检测中断。

假如在换相后经过 60 度都没有检测到过零点,认为位置检测失败,需要进行强制换相。

设置 TIM1_CR0[T1FORC] = 1 使能强制换相功能。在前一次换相时,写入时序中断使计数器 TIM1_BCNTR 清 0 并重新开始计数,同时 TIM1_BCCR 捕获 TIM1_BCNTR 的计数值,经过滤波后,作为 60 度基准时间被保存在 TIM1_BCOR。如果自动装载功能使能(TIM1_CR1[T1BAPE] = 1),基本 计数器复位时 TIM1_BCOR 的值被载入 TIM1_BARR。当 TIM1_BCNTR 与 TIM1_BARR 比较匹配时 (换相之后经过 60 度依然没有检测到过零点),基本计数器上溢中断事件标志位 TIM1_SR[T1BOIF]置 1,进行强制换相,此时计数器 TIM1_BCNTR 被清 0。(注: 如果在换相后 60 度内检测到过零点,当 TIM1_BCNTR > TIM1_BARR 时,不会触发强制换相且 TIM1_SR[T1BOIF]不会置 1)。如果禁止强制换相 功能(TIM1_CR0[T1FORC] = 0),当 TIM1_BCNTR > TIM1_BARR 时,中断事件标志位 TIM1_SR[T1BOIF]置 1,不会自动强制换相。可通过判断基本计数器上溢中断事件标志位和位置检测中断事件标志位进行手动换相。

14.2.2.3 续流屏蔽

在换相之后,由于原来的导通相变为悬空相,此时该相的电感能量经过续流二极管释放到电源或地,在续流过程中,悬空相反电动势信号无法测量。通过屏蔽二极管续流时间内的比较器信号或ADC采样值,避免续流产生的错误信号引起错误换相。续流屏蔽结束,产生屏蔽续流结束中断事件标志位 TIM1 SR[T1BDIF]。

续流屏蔽时间通过 TIM1 CR1[BSEL]设置,公式: 屏蔽角度 = TIM1 CR1[BSEL]/128*60°。

14.2.2.4 位置检测成功到换相的角度

在换相之后检测到过零点(产生位置检测中断),硬件根据软件设置的过零点到换相的时间开始计时。计时结束后,硬件自动换相,产生写入时序中断事件标志位 TIM1_SR[T1WTIF]。

过零点到换相的时间通过 TIM1_CR2[CSEL]设置,公式:换相角度 = TIM1_CR2[CSEL]/128*60°。

14.2.2.5 逐波限流

参考章节 28.1.1.2。

14.3 Timer1 寄存器

[4]

[3:2]

[1]

[0]

T1FORC

T10PS

T1BCEN

T1RCEN

14.3.1 T	IM1_CR0 ((0x4068))					
位	7	6	5	4	3	2	1	0
名称	T1RWEN	T1C	FLT	T1FORC	T10	T1OPS		T1RCEN
类型	W1	R/W	R/W	R/W	R/W	R/W	R/W	R/W
复位值	0	0	0	0	0	0	0	0
位	名称				描述			
[7]	T1RWEN	0: 无意义 1: 在操作 作, TIM [*]	TIM1_CR08 1_CR0[T1R0	写使能位 时,TIM1_CR CEN]才 能 仍 ,写0x80不例	使能 和 不	使能。又	TIM1_CR0	
[6:5]	T1CFLT	00: 前1个		译 CR平均后写》 CR平均后写》				

10: 前4个TIM1_BCCR平均后写入TIM1_BCOR 11: 前8个TIM1_BCCR平均后写入TIM1_BCOR

选择TIM1_DBRx向DRV_CMR传输的触发信号

10: 位置检测中断触发数据传输

基本计数器的计数器使能

重载计数器的计数器使能

01: 重载计数器换相时间计时上溢中断触发数据传输

注: 在检测到过零点后,即使使能了该位,经过60度也不会强制换相

00: 软件对TIM1_IER[T1UPD]写1或向TIM1_CR4[T1CST]写入时传输

在操作TIM1_CR0时, TIM1_CR0[T1RWEN]必须与TIM1_CR0[T1RCEN]同时操

作, TIM1_CR0[T1RCEN]才能使能和禁止。对TIM1_CR0写0x81使能

位置检测中断和写入时序中断可自动使能TIM1_CR0[T1RCEN]。当重载计数器

60度强制换相使能

换相触发信号选择

0: 不使能 1: 使能

11: 保留

0: 不使能 1: 使能

TIM1_CR0[T1RCEN],写0x80不使能TIM1_CR0[T1RCEN]。

产生上溢中断后,TIM1_CR0[T1RCEN]硬件清0。
手动模式使能后,TIM1_CR0[T1RCEN]的硬件自动使能和不使能功能无效
0: 不使能
1: 使能

14.3.2 TIM1_CR1 (0x4069)

位	7	6	5	4	3	2	1	0			
名称	T1BAPE		BSEL								
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
复位值	0	0	0	0	0	0	0	0			
位	名称				描述						
[7]	T1BAPE	ー 使能后,当 TIM1_BC	TIM1_BARR的自动装载功能不受手动模式影响 0: 不使能								
[6:0]	BSEL	换相后屏蔽 公式: 屏蔽	1: 使能 屏蔽续流角度选择 换相后屏蔽续流的角度,在屏蔽续流的这段时间内,不进行位置检测 公式: 屏蔽角度 = TIM1_CR1[BSEL]/128*60° 注: 手动模式下,屏蔽续流角度功能无效								

14.3.3 TIM1_CR2 (0x406A)

位	7	6	5	4	3	2	1	0			
名称	T1BRS		CSEL								
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
复位值	0	0	0	0	0	0	0	0			
位	名称				描述						
[7]	T1BRS	手 动 模 式 TIM1_BC 0: 写入时序	NTR只能通	¥ [T1MAME]佢 过BCNTR上			效,基本	大			

		换相角度选择
[6:0]	CSEL	位置检测输入触发后,经过CSEL对应的度后换相
		公式: 换相角度 = TIM1_CR2[CSEL]/128*60°

14.3.4 TIM1_CR3 (0x406B)

位	7	6	5	4	3	2	1	0	
名称	RSV		T1PSC			T1TIS		T1INM	
类型	-	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
复位值	-	0	0	0	0	1	0	0	

位	名称	描述
[7]	RSV	保留
[6:4]	T1PSC	计数器时钟分频选择 用于对系统时钟进行分频,作为基本计数器和重载计数器的时钟源;两个计数 器的时钟源频率为: 000: 24MHz
[3:2]	T1TIS	位置检测信号选择(FU6332N 不支持此功能) 00: GPIO(根据 CMP_CR1[HALLSEL]选择 P1.4、P1.6、P2.1 或 P0.2、P3.7、P3.6) 01: CMP0/1/2 的输出信号 10: ADC 的输出信号 11: 保留
[1:0]	T1INM	位置检测信号的滤波脉宽选择。当输入信号的脉宽小于设定值,会被当作噪声滤除。滤波时间根据CMP_CR4[FAEN]的设定乘4倍。 CMP_CR4[FAEN] = 0时: 00: 不滤波 01: 8个系统时钟周期 10: 16个系统时钟周期 11: 24个系统时钟周期 CMP_CR4[FAEN] = 1时,乘4倍: 00: 不滤波 01: 32个系统时钟周期 10: 64个系统时钟周期

14.3.5 TIM1_CR4 (0x406C)

位	7	6	5	4	3		2	1		0	
名称			RSV T1CST								
类型	-	-	-	-	-		R/W	R/V	V R	/W	
复位值	ı	-	1	-	ı		0	0		0	
位	名称				描述	述					
[7:3]	RSV	保留									
[2:0]	T1CST	状态机在 ² 当TIM1_C 动接管CM	换相状态机 状态机在不同的状态会对应不同的TIM1_DBRx 当TIM1_CR4[T1CST]在001~111状态, Timer1会根据TIM1_DBRx[T1CPE]自 动接管CMP0/1/2的使能 当TIM1_CR4[T1CST]在001~110状态, 会在写入时序中断触发时自动循环加 1 表 14-4 TIM1_CR4[T1CST]与TIM1_DBRx的对应关系								
		TIM1_	CR4[T1CST] TIM1_C	BRx	TIM1	I_CR4[T1C	ST] I	TIM1_DBR	Rx	
			000	0			100	1	TIM1_DBR	4	
			001	TIM1_D	BR1		101	1	TIM1_DBR	.5	
			010	TIM1_D	BR2		110	1	TIM1_DBR	.6	
			011	TIM1_D	BR3		111	7	TIM1_DBR	7	

14.3.6 TIM1_IER (0x406D)

位	7	6	5	4	3	2	1	0
名称	T1UPD	T1MAME	T1ADIE	T1BOIE	T1ROIE	T1WTIE	T1PDIE	T1BDIE
类型	W1	R/W	R/W	R/W	R/W	R/W	R/W	R/W
复位值	0	0	0	0	0	0	0	0
位	名称				描述			
[7]	T1UPD	TIM1_CR	.0[T1OPS] =	= 00: 软件对	此位写1触》	ઇ数据传输 。	写1后硬件	自动清0
[6]	T1MAME	基本计数 计数器上 重载计数 作 重载计数	基本计数器器的TIM1_ 溢中断复位器的使能位器的使能位器的TIM1_	和重载计数 _BCNTR不再 : : :TIM1_CR0[_RCNTR只能 _RARR不会[事由TIM1_CF T1RCEN]不 E由重载计数	R2[T1BRS]排 再自动清0和 效器上溢事件	空制复位,不 四置1,只通 = 清0	元是由基本

		0: 不使能
		1: 使能
		ADC 位置检测中断使能
[5]	T1ADIE	0: 不使能
		1: 使能
		基本计数器上溢中断使能
[4]	T1BOIE	0: 不使能
		1: 使能
		重载计数器上溢中断使能
[3]	T1ROIE	0: 不使能
		1: 使能
		写入时序中断使能
[2]	T1WTIE	0: 不使能
		1: 使能
		CMP/GPIO位置检测中断使能
[1]	T1PDIE	0: 不使能
		1: 使能
		屏蔽续流结束中断使能
[0]	T1BDIE	0: 不使能
		1: 使能

14.3.7 TIM1_SR (0x406E)

位	7	6	5	4	3	2	1	0
名称	RSV		T1ADIF	T1BOIF	T1ROIF	T1WTIF	T1PDIF	T1BDIF
类型	-	-	R/W0	R/W0	R/W0	R/W	R/W0	R/W0
复位值	ı	-	0	0	0	0	0	0

位	名称	描述
[7:6]	RSV	保留
		ADC 位置检测中断事件标志位
		当 ADC 位置检测信号与 TIM1_DBRx[T1CPE]相同时产生位置检测中断
		读:
F=3		0: 未发生中断事件
[5]	T1ADIF	1: 发生中断事件
		写:
		0: 清0
		1: 无意义

	1	
		基本计数器上溢中断事件标志位
		基本计数器向上计数时,当TIM1_BCNTR计数器的值与TIM1_BARR寄存器的
		值比较匹配时,发生上溢事件
		读:
[4]	T1BOIF	0: 未发生中断事件
		1: 发生中断事件
		写:
		0: 清0
		1: 无意义
		重载计数器上溢中断事件标志位
		当TIM1_RCNTR与TIM1_RARR比较匹配时,发生上溢事件,TIM1_RCNTR
		清0
		读:
[3]	T1ROIF	0: 未发生中断事件
		1: 发生中断事件
		写:
		0: 清0
		1: 无意义
		写入时序中断事件标志位
		当TIM1_DBRx传输到DRV_CMR时,产生写入时序中断
		读:
		0: 未发生中断事件
[2]	T1WTIF	1: 发生中断事件
		写:
		0: 清0
		1: 无意义
		CMP/GPIO 位置检测中断事件标志位
		当 CMP/GPIO 位置检测信号与 TIM1_DBRx[T1CPE]相同时产生位置检测中断
		读:
[1]	T1PDIF	0: 未发生中断事件
		1: 发生中断事件
		写:
		0: 清0
	1	i. ᄱᇒᄉ

		屏蔽续流结束中断事件标志位
		换相后开始屏蔽续流时间,屏蔽结束时产生中断
		读:
503		0: 未发生中断事件
[0]	T1BDIF	1: 发生中断事件
		写:
		0: 清0
		1: 无意义

14.3.8 TIM1_BCOR (0x4070, 0x4071)

	TIM1_BCORH(0x4070)								
位	15	15 14 13 12 11 10 9 8							
名称				TIM1_BC	OR[15:8]				
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
复位值	0	0	0	0	0	0	0	0	
	TIM1_BCORL(0x4071)								
位	7	6	5	4	3	2	1	0	
名称				TIM1_B0	COR[7:0]				
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
复位值	0	0	0	0	0	0	0	0	
位	名称 描述								
[15:0]	TIM1_	BCOD.	捕获基本计数器计数值滤波值						
[13.0]	111711_	-DCOK	TIM1_BC	CR滤波后的]值,即60度	医时间的基准	挂值		

14.3.9 TIM1_DBR1 (0x4074, 0x4075)

	TIM1_DBR1H(0x4074)							
位	15	14	13	12	11	10	9	8
名称	RSV		T1CPE		T1WHP	T1WLP	T1VHP	T1VLP
类型	ı	R/W	R/W	R/W	R/W	R/W	R/W	R/W
复位值	-	0	0	0	0	0	0	0
			TIM1	_DBR1L(0x4	4075)			
位	7	6	5	4	3	2	1	0
名称	T1UHP	T1ULP	T1WHE	T1WLE	T1VHE	T1VLE	T1UHE	T1ULE
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
复位值	0	0	0	0	0	0	0	0

位	名称	描述
[15]	RSV	保留
		位置检测信号输入沿极性和比较器使能选择
[47.40]	TACDE	用于指定位置检测输入信号的变化沿,同时控制相关比较器的使能。如输入信
[14:12]	T1CPE	号发生与配置相应的跳变,则为位置检测中断。
		参考CMP/GPIO位置检测事件和表14-2
		W相上桥输出极性
[11]	T1WHP	0: 高电平有效
		1: 低电平有效
		W相下桥输出极性
[10]	T1WLP	0: 高电平有效
		1: 低电平有效
		V相上桥输出极性
[9]	T1VHP	0: 高电平有效
		1: 低电平有效
		V相下桥输出极性
[8]	T1VLP	0: 高电平有效
		1: 低电平有效
		U相上桥输出极性
[7]	T1UHP	0: 高电平有效
		1: 低电平有效
		U相下桥输出极性
[6]	T1ULP	0: 高电平有效
		1: 低电平有效
		W相上桥输出使能
[5]	T1WHE	0: 不使能
		1: 使能
		W相下桥输出使能
[4]	T1WLE	0: 不使能
		1: 使能
		V相上桥输出使能
[3]	T1VHE	0: 不使能
		1: 使能
		V相下桥输出使能
[2]	T1VLE	0: 不使能
		1: 使能

		U相上桥输出使能
[1]	T1UHE	0: 不使能
		1: 使能
		U相下桥输出使能
[0]	T1ULE	0: 不使能
		1: 使能

注: TIM1_DBR1[T1WLE]和 TIM1_DBR1[T1WHE]、TIM1_DBR1[T1VLE]和 TIM1_DBR1[T1VHE]或 TIM1_DBR1[T1ULE]和 TIM1_DBR1[T1UHE]同时为 1 时,三相上下桥互补输出并自动插入死区时间(TIM1_DBR2 ~ TIM1_DBR7 均与此同)。

14.3.10 TIM1_DBR2 (0x4076, 0x4077)

	TIM1_DBR2H(0x4076)							
位	15	14	13	12	11	10	9	8
名称	RSV		T1CPE		T1WHP	T1WLP	T1VHP	T1VLP
类型	_	R/W	R/W	R/W	R/W	R/W	R/W	R/W
复位值	-	0	0	0	0	0	0	0
			TIM1	_DBR2L(0x4	4077)			
位	7	6	5	4	3	2	1	0
名称	T1UHP	T1ULP	T1WHE	T1WLE	T1VHE	T1VLE	T1UHE	T1ULE
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
复位值	0	0	0	0	0	0	0	0
位	名称				描述			
[15]	RSV	保留						
[14:12]	T1CPE	用于指定位号发生与配	立置检测输 <i>力</i> 配置相应的路	如比较器使俞 入信号的变体 挑变,则产与 〕测事件和表	比沿,同时指 E位置检测中		交器的使能 。	如输入信
[11]	T1WHP	0: 高电平	W相上桥输出极性 0: 高电平有效 1: 低电平有效					
[10]	T1WLP	0: 高电平	W相下桥输出极性 0: 高电平有效 1: 低电平有效					
[9]	T1VHP	V相上桥箱 0: 高电平 1: 低电平	有效					

V相下桥输出极性			
1: 低电平有效	[0]	T1\/ D	
[7] T1UHP 0:高电平有效 1:低电平有效 1:低电平有效 U相下桥输出极性 0:高电平有效 1:低电平有效 1:低电平有效 W相上桥输出使能 1:使能 V相下桥输出使能 1:使能 [4] T1WLE 0:不使能 1:使能 [7] T1VHE 0:不使能 1:使能 [8] T1VHE 0:不使能 1:使能 T1VHE 0:不使能 1:使能 T1VLE 0:不使能	[8]	IIVLP	
[7] T1UHP 0: 高电平有效 1: 低电平有效 1: 低电平有效 U相下桥输出极性 0: 高电平有效 1: 低电平有效 1: 低电平有效 M相上桥输出使能 0: 不使能 1: 使能 W相下桥输出使能 1: 使能 [4] T1WLE 0: 不使能 1: 使能 [3] T1VHE 0: 不使能 1: 使能 [2] T1VLE 0: 不使能 1: 使能 [1] T1ULE 0: 不使能 1: 使能 [1] T1ULE 0: 不使能 1: 使能 [1] T1ULE 0: 不使能 1: 使能 [1] T1UHE 0: 不使能 1: 使能 [1] T1ULE 0: 不使能			
1: 低电平有效			
[6] T1ULP U相下桥输出极性 0: 高电平有效 1: 低电平有效 W相上桥输出使能 0: 不使能 1: 使能 W相下桥输出使能 1: 使能 V相上桥输出使能 1: 使能 [3] T1VHE 0: 不使能 1: 使能 [2] T1VLE 0: 不使能 1: 使能 [2] T1VLE 0: 不使能 1: 使能 [1] T1UHE 0: 不使能 1: 使能	[7]	T1UHP	0: 高电平有效
[6] T1ULP 0: 高电平有效 1: 低电平有效 W相上桥输出使能 0: 不使能 1: 使能 W相下桥输出使能 1: 使能 [4] T1WLE 0: 不使能 1: 使能 [3] T1VHE 0: 不使能 1: 使能 [2] T1VLE 0: 不使能 1: 使能 U相上桥输出使能 1: 使能 [1] T1UHE 0: 不使能 1: 使能 U相上桥输出使能 0: 不使能 1: 使能			1: 低电平有效
1: 低电平有效 W相上桥输出使能 0: 不使能 1: 使能 W相下桥输出使能 0: 不使能 1: 使能 [4] T1WLE 0: 不使能 1: 使能 V相上桥输出使能 0: 不使能 1: 使能 V相上桥输出使能 0: 不使能 1: 使能 V相下桥输出使能 0: 不使能 1: 使能 V相下桥输出使能 0: 不使能 1: 使能 U相上桥输出使能 1: 使能 U相上桥输出使能 0: 不使能			U相下桥输出极性
[5] T1WHE 0: 不使能 1: 使能 W相下桥输出使能 0: 不使能 1: 使能 W相下桥输出使能 1: 使能 V相上桥输出使能 1: 使能 V相上桥输出使能 1: 使能 1: 使能 V相下桥输出使能 1: 使能 V相下桥输出使能 1: 使能 1: 使能 1: 使能 U相上桥输出使能 1: 使能 U相上桥输出使能 1: 使能 U相上桥输出使能 1: 使能 U相上桥输出使能 1: 使能	[6]	T1ULP	0: 高电平有效
[5] T1WHE 0: 不使能 1: 使能 W相下桥输出使能 0: 不使能 1: 使能 V相上桥输出使能 1: 使能 V相上桥输出使能 1: 使能 [3] T1VHE 0: 不使能 1: 使能 V相下桥输出使能 0: 不使能 1: 使能 [2] T1VLE 0: 不使能 1: 使能 U相上桥输出使能 1: 使能 U相上桥输出使能 1: 使能 [1] T1UHE 0: 不使能 1: 使能 [1] T1UHE 0: 不使能 1: 使能 U相下桥输出使能 0: 不使能 1: 使能 U相下桥输出使能 0: 不使能 1: 使能			1: 低电平有效
1: 使能			W相上桥输出使能
[4] T1WLE W相下桥输出使能 0: 不使能 1: 使能 [3] T1VHE O: 不使能 1: 使能 V相下桥输出使能 [2] T1VLE O: 不使能 1: 使能 U相上桥输出使能 [1] T1UHE O: 不使能 1: 使能 U相下桥输出使能 [0] T1ULE O: 不使能	[5]	T1WHE	0: 不使能
[4] T1WLE 0: 不使能 1: 使能 V相上桥输出使能 0: 不使能 1: 使能 1: 使能 V相下桥输出使能 1: 使能 V相下桥输出使能 1: 使能 1: 使能 1: 使能 1: 使能 U相上桥输出使能 1: 使能 U相上桥输出使能 1: 使能 1: V相下桥输出使能 1: V相下桥 1: V相下析 1: V相ř			1: 使能
1: 使能 V相上桥输出使能 0: 不使能 1: 使能 V相下桥输出使能 [2] T1VLE 0: 不使能 1: 使能 U相上桥输出使能 [1] T1UHE 0: 不使能 1: 使能 U相上桥输出使能 1: 使能 U相上桥输出使能 1: 使能 0: 不使能 1: 使能 U相下桥输出使能 0: 不使能 0: 不使能			W相下桥输出使能
[3] T1VHE V相上桥输出使能 1: 使能 V相下桥输出使能 [2] T1VLE 0: 不使能 1: 使能 U相上桥输出使能 [1] T1UHE 0: 不使能 1: 使能 U相下桥输出使能 [0] T1ULE 0: 不使能	[4]	T1WLE	0: 不使能
[3] T1VHE 0: 不使能 1: 使能 V相下桥输出使能 0: 不使能 1: 使能			1: 使能
1: 使能 V相下桥输出使能 [2] T1VLE 0: 不使能 1: 使能 U相上桥输出使能 [1] T1UHE 0: 不使能 1: 使能 U相下桥输出使能 [0] T1ULE 0: 不使能			V相上桥输出使能
[2] T1VLE 0: 不使能 1: 使能 U相上桥输出使能 [1] T1UHE 0: 不使能 1: 使能 U相下桥输出使能 1: 使能 U相下桥输出使能 [0] T1ULE 0: 不使能	[3]	T1VHE	0: 不使能
[2] T1VLE 0: 不使能 1: 使能 U相上桥输出使能 [1] T1UHE 0: 不使能 1: 使能 U相下桥输出使能 1: 使能 U相下桥输出使能 [0] T1ULE 0: 不使能			1: 使能
1: 使能 U相上桥输出使能 [1] T1UHE 0: 不使能 1: 使能 U相下桥输出使能 [0] T1ULE 0: 不使能			V相下桥输出使能
[1] T1UHE 0: 不使能 1: 使能 U相下桥输出使能 [0] T1ULE 0: 不使能	[2]	T1VLE	0: 不使能
[1] T1UHE 0: 不使能 1: 使能 U相下桥输出使能 [0] T1ULE 0: 不使能			1: 使能
1: 使能 U相下桥输出使能 [0] T1ULE 0: 不使能			U相上桥输出使能
U相下桥输出使能 [0] T1ULE 0: 不使能	[1]	T1UHE	0: 不使能
[0] T1ULE 0: 不使能			1: 使能
			U相下桥输出使能
1: 使能	[0]	T1ULE	0: 不使能
			1: 使能

14.3.11 TIM1_DBR3 (0x4078, 0x4079)

	TIM1_DBR3H(0x4078)							
位	15	14	13	12	11	10	9	8
名称	RSV		T1CPE		T1WHP	T1WLP	T1VHP	T1VLP
类型	-	R/W						
复位值	-	0	0	0	0	0	0	0
	TIM1_DBR3L(0x4079)							
位	7	6	5	4	3	2	1	0
名称	T1UHP	T1ULP	T1WHE	T1WLE	T1VHE	T1VLE	T1UHE	T1ULE
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
复位值	0	0	0	0	0	0	0	0

[15] RSV 保留	位	名称	描述
T1CPE	[15]	RSV	保留
T1CPE			位置检测信号输入沿和比较器使能选择
一	[17.10]	TACDE	用于指定位置检测输入信号的变化沿,同时控制相关比较器的使能。如输入信
T1WHP	[14:12]	TICPE	号发生与配置相应的跳变,则产生位置检测中断。
[11] T1WHP 0: 高电平有效 1: 低电平有效 1: 低电平有效 W相下桥输出极性 0: 高电平有效 1: 低电平有效 1: 低电平转输出极性 0: 高电平有效 1: 低电形输出极性 1: 使能 1: 世能 1			参考CMP/GPIO位置检测事件和表14-2
1: 低电平有效			W相上桥输出极性
W相下桥输出极性 O: 高电平有效	[11]	T1WHP	0: 高电平有效
[10] T1WLP 0: 高电平有效 1: 低电平有效			1: 低电平有效
1: 低电平有效			W相下桥输出极性
V相上桥输出极性	[10]	T1WLP	0: 高电平有效
[9]			1: 低电平有效
1: 低电平有效			V相上桥输出极性
V相下桥输出极性	[9]	T1VHP	
[8] T1VLP 0: 高电平有效 1: 低电平有效 U相上桥输出极性 0: 高电平有效 1: 低电平有效 1: 低电平有效 U相下桥输出极性 0: 高电平有效 1: 低电平有效 1: 低电平有效 1: 低电平有效 0: 高电平有效 1: 低电平有效 W相上桥输出使能 1: 使能 V相上桥输出使能 1: 使能 [4] T1WLE 0: 不使能 1: 使能 [3] T1VHE 0: 不使能 1: 使能 V相上桥输出使能 0: 不使能 1: 使能 U相上桥输出使能 1: 使能 U相上桥输出使能 1: 使能 U相上桥输出使能 1: 使能 U相上桥输出使能 1: 使能			
1: 低电平有效			
[7] T1UHP	[8]	T1VLP	
[7] T1UHP 0: 高电平有效 1: 低电平有效 U相下桥输出极性 0: 高电平有效 1: 低电平有效 1: 低电平有效 W相上桥输出使能 [5] T1WHE 0: 不使能 1: 使能 W相下桥输出使能 [4] T1WLE 0: 不使能 1: 使能 V相上桥输出使能 [3] T1VHE 0: 不使能 1: 使能 [2] T1VLE 0: 不使能 1: 使能 U相上桥输出使能 [1] T1ULE 0: 不使能 1: 使能 UHLF桥输出使能 1: 使能 UHLF桥输出使能 1: 使能 UHLF桥输出使能 1: 使能 UHLF桥输出使能 0: 不使能 1: 使能			
1: 低电平有效 U相下桥输出极性 0: 高电平有效 1: 低电平有效 1: 低电平有效 W相上桥输出使能 1: 使能 U相下桥输出使能 1: 使能 [4] T1WLE 0: 不使能 1: 使能 [3] T1VHE 0: 不使能 1: 使能 [2] T1VLE 0: 不使能 1: 使能 U相上桥输出使能 [1] 使能 U相上桥输出使能 1: 使能 U相上桥输出使能 1: 使能 U相上桥输出使能 1: 使能 U相上桥输出使能 1: 使能	r-1	TALLID	
[6] T1ULP O: 高电平有效 1: 低电平有效 1: 低电平有效 W相上桥输出使能 O: 不使能 1: 使能 W相下桥输出使能 1: 使能 T1WLE O: 不使能 1: 使能 V相上桥输出使能 O: 不使能 1: 使能 I: 使能 U相上桥输出使能 O: 不使能 1: 使能 U相下桥输出使能 O: 不使能 I: 使能 U相下桥输出使能 O: 不使能 I: 使能 U相上桥输出使能 O: 不使能 O: 不使 O: 和使能 O: 和使能 O: 和使能 O: 和使能	[/]	TTUHP	
[6] T1ULP 0: 高电平有效 1: 低电平有效 W相上桥输出使能 0: 不使能 1: 使能 W相下桥输出使能 1: 使能 [4] T1WLE 0: 不使能 1: 使能 V相上桥输出使能 [3] T1VHE 0: 不使能 1: 使能 [2] T1VLE 0: 不使能 1: 使能 U相上桥输出使能 1: 使能 U相上桥输出使能 1: 使能 T1VLE 0: 不使能 1: 使能			
1: 低电平有效 W相上桥输出使能 0: 不使能 1: 使能 W相下桥输出使能 [4] T1WLE 0: 不使能 1: 使能 V相上桥输出使能 [3] T1VHE 0: 不使能 1: 使能 [2] T1VLE 0: 不使能 1: 使能 U相下桥输出使能 [1] T1UHE 0: 不使能 1: 使能	[4]	T1III D	
T1WHE	[0]	ITOLI	
[5] T1WHE 0: 不使能 1: 使能 W相下桥输出使能 0: 不使能 1: 使能 1: 使能 V相上桥输出使能 0: 不使能 1: 使能 [3] T1VHE 0: 不使能 1: 使能 [2] T1VLE 0: 不使能 1: 使能 [1] T1UHE 0: 不使能 1: 使能			
1: 使能 W相下桥输出使能 0: 不使能 1: 使能 V相上桥输出使能 0: 不使能 1: 使能 [3] T1VHE 0: 不使能 1: 使能 V相下桥输出使能 1: 使能 U相上桥输出使能 1: 使能 U相上桥输出使能 1: 使能	[5]	T1WHE	
[4] T1WLE 0: 不使能 1: 使能 [3] T1VHE 0: 不使能 1: 使能 [2] T1VLE 0: 不使能 1: 使能 [1] T1UHE 0: 不使能 [1] T1UHE 0: 不使能			
[4] T1WLE 0: 不使能 1: 使能 V相上桥输出使能 0: 不使能 1: 使能 1: 使能 T1VHE 0: 不使能 1: 使能 V相下桥输出使能 1: 使能 T1VLE 0: 不使能 1: 使能 U相上桥输出使能 1: 使能 U相上桥输出使能 0: 不使能 1: 使能			
1: 使能 V相上桥输出使能 0: 不使能 1: 使能 V相下桥输出使能 [2] T1VLE 0: 不使能 1: 使能 U相上桥输出使能 [1] T1UHE 0: 不使能	[4]	T1WLE	
V相上桥输出使能 O: 不使能 T1VHE O: 不使能 T1VLE O: 不使能 T1VLE O: 不使能 T1VLE O: 不使能 T1UHE O: 不使能			
[3] T1VHE 0: 不使能 1: 使能 V相下桥输出使能 [2] T1VLE 0: 不使能 1: 使能 U相上桥输出使能 [1] T1UHE 0: 不使能			
1: 使能 V相下桥输出使能 [2] T1VLE 0: 不使能 1: 使能 U相上桥输出使能 [1] T1UHE 0: 不使能	[3]	T1VHE	
V相下桥输出使能			
[2] T1VLE 0: 不使能 1: 使能 U相上桥输出使能 [1] T1UHE 0: 不使能			
1: 使能 U相上桥输出使能 [1] T1UHE 0: 不使能	[2]	T1VLE	
U相上桥输出使能 [1] T1UHE 0: 不使能			
[1] T1UHE 0: 不使能			
	[1]	T1UHF	
			1: 使能

		U相下桥输出使能
[0]	T1ULE	0: 不使能
		1: 使能

14.3.12 TIM1_DBR4 (0x4080, 0x4081)

	_	• • • • • • • • • • • • • • • • • • • •										
			TIM1_	_DBR4H(0x	4080)							
位	15	14	13	12	11	10	9	8				
名称	RSV		T1CPE		T1WHP	T1WLP	T1VHP	T1VLP				
类型	-	R/W	R/W	R/W	R/W	R/W	R/W	R/W				
复位值	-	0	0	0	0	0	0	0				
			TIM1	_DBR4L(0x4	4081)							
位	7	6	5	4	3	2	1	0				
名称	T1UHP	T1ULP	T1WHE	T1WLE	T1VHE	T1VLE	T1UHE	T1ULE				
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W				
复位值	0	0	0	0	0	0	0	0				
位	名称				描述							
[15]	RSV	保留										
[14:12]	T1CPE	用于指定位号发生与超	立置检测输力 配置相应的距	印比较器使能 入信号的变化 挑变,则产生 验测事件和表	比沿,同时指 E位置检测中		交器的使能。	如输入信				
[11]	T1WHP	W相上桥车 0: 高电平石 1: 低电平石	有效									
[10]	T1WLP	0: 高电平	W相下桥输出极性 0: 高电平有效 1: 低电平有效									
[9]	T1VHP	V相上桥输出极性 0: 高电平有效 1: 低电平有效										
[8]	T1VLP	0: 高电平	V相下桥输出极性 0: 高电平有效 1: 低电平有效									
[7]	T1UHP	0: 高电平	有效					U相上桥输出极性 0: 高电平有效 1: 低电平有效				

		1
		U相下桥输出极性
[6]	T1ULP	0: 高电平有效
		1: 低电平有效
		W相上桥输出使能
[5]	T1WHE	0: 不使能
		1: 使能
		W相下桥输出使能
[4]	T1WLE	0: 不使能
		1: 使能
		V相上桥输出使能
[3]	T1VHE	0: 不使能
		1: 使能
		V相下桥输出使能
[2]	T1VLE	0: 不使能
		1: 使能
		U相上桥输出使能
[1]	T1UHE	0: 不使能
		1: 使能
		U相下桥输出使能
[0]	T1ULE	0: 不使能
		1: 使能

14.3.13 TIM1_DBR5 (0x4082, 0x4083)

			TIM1_	DBR5H(0x4	4082)						
位	15	14	13	12	11	10	9	8			
名称	RSV		T1CPE		T1WHP	T1WLP	T1VHP	T1VLP			
类型	-	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
复位值	-	0	0	0	0	0	0	0			
TIM1_DBR5L(0x4083)											
位	7	6	5	4	3	2	1	0			
名称	T1UHP	T1ULP	T1WHE	T1WLE	T1VHE	T1VLE	T1UHE	T1ULE			
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
复位值	0	0	0	0	0	0	0	0			
位	名称				描述						
[15]	RSV	保留									
[14.12]	T1CPE	位置检测值	言号输入沿和	口比较器使能	 比选择						
[14:12]	TICPE	用于指定位	立置检测输力	人信号的变化	心沿,同时 挖	2制相关比较	交器的使能。	如输入信			

		号发生与配置相应的跳变,则产生位置检测中断。
		参考CMP/GPIO位置检测事件和表14-2
		W相上桥输出极性
[11]	T1WHP	0: 高电平有效
		1: 低电平有效
		W相下桥输出极性
[10]	T1WLP	0: 高电平有效
		1: 低电平有效
		V相上桥输出极性
[9]	T1VHP	0: 高电平有效
		1: 低电平有效
		V相下桥输出极性
[8]	T1VLP	0: 高电平有效
		1: 低电平有效
		U相上桥输出极性
[7]	T1UHP	0: 高电平有效
		1: 低电平有效
		U相下桥输出极性
[6]	T1ULP	0: 高电平有效
		1: 低电平有效
		W相上桥输出使能
[5]	T1WHE	0: 不使能
		1: 使能
		W相下桥输出使能
[4]	T1WLE	0: 不使能
		1: 使能
		V相上桥输出使能
[3]	T1VHE	0: 不使能
		1: 使能
		V相下桥输出使能
[2]	T1VLE	0: 不使能
		1: 使能
		U相上桥输出使能
[1]	T1UHE	0: 不使能
		1: 使能
		U相下桥输出使能
[0]	T1ULE	0: 不使能
		1: 使能

14.3.14 TIM1_DBR6 (0x4084, 0x4085)

	TIM1_DBR6H(0x4084)											
位	15	14	13	12	11	10	9	8				
名称	RSV		T1CPE	•	T1WHP	T1WLP	T1VHP	T1VLP				
类型	-	R/W	R/W	R/W	R/W	R/W	R/W	R/W				
复位值	-	0	0	0	0	0	0	0				
			TIM1	_DBR6L(0x4	4085)							
位	7	6	5	4	3	2	1	0				
名称	T1UHP	T1ULP	T1WHE	T1WLE	T1VHE	T1VLE	T1UHE	T1ULE				
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W				
复位值	0	0	0	0	0	0	0	0				
位	名称				描述							
[15]	RSV	保留										
[14:12]	T1CPE	用于指定位号发生与超	位置检测信号输入沿和比较器使能选择 用于指定位置检测输入信号的变化沿,同时控制相关比较器的使能。如输入信 号发生与配置相应的跳变,则产生位置检测中断。 参考CMP/GPIO位置检测事件和表14-2									
[11]	T1WHP	0: 高电平	W相上桥输出极性 0: 高电平有效 1: 低电平有效									
[10]	T1WLP	W相下桥车 0: 高电平 1: 低电平	有效									
[9]	T1VHP	V相上桥箱 0: 高电平 1: 低电平	有效									
[8]	T1VLP	V相下桥箱 0: 高电平 1: 低电平	有效									
[7]	T1UHP	U相上桥轴 0: 高电平和 1: 低电平和	有效									
[6]	T1ULP	U相下桥轴 0: 高电平和 1: 低电平和	有效									

		W相上桥输出使能
[5]	T1WHE	0: 不使能
		1: 使能
		W相下桥输出使能
[4]	T1WLE	0: 不使能
		1: 使能
		V相上桥输出使能
[3]	T1VHE	0: 不使能
		1: 使能
		V相下桥输出使能
[2]	T1VLE	0: 不使能
		1: 使能
		U相上桥输出使能
[1]	T1UHE	0: 不使能
		1: 使能
		U相下桥输出使能
[0]	T1ULE	0: 不使能
		1: 使能

14.3.15 TIM1_DBR7 (0x4086, 0x4087)

			TIM1	_DBR7H(0x	4086)						
位	15	14	13	12	11	10	9	8			
名称	RSV		T1CPE		T1WHP	T1WLP	T1VHP	T1VLP			
类型	-	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
复位值	-	0	0	0	0	0	0	0			
TIM1_DBR7L(0x4087)											
位	7	6	5	4	3	2	1	0			
名称	T1UHP	T1ULP	T1WHE	T1WLE	T1VHE	T1VLE	T1UHE	T1ULE			
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
复位值	0	0	0	0	0	0	0	0			
位	名称				描述						
[15]	RSV	保留									
[14:12]	T1CPE	用于指定位号发生与超	保留 立置检测信号输入沿和比较器使能选择 用于指定位置检测输入信号的变化沿,同时控制相关比较器的使能。如输入信 号发生与配置相应的跳变,则产生位置检测中断。 参考CMP/GPIO位置检测事件和表14-2								

		W相上桥输出极性
[11]	T1WHP	0: 高电平有效
		1: 低电平有效
		W相下桥输出极性
[10]	T1WLP	0: 高电平有效
		1: 低电平有效
		V相上桥输出极性
[9]	T1VHP	0: 高电平有效
		1: 低电平有效
		V相下桥输出极性
[8]	T1VLP	0: 高电平有效
		1: 低电平有效
		U相上桥输出极性
[7]	T1UHP	0: 高电平有效
		1: 低电平有效
		U相下桥输出极性
[6]	T1ULP	0: 高电平有效
		1: 低电平有效
		W相上桥输出使能
[5]	T1WHE	0: 不使能
		1: 使能
		W相下桥输出使能
[4]	T1WLE	0: 不使能
		1: 使能
		V相上桥输出使能
[3]	T1VHE	0: 不使能
		1: 使能
		V相下桥输出使能
[2]	T1VLE	0: 不使能
		1: 使能
		U相上桥输出使能
[1]	T1UHE	0: 不使能
		1: 使能
		U相下桥输出使能
[0]	T1ULE	0: 不使能
		1: 使能

14.3.16 TIM1_BCNTR (0x4082, 0x4083)

				TIM1_B	CNTRH(0x	4082)				
位	15	14	4	13	12	11	10	9	8	
名称					TIM1_BCN	ITR[15:8]				
类型	R/W	R/	W	R/W	R/W	R/W	R/W	R/W	R/W	
复位值	1	0)	0	0	0	0	0	0	
	TIM1_BCNTRL(0x4083)									
位	7	6		5	4	3	2	1	0	
名称		TIM1_BCNTR[7:0]								
类型	R/W	R/	W	R/W	R/W	R/W	R/W	R/W	R/W	
复位值	0	0)	0	0	0	0	0	0	
位	名称					描述				
		1	基本计	数器的计数	位,用于6	0度换相时间	间的计数			
[15:0]	TIM1 DCN	_{ITD} [自动模式: TIM1_BCNTR根据TIM1_CR2[T1BRS]选择复位源,							
[15.0]	TIM1_BCN	ר איי	ΓΙΜ1_	_BCNTR上流	益中断不会的	使TIM1_BC	NTR重新计	上数		
		Ę	手动模	式: TIM1_	BCNTR上溢	É中断使TIM	1_BCNTR	重新计数		

14.3.17 TIM1_BCCR (0x4084, 0x4085)

			TIM1_	BCCRH(0x4	4084)					
位	15	14	13	12	11	10	9	8		
名称				TIM1_BC	CR[15:8]					
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
复位值	0	0	0	0	0	0	0	0		
TIM1_BCCRL(0x4085)										
位	7	6	5 4 3 2 1 0							
名称			TIM1_BCCR[7:0]							
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
复位值	0	0	0	0	0	0	0	0		
位	名称				描述					
		捕获基本	本计数器计	数值						
		自动模式	式: 当基本计	十数器因为位	2置检测中图	所或写入时序	序中断复位€	付,将复		
[15:0]	TIM1_BCC	:R 位前的i	位前的计数值存至TIM1_BCCR。							
		手动模式	式: 当基本计	十数器因为上	溢中断复位	立时,将复位	立前的计数值	直存至		
		TIM1_I	BCCR							

14.3.18 TIM1_BARR (0x4086, 0x4087)

			TIM1I	BARRH(0x4	086)							
位	15	14	13	12	11	10	9	8				
名称		TIM1_BARR[15:8]										
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W				
复位值	0	0	0	0	0	0	0	0				
TIM1_BARRL(0x4087)												
位	7	6	5	4	3	2	1	0				
名称		TIM1_BARR[7:0]										
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W				
复位值	0	0	0	0	0	0	0	0				
位	名称				描述							
		基本计	数器的重载	值								
[15:0]	TIM1_BARI	R 当基本i	计数器的计	数值等于TIN	41_BARRE	时,发生上流	益中断,同日	时计数器				
		清0										

14.3.19 TIM1_RARR (0x4088, 0x4089)

			TIM1_	RARRH(0x4	(880ء					
位	15	14	13	12	11	10	9	8		
名称				TIM1_RAI	RR[15:8]					
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
复位值	0	0	0	0	0	0	0	0		
TIM1_RARRL(0x4089)										
位	7	6	5	4	3	2	1	0		
名称			TIM1_RARR[7:0]							
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
复位值	0	0	0	0	0	0	0	0		
位	名称				描述					
[15:0]	TIM1_RARI	当重载i 清0 R 自 动 植 (TIM1_c 对应的i	重载计数器的自动重载值 当重载计数器的计数值等于TIM1_RARR时,发生上溢中断,同时计数器							

14.3.20 TIM1_RCNTR (0x408A, 0x408B)

				TIM1_R	CNTRH(0x	408A)				
位	15	1	14	13	12	11	10	9	8	
名称					TIM1_RCN	NTR[15:8]				
类型	R/W	R.	/W	R/W	R/W	R/W	R/W	R/W	R/W	
复位值	1		1	1	1	1	1	1	1	
TIM1_RCNTRL(0x408B)										
位	7		6	5	4	3	2	1	0	
名称		TIM1_RCNTR[7:0]								
类型	R/W	R	/W	R/W	R/W	R/W	R/W	R/W	R/W	
复位值	1		1	1	1	1	1	1	1	
位	名称					描述				
			重载证	计数器的计数	数值,用于组	卖流屏蔽时间	间和过零点	到换相时间	的计数	
[15:0]	TIM1_RCI	NTR								
			注: 手	动模式时,	TIM1_RCN	NTR只通过i	重载计数器.	上溢中断清	0	

14.3.21 TIM1_UCOP (0x408C, 0x408D)

	TIM1_UCOPH(0x408C)											
位	15	5 14 13 12 11 10 9 8										
名称		TIM1_UCOP[15:8]										
类型	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W				
复位值	0	0	0	0	0	0	0	0				
TIM1_UCOPL(0x408D)												
位	7	6	5	4	3	2	1	0				
名称				TIM1_UC	COP[7:0]							
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W				
复位值	0	0	0	0	0	0	0	0				
位	名称				描述							
[15:0]	TIM1_UC	TIM1_UCOP 导通相电压的 ADC 采样值(次高位对齐)										

14.3.22 TIM1_UFLP (0x408E, 0x408F)

	TIM1_UFLPH(0x408E)									
位	15	14	13	12	11	10	9	8		
名称	TIM1_UCOP[15:8]									
类型	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
复位值	0	0	0	0	0	0	0	0		
	TIM1_UFLPL(0x408F)									
位	7	6	5	4	3	2	1	0		
名称				TIM1_UC	OP[7:0]					
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
复位值	0	0	0	0	0	0	0	0		
位	名称		描述							
[15:0]	TIM1_UFL	P 悬空相	悬空相电压的 ADC 采样值(次高位对齐)							

14.3.23 TIM1_URES (0x4090, 0x4091)

TIM1_URESH(0x4090)										
位	15	14	13	12	11	10	9	8		
名称		TIM1_URES[15:8]								
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
复位值	0	0	0	0	0	0	0	0		
	TIM1_URESL(0x4091)									
位	7	6	5	4	3	2	1	0		
名称				TIM1_UF	RES[7:0]					
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
复位值	0	0	0	0	0	0	0	0		
位	名称		描述							
[15:0]	TIM1_URE	S ADC 位	ADC 位置检测公式计算结果,Q15 格式							

14.3.24 TIM1_UIGN (0x4092, 0x4093)

	TIM1_UIGNH(0x4092)									
位	15	14	13	12	11	10	9	8		
名称		TIM1_UIGN[15:8]								
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
复位值	0	0	0	0	0	0	0	0		

TIM1_UFLPL(0x4093)									
位	7	6	5	4	3	2	1	0	
名称	TIM1_UIGN[7:0]								
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
复位值	0	0	0	0	0	0	0	0	
位	名称 描述								
[15:0]	TIM1_UIG	TIM1_UIGN 当导通相的 ADC 采样电压小于该值时,不执行计算							

14.3.25 TIM1_KF (0x4094, 0x4095)

TIM1_KFH(0x4094)										
位	15	14	13	12	11	10	9	8		
名称	TIM1_KF[15:8]									
类型	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
复位值	0	0	0	0	0	0	0	0		
	TIM1_KFL(0x4095)									
位	7	6	5	4	3	2	1	0		
名称				TIM1	KF[7:0]					
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
复位值	0	0	0	0	0	0	0	0		
位	名称	描述								
[15.0]	TIM1_KF	悬空相电压下降时的 ADC 位置检测系数								
[15:0]		取值范围[0,32767]							

14.3.26 TIM1_KR (0x4096, 0x4097)

TIM1_KRH(0x4096)										
位	15	14	13	12	11	10	9	8		
名称	TIM1_KR[15:8]									
类型	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
复位值	0	0	0	0	0	0	0	0		
			TIM	1_KRL(0x40)97)					
位	7	6	5	4	3	2	1	0		
名称				TIM1_k	(R[7:0]					
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
复位值	0	0	0	0	0	0	0	0		
						•	•	•		

位	名称	描述
[15.0]	TIM1_KR	悬空相电压上升时的 ADC 位置检测系数
[15:0]		取值范围[0,32767]

14.3.27 TIM1_ITRIP (0x4098, 0x4099)

	TIM1_ITRIPH(0x4098)									
位	15									
名称				TIM1_IT	RIP[15:8]					
类型	R	R	R	R	R	R	R	R		
复位值	0	0	0	0	0	0	0	0		
	TIM1_ITRIPL(0x4099)									
位	7	6	5	4	3	2	1	0		
名称				TIM1_IT	RIP[7:0]					
类型	R	R	R	R	R	R	R	R		
复位值	0	0	0	0	0	0	0	0		
位	名称				描述					
[15:0]	TIM1_ITR	当 DR 用。默 取值范	滤波后的母线电流 当 DRV_CNTR = 0 时,硬件模块自动对母线电流采样,滤波后供软件使用。默认使用 ADC 通道 4 取值范围[0,32767] 注: 该值由 8 个采样的瞬间电流值平均得到							

15 Timer2

15.1 Timer2 操作说明

Timer2 共有 5 种工作模式:

- 输出模式: 产生PWM输出波形
- 输入捕获模式: 检测输入PWM的高低电平持续时间
- 输入计数模式: 检测输入设定的PWM个数所需的时间
- OEP&RSD模式: 正交编码器&顺逆风检测模式
- 步进模式: 检测步进电机的方向、位置和速度

Timer2 特性包括:

- 3位可编程分频器对系统时钟进行分频
- 16位向上计数的基本计数器, 计数时钟源为分频器的输出
- 16位向上向下计数的专用计数器,用于输入计数模式,QEP&RSD模式和步进模式,计数时 钟源为外部输入信号。
- 输入滤波模块
- 边沿检测模块
- PWM 输出模块
- 中断事件

15.1.1 分频器

分频器对系统时钟进行分频,产生基本计数器的计数时钟源。分频器由 TIM2_CR0[T2PSC]控制,可选择 8 种分频系数。由于这个控制寄存器没有缓冲器,分频系数更新后会立刻改变时钟源频率,所以应在基本计数器不工作时更新分频系数。时钟源的频率为 clk_psc2 = SYSCLK/(2^TIM2_CR0[T2PSC])。分频后的时钟源频率与 TIM2_CR0[T2PSC]的关系表 15-1 所示。

表 15-1 分频后的时钟源频率与 TIM2_CR0[T2PSC]对应关系

TIM2_CR0[T2PSC]	分频系数	clk_psc2(Hz)	TIM2_CR0[T2PSC]	分频系数	clk_psc2(Hz)
000	1	24M	100	16	1.5M
001	2	12M	101	32	750k
010	4	6M	110	64	375k
011	8	3M	111	128	187.5k

15.1.2 TIM2__CNTR 的读写和计数

TIM2_CR1[T2CEN] = 1 时,TIM2_CNTR 计数。软件对 TIM2_CNTR 的写操作直接改变寄存器的值,因此软件需在执行写操作前禁止基本计数器。软件读 TIM2_CNTR 时,先读高字节,硬件会同步将此时刻低字节缓存,待读低字节时读取到的是缓存的数据。

15.1.3 输出模式

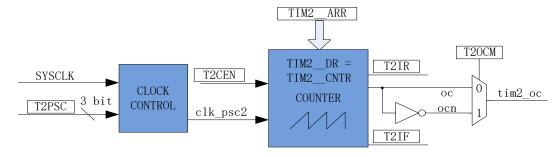


图 15-1 输出模式原理框图

基本计数器输出模式根据 TIM2_CR0[T2OCM]设置,以及 TIM2_CNTR 与寄存器 TIM2_DR、TIM2 ARR 设定值的比较结果产生输出信号,同时产生相应中断。

15.1.3.1 TIM2__ARR/TIM2__DR 的读写

在输出模式下,TIM2_ARR/TIM2_DR 包含预装载寄存器和影子寄存器。软件写TIM2_ARR/TIM2_DR 寄存器时,数据保存在预装载寄存器中,在上溢事件 TIM2_CR1[T2IF]或基本计数器停止工作(TIM2 CR1[T2CEN] = 0)时,设定值被传递到影子寄存器中。

TIM2_ARR/TIM2_DR 为 16 位寄存器,软件需先写入高字节,再写入低字节。由硬件保证在高字节写入后至低字节写入前预装载寄存器中的数据不会被传递至影子寄存器中。

例: TIM2_DR(预装载寄存器)、DR_SH(影子寄存器), TIM2_CNTR 和 DR_SH 比较产生 PWM; 用户写 TIM2_DR, TIM2_DR 并不是立刻更新到 DR_SH, 而是在一个 PWM 结束的时候,即 TIM2_CNTR 上溢时才将值更新到 DR_SH。

15.1.3.2 高/低电平输出模式

配置 TIM2_CR0[T2OCM] = 0 时,如果 TIM2_DR > TIM2_ARR,输出信号始终为低电平。配置 TIM2_CR0[T2OCM] = 1 时,如果 TIM2_DR > TIM2_ARR,输出比较信号始终为高电平。

15.1.3.3 PWM 输出

PWM 输出模式下,TIM2_ARR 决定 PWM 周期,TIM2_DR 决定占空比,占空比 = TIM2_DR/TIM2_ARR*100%。配置TIM2_CR0[T2OCM] = 0 时,当基本计数器TIM2_CNTR < TIM2_DR 时输出低电平,反之输出高电平。配置TIM2_CR0[T2OCM] = 1 时,当基本计数器TIM2_CNTR < TIM2_DR 时输出高电平,反之输出低电平。当计数到TIM2_ARR 时,输出信号反转。

15.1.3.4 中断事件

■ 当 TIM2_CNTR = TIM2_DR 时,产生比较匹配事件,中断事件标志位 TIM2_CR1[T2IR]置 1, 基本计数器继续计数。

■ 当 TIM2_CNTR = TIM2_ARR 时,产生上溢事件,中断事件标志位 TIM2_CR1[T2IF]置 1,计 数器清 0,并重新开始计数。

图 15-2 输出模式输出波形

15.1.4 输入信号滤波和边沿检测

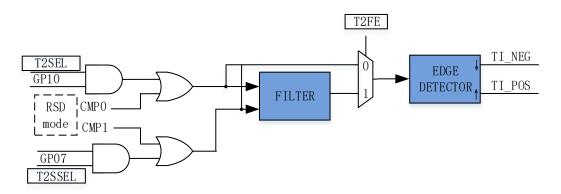


图 15-3 输入信号滤波和边沿检测框图

Timer2 的输入信号来自 P0.7 或 P1.0 端口,由 PH_SEL[T2SEL]和 PH_SEL[T2SSEL](参考章节 21.3.14)设定。输入时可选择是否对输入信号进行噪声滤波。

配置 TIM2_CR1[T2FE] = 1,使能滤波功能,滤波电路固定滤除 4 个系统时钟周期以下的输入噪声。滤波后的信号会比滤波前的信号延迟 4 个时钟周期。由 TIM2_CR0[T2CES]选择计数的有效沿。

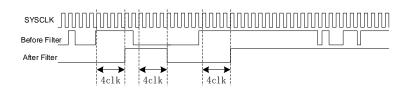


图 15-4 滤波模块时序图

边沿检测模块对滤波后的输入信号进行检测,记录上升沿和下降沿,供输入捕获或输入计数模式 使用。

15.1.5 输入捕获模式

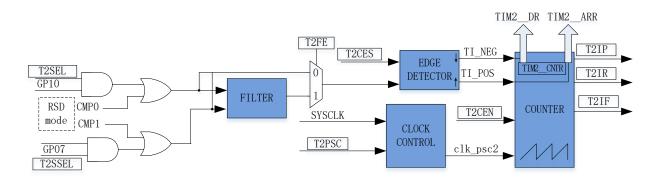


图 15-5 输入捕获模式原理框图

输入捕获模式检测 PWM 信号的占空比和周期。TIM_CR0[T2CES] = 0 时,选择相邻两个上升沿为 1 个周期,上升沿到下降沿的时间为脉宽(高电平脉宽)。TIM_CR0[T2CES] = 1 时,选择相邻两个下降 沿为 1 个周期,下降沿到上升沿的时间为脉宽(低电平脉宽)。当所定边沿到来时,计数值 TIM2_CNTR 被分别存入 TIM2_DR 和 TIM2_ARR 中,用于计算 PWM 波形的周期和占空比。输入信号可选择是否滤波。

图 15-6 输入捕获模式(TIM2_CR0[T2CES] = 0)时序图

以 TIM2_CR0[T2CES] = 0 为例,配置 TIM2_CR1[T2CEN] = 1,使能基本计数器,基本计数器向上计数。当 Timer2 检测到输入的第一个上升沿时(下降沿无效),TIM2_CNTR 清 0 并重新计数。当检测到输入的下降沿时,将 TIM2_CNTR 的值存进 TIM2_DR,同时中断事件标志位 TIM2_CR1[T2IR]置 1,TIM2_CNTR 继续向上计数。当检测到输入的第二个上升沿时,将 TIM2_CNTR 的值存进 TIM2_ARR,同时中断事件标志位 TIM2 CR1[T2IP]置 1,TIM2 CNTR 清 0,并重新开始计数。

如果在 Timer2 尚未检测到输入的第二个上升沿, 且计数值 TIM2_CNTR 达到 0xFFFF 时, 发生

上溢事件,中断事件标志位 TIM2_CR1[T2IF]置 1,TIM2_CNTR 清 0 并重新开始计数。

15.1.6 输入计数模式

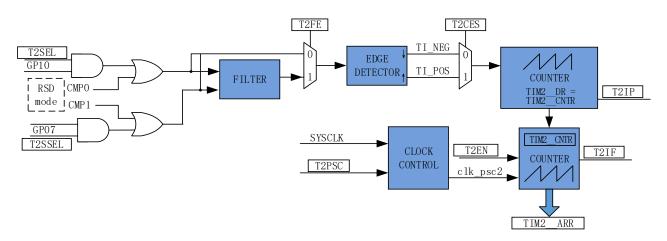


图 15-7 输入计数模式原理框图

在输入计数模式下,TIM2_DR 包含预装载寄存器和影子寄存器。软件写 TIM2_DR 寄存器时,数据先保存在预装载寄存器中。在匹配事件(TIM2_CR1[T2IP] = 1)、上溢事件(TIM2_CR1[T2IF] = 1)或专用计数器禁止(TIM2_CR1[T2CEN] = 0)时送入影子寄存器中。TIM2_DR 为 16 位寄存器,软件需先写入高字节,再写入低字节,由硬件保证在高字节写入后至低字节写入前预装载寄存器中的数据不会更新至影子寄存器中。

输入计数模式用于检测输入设定 PWM 个数所需的时长。当专用计数器 CCNTR 计数到的输入 PWM 的个数,达到 TIM2_DR 设定值时,基本计数器的计数值 TIM2_CNTR 被存入 TIM2_ARR 中。输入信号可选择是否滤波。配置 TIM2_CR0[T2CES] = 1,输入 PWM 信号的上升沿作为专用计数器的计数有效沿,反之输入信号的下降沿作为有效沿。

图 15-8 输入计数模式时序图

配置 TIM2_CR1[T2CEN] = 1,使能基本计数器。基本计数器向上计数,当检测到输入信号的第一个有效沿时,TIM2_CNTR 清 0 并重新开始计数。每当输入信号的有效沿到来,专用计数器 CCNTR 的计数值加 1,当计数值达到 TIM2_DR 设定的目标值后,基本计数器的计数值 TIM2_CNTR 被存进 TIM2_ARR,同时中断事件标志位 TIM2_CR1[T2IP]置 1,TIM2_CNTR 和 CCNTR 清 0,并重新开始

计数。

当输入的 PWM 个数尚未达到目标值,而基本计数值 TIM2_CNTR 已经达到 0xFFFF 时,发生上溢事件,中断事件标志位 TIM2_CR1[T2IF]置 1,TIM2_CNTR 清 0,CCNTR 不清 0,TIM2_CNTR 从零开始计数,CCNTR 接着之前的数值继续计数。

15.1.7 QEP&RSD 模式

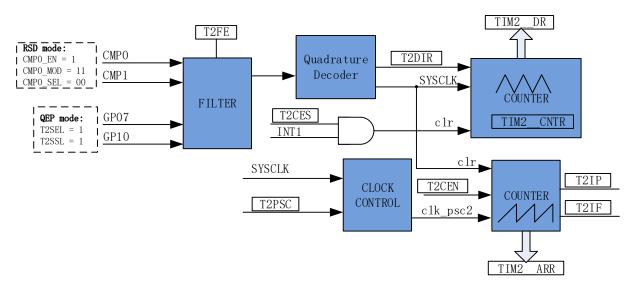


图 15-9 QEP&RSD 模式原理框图

QEP&RSD 模式通过检测 2 个通道的正交输入信号,得到电机的相对位置、方向和速度信息。 P0.7、P1.0(QEP模式)或 CMP0、CMP1(RSD模式)作为输入信号源,经过滤波模块后送进正交解码模块,得到有效的计数沿和方向 TIM2 CR1[T2DIR],方向改变会产生 TIM2 CR1[T2IR]中断事件标志位。

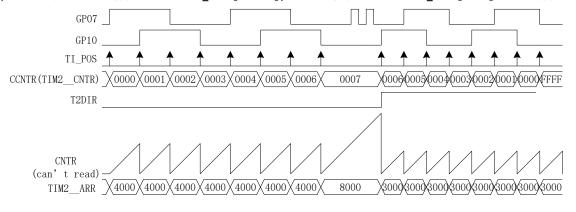


图 15-10 QEP&RSD 模式时序图

专用计数器是一个向上向下计数器,信号源为正交解码模块输出的有效计数沿。 TIM2_CR1[T2DIR] = 0,方向为正,向上计数,当有效沿来临,专用计数器加 1; TIM2_CR1[T2DIR] = 1,方向为反,向下计数,当有效沿来临,专用计数器减 1。专用计数器可以被外部中断 INT1 清 0,

将电机编码器的机械零点接到外部中断 INT1 的任意一个端口,使能 INT1 中断,同时配置 $IIM2_CR0[T2CES] = 1$,当 INT1 来临时,专用计数器当前的计数值被存进 $IIM2_DR$,同时清 0。专用计数器从 0 加到 65535 后自动清 0,从 65535 减到 0 后自动设为 65535,读寄存器 $IIM2_CNTR$ 的值得到专用计数器的值。

基本计数器是一个向上计数器,计数时钟可分频,用于记录两个有效计数沿的时间。当有效计数沿来临,基本计数器当前的计数值存进 TIM2_ARR,同时基本计数器清 0,TIM2_CR1[T2IP]中断事件标志位置 1。当基本计数器计数到 0xFFFF,计数溢出,产生 TIM2 CR1[T2IF]中断事件标志位。

15.1.7.1 RSD 的比较器采样

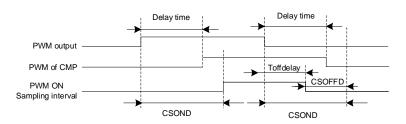


图 15-11 PWM ON 采样模式

RSD 采样时,为确保采样到正确的反电动势比较信号,需要设置采样开始延迟时间和采样结束提前时间。

详细请参考章节 28.1.4。

15.1.8 步进模式

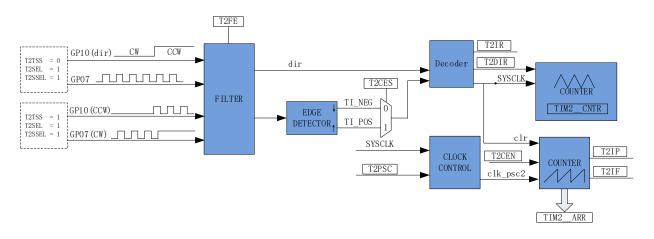


图 15-12 步进模式原理框图

步进模式通过检测 2 个通道的输入,得到步进电机的相对位置、方向和速度信息。P1.0 信号为方向输入,P0.7 信号为脉冲输入。根据 TIM2_CR0[T2CES]选择上升沿或下降沿作为有效沿,经过滤波模块后送进解码模块,得到有效的计数沿和方向 TIM2_CR1[T2DIR]。方向改变会产生 TIM2_CR1[T2IR]中断事件标志位。

注: 在 P1.0 变化且 P0.7 有效沿来临后, TIM2_CR1[T2DIR]和 TIM2_CR1[T2IR]才会发生变化。如需在 P1.0 变化时立即产生中断,应使用外部中断 INT1。

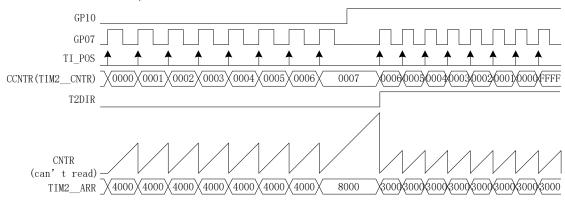


图 15-13 步进模式时序图

专用计数器是一个向上向下计数器,信号源为编码模块输出的有效计数沿。P1.0 = 0 时,TIM2_CR1[T2DIR] = 0,方向为正,当 P0.7 有效沿来临时,专用计数器 CCNTR 向上计数,专用计数器加 1; P1.0 = 1 时,TIM2_CR1[T2DIR] = 1,方向为反,当 P0.7 有效沿来临时,CCNTR 向下计数,专用计数器减 1。专用计数器从 0 加到 65535 后自动清 0,从 65535 减到 0 后自动设为 65535。读寄存器 TIM2 CNTR 的值得到专用计数器的值。

基本计数器是一个向上计数器,以分频器输出为时钟源,用于记录两个有效计数沿之间的时间。 当有效计数沿来临,基本计数器当前的计数值被存进TIM2_ARR,基本计数器清0并重新开始计数, 同时 TIM2_CR1[T2IP]中断事件标志位被置 1。当基本计数器计数到 0xFFFF,计数溢出, TIM2_CR1[T2IF]中断事件标志位被置 1。

15.2 Timer2 寄存器

15.2.1 TIM2_CR0 (0xA1)

位	7	6	5	4	3	2	1	0
名称		T2PSC		T2OCM	T2IRE	T2CES	T2M	10D
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
复位值	0	0	0	0	0	0	0	0

	•	
位	名称	描述
[7:5]	T2PSC	基本计数器时钟源分频选择 用于对系统时钟进行分频作为基本计数器的时钟源,分频后的时钟源频率为: 000: 24MHz
[4]	T2OCM	输出模式: 输出模式选择 0: TIM2_CNTR < TIM2_DR, 输出 0; TIM2_CNTR ≥ TIM2_DR, 输出 1 1: TIM2_CNTR < TIM2_DR, 输出 1; TIM2_CNTR ≥ TIM2_DR, 输出 0 输入计数模式: 无意义 输入捕获模式: 无意义 QEP&RSD 模式和步进模式选择 0: QEP&RSD 模式 1: 步进模式
[3]	T2IRE	输出模式: 比较匹配中断使能 输入捕获模式: 脉宽检测中断使能 输入计数模式: 无意义 QEP&RSD 模式: 方向改变中断使能 步进模式: 方向改变中断使能 0: 不使能 1: 使能
[2]	T2CES	输出模式: 无意义 输入捕获模式: 计数沿选择 0: 相邻两个上升沿为 1 个周期,上升沿到下降沿为脉宽(高电平脉宽) 1: 相邻两个下降沿为 1 个周期,下降沿到上升沿为脉宽(低电平脉宽) 输入计数模式: 计数有效沿选择 0: 下降沿计数 1: 上升沿计数 QEP&RSD 模式: 外部中断 INT1(零点)清 0 脉冲计数器使能

		0: 不使能
		1: 使能
		步进模式: 计数有效沿选择
		0: 下降沿计数
		1: 上升沿计数
		模式选择
		00: 输入捕获模式
[1:0]	T2MOD	01: 输出模式
		10: 输入计数模式
		11: QEP&RSD 模式或步进模式

15.2.2 TIM2_CR1 (0xA9)

位	7	6	5	4	3	2	1	0
名称	T2IR	T2IP	T2IF	T2IPE	T2IFE	T2FE	T2DIR	T2CEN
类型	R/W0	R/W0	R/W0	R/W	R/W	R/W	R	R/W
复位值	0	0	0	0	0	0	0	0

位	名称	描述
		输出模式: 比较匹配中断事件标志位
		输入捕获模式: 脉宽检测中断事件标志位
		输入计数模式: 无意义
		QEP&RSD 模式&步进模式: 方向改变中断标志位
[7]	T2IR	读:
[7]	1211	0: 未发生中断事件
		1: 发生中断事件
		写:
		0: 清 0
		1: 无意义
		输出模式: 无意义
		输入捕获模式: PWM 周期检测中断事件标志位
		输入计数模式: 输入 PWM 计数匹配中断事件标志位
		QEP&RSD 模式&步进模式: 输入有效边沿检测中断事件标志位
[6]	T2IP	读:
[0]		0: 未发生中断事件
		1: 发生中断事件
		写:
		0: 清 0
		1: 无意义

[5]	T2IF	输出模式: 基本计数器上溢中断事件标志位,当基本计数器值 TIM2_CNTR 与比较值 TIM2_ARR 匹配时置 1。输入捕获模式: 基本计数器上溢中断事件标志位,Timer 尚未检测到输入一个PWM 周期而基本计数器的值 TIM2_CNTR 累加到 0xFFFF 时置 1。输入计数模式: 专用计数器上溢中断事件标志位,当输入 PWM 的个数尚未达到 TIM2_DR 的值,而基本计数器的值 TIM2_CNTR 累加到 0xFFFF 时置 1。QEP&RSD 模式&步进模式: 基本计数器上溢中断事件标志位,当基本计数器累加到 0xFFFF 时置 1,基本计数器清 0。读: 0: 未发生中断事件 5: 发生中断事件 5: 0: 清 0 1: 无意义
[4]	T2IPE	输出模式: 无意义 输入捕获模式: PWM 周期检测中断使能 输入计数模式: 输入 PWM 计数匹配中断使能 0: 不使能 1: 使能
[3]	T2IFE	输出模式: 基本计数器上溢中断使能 输入捕获模式: 基本计数器上溢中断使能 输入计数模式: 基本计数器上溢中断使能 0: 不使能 1: 使能
[2]	T2FE	输入信号滤波使能 0: 不使能 1: 使能
[1]	T2DIR	QEP&RSD: 电机旋转方向表示 根据两路输入信号的相位关系,指示电机旋转方向 步进模式: 电机旋转方向表示 根据方向信号(P1.0)的变化,指示电机旋转方向 0: 正向 1: 反向
[0]	T2CEN	基本计数器使能 0: 不使能 1: 使能

15.2.3 TIM2_CNTR (0xAA, 0xAB)

	TIM2_CNTRH(0xAB)									
位	15	14	13	12	11	10	9	8		
名称		TIM2_CNTR[15:8]								
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
复位值	0	0	0	0	0	0	0	0		
	TIM2_CNTRL(0xAA)									
位	7	6	5	4	3	2	1	0		
名称				TIM2_CN	TR[7:0]					
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
复位值	0	0	0	0	0	0	0	0		
位	名称		描述							
[15:0]	TIM2_CNT	输出模式/	输入捕获模	式/输入计数	效模式: 基本	计数器的计	 -数值			
[13.0]	R	QEP&RSD	模式/步进	模式:专用计	数器的计数	対値				

15.2.4 TIM2_DR (0xAC, 0xAD)

	TIM2_DRH(0xAD)											
位	15	14	13	12	11	10	9	8				
名称			TIM2_DR[15:8]									
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W				
复位值	0	0	0	0	0	0	0	0				
TIM2_DRL(0xAC)												
位	7	6	6 5 4 3 2 1 0									
名称				TIM2	DR[7:0]							
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W				
复位值	0	0	0	0	0	0	0	0				
位	名称				描述							
		输出模式	忧: 比较匹配	值(软件写)								
		输入捕获	夹模式: 检测	到的输入脉	宽的计数值	(硬件写)						
[15:0]	TIM2_DR	输入计数	枚模式: 需要	计数 PWM	的个数(软件	等)						
[15.0]	TIMZ_DR	QEP&RS	SD 模式: TI	M2_CR0[T2	CES] = 1 时	亅,外部中 断	f INT1(零点)到来时,				
		专用计数	女器的值(硬·	件写)								
		步进模式	忧: 无意义									

15.2.5 TIM2_ARR (0xAE, 0xAF)

	TIM2_ARRH(0xAF)										
位	15	14	13	12	11	10	9	8			
名称		TIM2_ARR[15:8]									
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
复位值	0	0	0	0	0	0	0	0			
	TIM2_ARRL(0xAE)										
位	7	6	6 5 4 3 2 1 0								
名称				TIM2_A	RR[7:0]						
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
复位值	0	0	0	0	0	0	0	0			
位	名称				描述						
		输出模式	: PWM 波用	/周期(软件)	写)						
	TIMO AD	输入捕获	模式: 检测-	一个 PWM F	周期时基本记	十数器的计数	数值(硬件写)			
[15:0]	TIM2_AR R	输入计数	模式: 输入	PWM 计数[匹配时基本记	十数器的计数	数值(硬件写)			
	ĸ	QEP&RS	D 模式&步	进模式: 检测	則到输入边沿	3为有效边沿	引时基本计数	枚器的计数			
		值(硬件写	≣)								

16 Timer3/Timer4

16.1 Timer3/Timer4 操作说明

Timer3/Timer4 支持输出和输入两种模式:

- 输出模式: 输出PWM波形
- 输入捕获模式: 检测输入PWM高低电平的持续时间,可用于算出PWM占空比

Timer3/Timer4 特性包括:

- 3位可编程分频器对系统时钟进行分频,作为基本计数器的时钟源(Timer3作为输入捕获时可以倍频至48MHz)。
- 16位向上计数的基本计数器、计数时钟源为分频器的输出
- 输入信号滤波
- 输入信号边沿检测
- 输出 PWM 信号,单次比较输出
- 中断事件

16.1.1 分频器

分频器对系统时钟进行分频,产生基本计数器的计数时钟源。分频器由 TIMx_CR0[TxPSC]控制,可选择 8 种分频系数。由于这个控制寄存器没有缓冲器,分频系数更新后会立刻改变时钟源频率,所以应在基本计数器不工作时更新分频系数。时钟源的频率为 clk_pscx = SYSCLK/(2^TxPSC)。分频后的时钟源频率与 TIMx_CR0[TxPSC]的关系如表 16-1 所示。

表 16-1 分频后的时钟源频率与 TIMx_CR0[TxPSC]对应关系

TIMx_CR0[TxPSC]	分频系数	clk_pscx(Hz)	TIMx_CR0[TxPSC]	分频系数	clk_pscx(Hz)
000	0x1	24M	100	0x10	1.5M
001	0x2	12M	101	0x20	750k
010	0x4	6M	110	0x40	375k
011	0x8	3M	111	0x80	187.5k

注: Timer3 的输入捕获模式下, TIM3_CR0[T3PSC] = 111 对应的是 48MHz

16.1.2 TIMx__CNTR 的读写和计数

TIMx_CR1[TxEN] = 1 后 TIMx_CNTR 开始计数。软件对 TIMx_CNTR 的写操作将直接改变寄存器的值,因此软件需在计数器停止时执行写操作。软件读 TIMx_CNTR 时,先读高字节,硬件会同步将此时刻低字节缓存,待读低字节时读取到的是缓存的数据。

16.1.3 输出模式

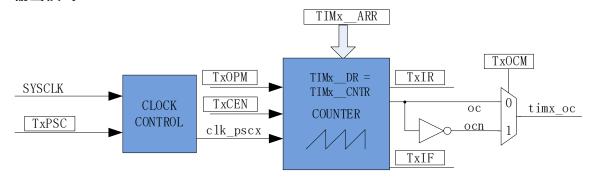


图 16-1 输出模式原理框图

基本计数器输出模式根据 TIMx_CR0[TxOCM]设置,以及 TIMx_CNTR 与寄存器 TIMx_DR、TIMx_ARR 设定值的比较结果产生输出信号,同时产生相应中断。

16.1.3.1 高/低电平输出模式

配置 TIMx_CR0[TxOCM] = 0 时,如果 TIMx_DR > TIMx_ARR,则输出信号始终为低电平。配置 TIMx_CR0[TxOCM] = 1 时,如果 TIMx_DR > TIMx_ARR,则输出信号始终为高电平。

16.1.3.2 PWM 输出

PWM 输出模式下,TIMx_ARR 的设定值决定 PWM 周期,TIMx_DR 的设定值决定占空比,占空比 = TIMx_DR/TIMx_ARR*100%。配置 TIMx_CR0[TxOCM] = 0 时,如果基本计数器值 TIMx_CNTR < TIMx_DR 设定值,输出低电平,反之输出高电平。配置 TIMx_CR0[TxOCM] = 1 时,如果基本计数器值 TIMx_CNTR < TIMx_DR 设定值,输出高电平,反之输出低电平。如果基本计数器值 TIMx_CNTR < TIMx_ARR,则输出信号反转。

16.1.3.3 中断事件

- 当 TIMx_CNTR = TIMx_DR,产生比较匹配事件,中断事件标志位 TIMx_CR1[TxIR]置 1,基本计数器继续计数。
- 当 TIMx_CNTR = TIMx_ARR,产生上溢事件,中断事件标志位 TIMx_CR1[TxIF]置 1,基本 计数器清 0, TIMx_CR0[TxOPM]决定是否重新计数,TIMx_CR0[TxOPM] = 1,停止计数, TIMx_CR0[TxOPM] = 0,重新开始计数。

图 16-2 输出模式输出波形

16.1.4 输入信号滤波和边沿检测

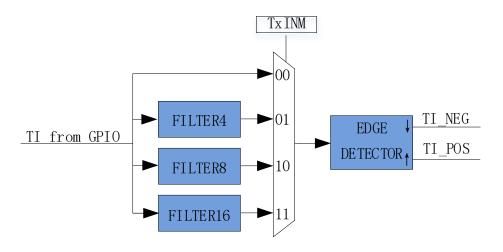
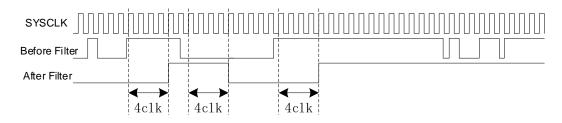



图 16-3 输入信号滤波和边沿检测框图

Timer3/Timer4 的输入信号由 GPIO 输入。TIMx_CR1[TxINM]可以选择不滤波,或者 4/8/16 个系统时钟周期对输入信号滤波。滤波后的信号比滤波前的信号延迟 4/8/16 个时钟周期。

16-4 滤波模块时序图

滤波模块对输入信号滤波后,边沿检测模块对滤波后的输入信号进行检测,记录上升沿和下降沿, 供输入捕获模式使用。

16.1.5 输入捕获模式

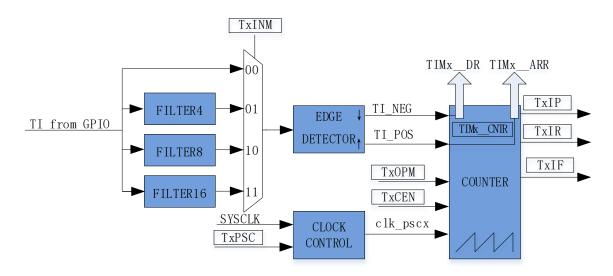


图 16-5 输入捕获模式原理框图

输入捕获模式检测输入 PWM 信号的脉宽和周期。TIMx_CR0[TxOCM] = 0 时,选择相邻两个上升沿为 1 个周期,上升沿到下降沿为脉宽(高电平脉宽)。TIMx_CR0[TxOCM] = 1 时,选择相邻两个下降沿为 1 个周期,下降沿到上升沿为脉宽(低电平脉宽)。基本计数器 TIMx_CNTR 计数到的脉宽和周期值被分别存入 TIMx_DR 和 TIMx_ARR 寄存器。

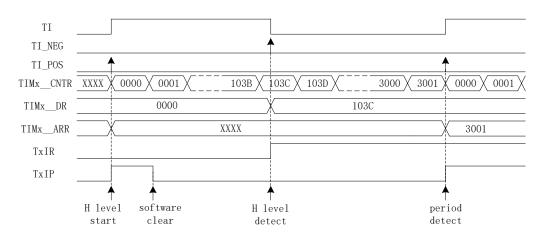


图 16-6 输入捕获模式(TIMx_CR0[TxOCM] = 0)时序图

以 TIMx_CR0[TxOCM] = 0 为例,配置 TIMx_CR1[TxEN] = 1,使能基本计数器。基本计数器向上计数,当检测到第一个上升沿时,基本计数器清 0 并重新开始计数。当检测到下降沿时,将 TIMx_CNTR 的值存进 TIMx_DR,同时中断事件标志位 TIMx_CR1[TxIR]置 1,TIMx_CNTR 继续向上计数。当检测到输入的第二个上升沿时,将 TIMx_CNTR 的值存进 TIMx_ARR,同时中断事件标志位 TIMx_CR1[TxIP]置 1,TIMx_CNTR 清 0,根据 TIMx_CR0[TxOPM]决定是否重新开始计数, TIMx_CR0[TxOPM] = 1,停止计数;TIMx_CR0[TxOPM] = 0,重新计数。

当 Timer3/Timer4 尚未检测到输入的第二个上升沿,且计数值 TIMx_CNTR 达到 0xFFFF 时,发生上溢事件,中断事件标志位 TIMx_CR1[TxIF]置 1,TIMx_CNTR 清 0。根据 TIMx_CR0[TxOPM]决定是否重新计数,TIMx_CR0[TxOCM]= 1,停止计数;TIMx_CR0[TxOPM] = 0,重新计数。

16.1.6 Timer4 的 FG 输出模式

请参考 FG 输出产生。

16.2 Timer3/Timer4 寄存器

$16.2.1 \text{ TIMx_CR0 } (0x9C/0x9E) (x = 3/4)$

位	7	6	5	4	3	2	1	0	
名称		TxPSC		TxOCM	TxIRE	RSV	TxOPM	TxMOD	
类型	R/W	R/W	R/W	R/W	R/W	-	R/W	R/W	
复位值	0	0	0	0	0	-	0	0	
位	名称				描述				
[7:5]	TxPSC	基本计数器时钟源分频选择 用于对系统时钟进行分频作为基本计数器的时钟源,分频后的时钟源频率为: 000: 24MHz							
[4]	TxOCM	输出模式: 0: TIMx_0 1: TIMx_0 输入捕获机 0: 相邻两个 1: 相邻两个	输出模式: 输出模式选择 0: TIMx_CNTR < TIMx_DR, 输出 0; TIMx_CNTR ≥ TIMx_DR, 输出 1 1: TIMx_CNTR < TIMx_DR, 输出 1; TIMx_CNTR ≥ TIMx_DR, 输出 0 输入捕获模式: 有效沿选择 0: 相邻两个上升沿为 1 个周期,上升沿到下降沿为脉宽(高电平脉宽) 1: 相邻两个下降沿为 1 个周期,下降沿到上升沿为脉宽(低电平脉宽)						
[3]	TxIRE	输出模式: 比较匹配中断使能 输入捕获模式: 脉宽检测中断使能 0: 不使能 1: 使能							
[2]	RSV	保留	保留						
[1]	TxOPM	单次模式 下列事件》	支生时,基2	下计数器停↓	上计数使能				

输出模式: 基本计数器上溢事件

		输入捕获模式: PWM 周期检测或基本计数器上溢事件
		0: 基本计数器不停止
		1: 基本计数器停止(TIMx_CR1[TxEN]清 0)
		工作模式选择
[0]	TxMOD	0: 输入捕获模式
		1: 输出模式

$16.2.2 \text{ TIMx_CR1 } (0x9D/0x9F) (x = 3/4)$

位	7	6	5	4	3	2	1	0
名称	TxIR	TxIP	TxIF	TxIPE	TxIFE	TxI	NM	TxEN
类型	R/W0	R/W0	R/W0	R/W	R/W	R/W	R/W	R/W
复位值	0	0	0	0	0	0	0	0
	1	1	1	1	1		1	1

位	名称	描述
		输出模式: 比较匹配中断事件标志位
		输入捕获模式: 脉宽检测中断事件标志位
		读:
[7]	TxIR	0: 未发生中断事件
[/]	IXIK	1: 发生中断事件
		写:
		0: 清 0
		1: 无意义
		输出模式: 无意义
		输入捕获模式: PWM 周期检测中断事件标志位
		读:
[6]	TxIP	0: 未发生中断事件
[0]	IXIP	1: 发生中断事件
		写:
		0: 清 0
		1: 无意义
		输出模式: 基本计数器上溢中断事件标志位,当基本计数器值 TIMx_CNTR 与
		比较值 TIMxARR 匹配时置 1。
		输入捕获模式: 基本计数器上溢中断事件标志位,Timer 尚未检测输入的 PWM
[-]	-	周期而基本计数器 TIMx_CNTR 已经累加到 0xFFFF 时置 1。
[5]	TxIF	读:
		0: 未发生中断事件
		1: 发生中断事件
		写:
	l	1

		0: 清 0
		1: 无意义
		输出模式: 无意义
[4]	TxIPE	输入捕获模式: PWM 周期检测中断使能
[4]	IXIPE	0: 不使能
		1: 使能
		输出模式: 基本计数器上溢中断使能
[3]	TxIFE	输入捕获模式: 基本计数器上溢中断使能
[3]	IXIFE	0: 不使能
		1: 使能
		输入信号滤波脉宽选择
		当输入信号的脉宽小于设定值,被当作噪声滤除
[2:1]	TxINM	00: 不滤波
[2.1]	IXIINIM	01: 4 个系统时钟周期
		10:8 个系统时钟周期
		11: 16 个系统时钟周期
		基本计数器使能
[0]	TxEN	0: 不使能
		1: 使能

16.2.3 TIMx_CNTR (0xA2, 0xA3/0x92, 0x93) (x = 3/4)

	TIMx_CNTRH(0xA3/0x93)							
位	15	15 14 13 12 11 10 9 8						
名称				TIMx_CN	NTR[15:8]			
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
复位值	0	0	0	0	0	0	0	0
	TIMx_CNTRL(0xA2/0x92)							
位	7	6	5	4	3	2	1	0
名称				TIMx_C	NTR[7:0]			
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
复位值	0	0	0	0	0	0	0	0
位	名称	名称 描述						
[15:0]	TIMx_CN	TIMx_CNTR 基本计数器的计数值						

16.2.4 TIMx DR (0xA4, 0xA5/0x94, 0x95) (x = 3/4)

	TIMx_DRH(0xA5/0x95)								
位	15	15 14 13 12 11 10 9 8							
名称				TIMx_D	R[15:8]				
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
复位值	0	0	0	0	0	0	0	0	
			TIMx_	DRL(0xA4/	0x94)				
位	7	6	5	4	3	2	1	0	
名称				TIMx	DR[7:0]				
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
复位值	0	0	0	0	0	0	0	0	
位	名称	描述							
[15:0]	TIMx_D	输出模式: 比较匹配值(软件写)							
[13.0]	R	输入捕获机	莫式: 检测到	输入脉宽的	计数值(硬件	牛写)			

16.2.5 TIMx_ARR (0xA6, 0xA7/0x96, 0x97) (x = 3/4)

	TIMx_ARRH(0xA7/0x97)								
位	15	15 14 13 12 11 10 9 8							
名称				TIMx_AF	RR[15:8]				
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
复位值	0	0	0	0	0	0	0	0	
			TIMx_A	ARRL(0xA6	/0x96)				
位	7	6	5	4	3	2	1	0	
名称				TIMx_A	RR[7:0]				
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
复位值	0	0	0	0	0	0	0	0	
位	名称		描述						
[15:0]	新出模式: 重载值(软件写)。FG 模式参考 FG 输出产生								
[15:0]	TIMx_ARR	输入捕药	快模式: 检测	到一个 PW	M 周期的计	数值(硬件写	≣)		

17 Systick

17.1 Systick 操作说明

芯片可产生固定时间的 Systick 中断。配置 SYST_ARR 寄存器设置产生中断的周期,配置 DRV_SR[SYSTIE] = 1 使能 Systick 中断,中断入口为 10。

17.2 Systick 寄存器

17.2.1 DRV_SR (0x4061)

位	7	6	5	4	3	2	1	0
名称	SYSTIF	SYSTIE	FGIF	DCIF	FGIE	DCIP	DC	M
类型	R/W0	R/W	R/W0	R/W0	R/W	R/W	R/W	R/W
复位值	0	0	0	0	0	0	0	0

位	名称	描述
		Systick 中断事件标志位
		读:
		0: 未发生中断事件
[7]	SYSTIF	1: 发生中断事件
		写:
		0: 清 0
		1: 无意义
		Systick 中断使能
[6]	[6] SYSTIE	0: 不使能
		1: 使能
		FG 中断事件标志位
		FOC 驱动/方波驱动时,每转一圈(电周期),产生一次 FGIF 中断
		读:
[5]	FGIF	0: 未发生中断事件
[5]	1 011	1: 发生中断事件
		写:
		0: 清 0
		1: 无意义
		Driver 比较匹配中断事件标志位
		当 Driver 计数值等于 DRV_COMR 时,根据 DRV_SR[DCIM]设置的计数方
[4]	DCIF	向,判断是否产生中断
		读:
		0: 未发生中断事件

		1: 发生中断事件
		写:
		0: 清 0
		1: 无意义
		FG 中断使能
[3]	FGIE	中断使能后,FOC 驱动/方波驱动时,每转一圈(电周期),产生一次 FG 中断
[3]	FGIE	0: 不使能
		1: 使能
		产生 Driver 比较匹配中断的载波周期数
[2]	DCIP	0: 1 个载波周期产生 1 次中断
		1: 2 个载波周期产生 1 次中断
		比较匹配中断模式设置
		当计数值等于 DRV_COMR 时,根据 DRV_SR[DCIM]的设置判断是否产生中断
[1:0]	DCIM	00: 不产生中断
[1.0]		01: 计数器向上计数时产生中断
		10: 计数器向下计数时产生中断
		11: 计数器向上/向下计数时都产生中断

17.2.2 SYST_ARR (0x4064, 0x4065)

			SYST_	ARRH(0x40	064)				
位	15	5 14 13 12 11 10 9 8							
名称				SYST_AR	R[15:8]				
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
复位值	0	1	0	1	1	1	0	1	
	SYST_ARRL(0x4065)								
位	7	6	5	4	3	2	1	0	
名称				SYST_AF	RR[7:0]				
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
复位值	1	0	1	1	1	1	1	1	
位	名称				描述				
		Systick 重	载值						
[15.0]	CVCT ADD	设置此值决定 Systick 产生中断的周期,默认为 1ms							
[15:0]	SYST_ARR	计算公式为	句: Systick ¤	中断频率 = \$	SYSCLK/(S	YST_ARR[1	5:0] + 1)		
		取值范围[0,65535]						

18 Driver

18.1 Driver 操作说明

18.1.1 Driver 简介

芯片内置 Pre-driver 输出。

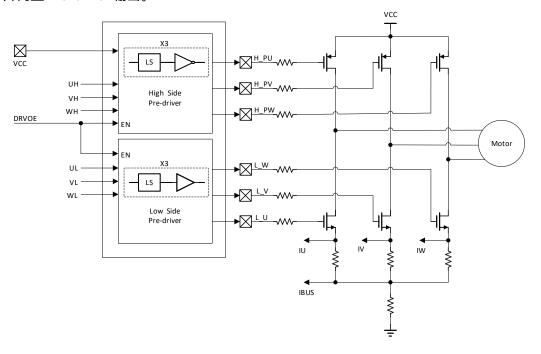


图 18-1 Pre-driver 模块框图

3P3N Pre-driver 驱动模块如图 18-1 所示,UH/VH/WH 和 UL/VL/WL 三相 PWM 信号为 Pre-driver 的输入信号,H_PU/H_PV/H_PW 及 L_U/L_V/L_W 引脚为 Pre-driver 的输出信号。注意 H_PU/H_PV/H_PW 与内部信号 UH/VH/WH 为反向关系。DRV_CR[DRVOE]为 Pre-driver 的使能位。

配置寄存器 DRV_CR[DRVOE] = 1, 使能 Pre-driver 输出, 此时 UH/VH/WH 分别被反向后送至 H_PU/H_PV/H_PW 引脚用于驱动 PMOS 的栅极, UL/VL/WL 分别被送至 L_U/L_V/L_W 引脚用于驱动 NMOS 的栅极。PMOS 和 NMOS 输出电压驱动电机运转。

Inp	out	Output			
UH/VH/WH	UL/VL/WL	HU/HV/HW	LU/LV/LW		
L	L	Н	L		
L	Н	Н	Н		
Н	L	L	L		
Н	Н	L	Н		

表 18-1 3P3N 内置 Pre-driver 信号真值表

18.1.2 输出控制模块

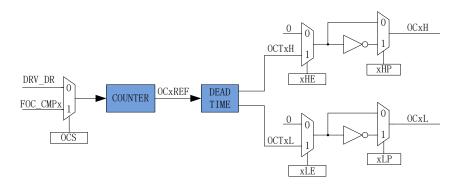


图 18-2 输出控制模块前级框图

配置 Driver 模块工作前,需配置 DRV_CR[MESEL] = 1,即 ME 选择 FOC 模式,反之为方波驱动模式。

当 DRV_CR[OCS] = 0 时,PWM 的比较值来自 DRV_DR,输出的 PWM 信号以 OCTxH 为参考,当 OCxH 和 OCxL 同时输出时,OCTxL 反相输出。当 DRV_CR[OCS] = 1 时,PWM 的比较值来自 FOC 模块,输出的 PWM 信号以 OCTxL 为参考,当 OCxH 和 OCxL 同时输出时,OCTxH 反相输出。

18.1.2.1 计数比较模块

配置 DRV_CR[OCS]选择 PWM 的比较值来自 FOC 模块的 FOC_CMPU/V/W 或软件设置的比较值 DRV_DR。比较值送至计数器比较后得到三路原始 PWM 信号 OCxREF,其中 DRV_DR 用于实现电机 预充电、刹车和方波控制。当计数值 DRV_CNTR 小于比较值,OCxREF 输出高电平;反之,输出低电平。

配置 DRV_CR[OCS] = 1, 比较值来自 FOC 模块的 FOC_CMPU/V/W 并与计数值比较, 生成占空比 OC1REF/OC2REF/OC3REF。

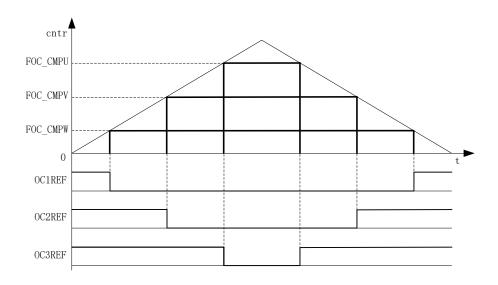


图 18-3 PWM 生成图

配置DRV_CR[OCS] = 0,选择软件设置的比较值DRV_DR与计数值比较,生成三路占空比相同的OC1REF/OC2REF/OC3REF。占空比 = DRV_DR/DRV_ARR*100%。

18.1.2.2 死区模块

OCxREF可硬件完成死区时间插入。每个通道都有一个8位的死区发生器,三个通道的死区延时相同,通过DRV_DTR设置死区时间。当OCxREF上升沿发生时,OCxL的实际输出高电平比OCxREF的上升沿延迟DRV_DTR设定的时间。当OCxREF下降沿发生时,OCxH的实际输出高电平比OCxREF的下降沿延迟DRV_DTR设定的时间。

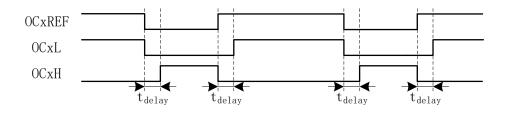


图 18-4 带死区插入的互补输出

18.1.2.3 输出使能与极性

软件配置 DRV_CMR[xHE]和[xLE]选择输出模式为空闲电平或者插入死区的互补输出。软件配 DRV_CMR[xHP]和[xLP]选择输出的极性。在应用于方波控制时,Timer1 自动控制 DRV_CMR 达到 换相的功能。配置 DRV_CR[MESEL] = 0,选择方波驱动模式,当 Timer1 产生写入时序时,对应的 TIM1_DBRx 传输到 DRV_CMR。

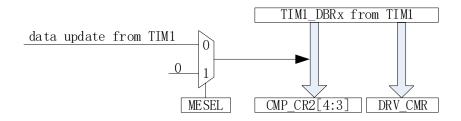


图 18-5 Timer1 自动控制 DRV_CMR 和 CMP_CR2[4:3]

配置DRV_DR、DRV_ARR和DRV_CMR可实现预充电和刹车等功能,DRV_DR和DRV_ARR控制PWM占空比和载波频率,DRV_CMR[xHE]和DRV_CMR[xLE]控制六路输出模式。

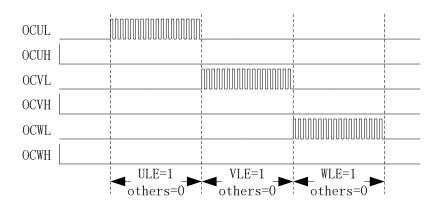


图 18-6 预充电波形图

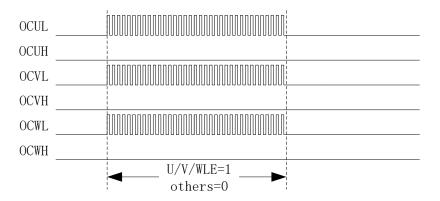


图 18-7 刹车波形图

18.1.2.4 主输出使能 MOE

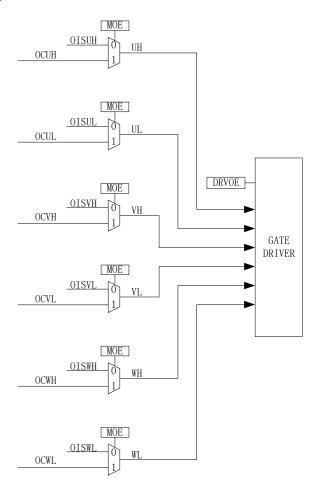


图 18-8 输出控制模块后级框图

使能DRV_OUT[MOE],输出PWM波形,用于驱动电机。禁止DRV_OUT[MOE],输出软件设置的空闲电平,停止电机驱动。

18.1.2.5 中断

18.1.2.5.1 比较匹配中断

通过DRV_SR[DCIM]设置比较匹配中断产生的条件,设置比较值DRV_COMR设定比较匹配中断产生的时间。当计数器的计数值等于DRV_COMR,且符合DRV_SR[DCIM]设置的条件时,产生Driver比较匹配中断请求,中断标志位DRV_SR[DCIF]硬件置1。

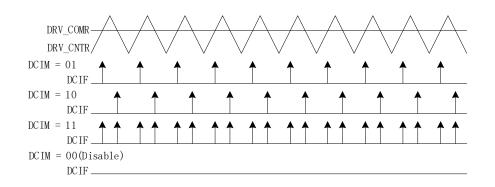


图 18-9 Driver 比较匹配中断

18.1.2.5.2 FG 中断

设置 DRV_SR[FGIE]使能 FG 中断,电机每转一圈(电角度),产生一次中断请求。

18.2 Driver 寄存器

18.2.1 DRV_CR (0x4062)

位	7	6	5	4	3	2	1	0
名称	DRVEN	DDIR	FOCEN	DRPE	ocs	MESEL	RSV	DRVOE
类型	R/W	R/W	R/W	R/W	R/W	R/W	_	R/W
复位值	0	0	0	0	0	0	_	0
位	名称				描述			
[7]	DRVEN	计数器使能 0: 不使能 1: 使能	计数器使能 D: 不使能					
[6]	DDIR	改变电机的	输出方向(正反转) 改变电机的转动方向,方波驱动和 FOC 驱动均有效。无感 FOC 改变此位即可 改变方向,有感 FOC 还需配合软件修改角度,方波驱动需修改 Timer1 相关参 数。 0: 正转					
[5]	FOCEN	FOC 模块使能 0: 不使能 1: 使能						
[4]	DRPE		DRV_DR 预装载使能使能预装载后,软件写 DRV_DR 后,数值在计数器发生下溢事件后更新;禁止预装载,软件写 DRV_DR 后,数值立刻更新					

		0: 不使能
		1: 使能
		比较值来源选择
[3]	ocs	0: DRV_DR
		1: FOC 模块
		ME 工作模式选择
[2]	MESEL	0: 方波驱动模式
		1: FOC 驱动模式
[1]	RSV	保留
		Driver 使能
[0]	DRVOE	0: 不使能
		1: 使能

18.2.2 DRV_SR (0x4061)

位	7	6	5	4	3	2	1	0
名称	SYSTIF	SYSTIE	FGIF	DCIF	FGIE	DCIP	DC	IM
类型	R/W0	R/W	R/W0	R/W0	R/W	R/W	R/W	R/W
复位值	0	0	0	0	0	0	0	0

位	名称	描述
		Systick 中断事件标志位
		读:
		0: 未发生中断事件
[7]	SYSTIF	1: 发生中断事件
		写:
		0: 清 0
		1: 无意义
		Systick 中断使能
[6]	SYSTIE	0: 不使能
		1: 使能
		FG 中断事件标志位
		读:
		0: 未发生中断事件
[5]	FGIF	1: 发生中断事件
		写:
		0: 清 0
		1: 无意义
[4]	DCIF	Driver 比较匹配中断事件标志位
[4]	DCIF	当 Driver 计数值等于 DRV_COMR 时,根据 DRV_SR[DCIM]设置的计数方向

		判断是否产生中断
		读:
		0: 未发生中断事件
		1: 发生中断事件
		写:
		0: 清 0
		1: 无意义
		FG 中断使能
[3]	FGIE	中断使能后,FOC 驱动/方波驱动每转一圈(电周期),产生一次 FG 中断
[3]	I OIL	0: 不使能
		1: 使能
		产生 Driver 比较匹配中断的周期数
[2]	DCIP	0: 1 个载波周期
		1: 2 个载波周期
		比较匹配中断模式设置
		当计数值等于 DRV_COMR 时,根据 DRV_SR[DCIM]的设置判断是否产生中断
		请求
[1:0]	DCIM	00: 不产生中断
		01: 计数器向上计数时产生中断
		10: 计数器向下计数方向时产生中断
		11: 计数器向上/向下计数时都产生中断

18.2.3 DRV_OUT (0xF8)

位	7	6	5	4	3	2	1	0
名称	MOE	RSV	OISWL	OISWH	OISVL	OISVH	OISUL	OISUH
类型	R/W	-	R/W	R/W	R/W	R/W	R/W	R/W
复位值	0	-	0	0	0	0	0	0

位	名称	描述
[7]	MOE	主输出使能用于选择三相上下桥输出信号的来源。该位可由软件置 1 和清 0。母线电流保护产生(见章节 28.1.1.1)时,硬件自动清 0,关闭输出。0: 不使能,输出来源于空闲电平DRV_OUT[OISUH]/DRV_OUT[OISVH]和DRV_OUT[OISUL]/DRV_OUT[OISVL]。1: 使能,输出来源于计数器比较值
[6]	RSV	保留
[5]	OISWL	WL 的输出空闲电平 参考 OISUH 描述

F/1	OICWILL	WH 的输出空闲电平
[4]	OISWH	参考 OISUH 描述
[3]	OISVL	VL 的输出空闲电平
[3]	OISVL	参考 OISUH 描述
[2]	OISVH	VH 的输出空闲电平
	OISVH	参考 OISUH 描述
[1]	OISUL	UL 的输出空闲电平
[1]	OISOL	参考 OISUH 描述
		UH 的输出空闲电平
		该位设置 UH 的输出空闲电平。当 DRV_OUT[MOE] = 0 时,输出空闲电平关
[0]	OISUH	闭 MOS
		0: 低电平
		1: 高电平

18.2.4 DRV_CMR (0x405C, 0x405D)

	DRV_CMRH(0x405C)							
位	15	14	13	12	11	10	9	8
名称		RS	SV		WHP	WLP	VHP	VLP
类型	ı	-	ı	-	R/W	R/W	R/W	R/W
复位值	-	_	-	_	0	0	0	0
			DRV _.	_CMRL(0x4	05D)	•		•
位	7	6	5	4	3	2	1	0
名称	UHP	ULP	WHE	WLE	VHE	VLE	UHE	ULE
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
复位值	0	0	0	0	0	0	0	0
位	名称				描述			
[15:12]	RSV	保留						
[11]	WHP		W 相上管输出极性 0: 高电平有效					
[10]	WLP	W 相下管辖 0: 高电平存	1. 低电平有效 W 相下管輸出极性 0: 高电平有效 1: 低电平有效					
[9]	VHP	V 相上管辖 0: 高电平存 1: 低电平存	有效					

[0]	VIID	Ⅴ相下管输出极性
[8]	VLP	0: 高电平有效
		1: 低电平有效
		U 相上管输出极性
[7]	UHP	0: 高电平有效
		1: 低电平有效
		U相下管输出极性
[6]	ULP	0: 高电平有效
		1: 低电平有效
		W 相上管输出使能
[5]	WHE	0: 不使能
		1: 使能
	WLE	W相下管输出使能
[4]		0: 不使能
		1: 使能
		V 相上管输出使能
[3]	VHE	0: 不使能
		1: 使能
		V 相下管输出使能
[2]	VLE	0: 不使能
		1: 使能
		U 相上管输出使能
[1]	UHE	0: 不使能
		1: 使能
		U相下管输出使能
[0]	ULE	0: 不使能
		1: 使能
	I	1

注:

- 当 DRV_CMR[W/V/ULE]和 DRV_CMR[W/V/UHE]同时为 1, W/V/U 相以下桥为参考,上下桥 互补输出 PWM 波,同时自动插入死区。
- 方波驱动时,Timer1 会自动控制 DRV_CMR 寄存器

18.2.5 DRV_ARR (0x405E, 0x405F)

DRV_ARRH(0x405E)									
位	15 14 13 12 11 10 9 8								
名称	RS	V		DRV_ARR[13:8]					
类型	-	-	R/W	R/W	R/W	R/W	R/W	R/W	
复位值	ı	-	0	0	0	0	0	0	

DRV_ARRL(0x405F)										
位	7	6 5 4 3 2 1 0								
名称		DRV_ARR[7:0]								
类型	R/W	R/W	R/W R/W R/W R/W R/W R/W							
复位值	0	0	0	0	0	0	0	0		
位	名称	描述								
[15:14]	RSV	保留	保留							
[13:0]	DRV_ARR	Driver 计数 数到 0 计算公式:	计数器的重载值,决定载波频率(中央对齐模式) Driver 计数器从 0 开始计数到 DRV_ARR/2 - 1,产生上溢事件,然后向下计							
		 注: 最低位恒为 0,写 1 无意义								

18.2.6 DRV_COMR (0x405A, 0x405B)

DRV_COMRH(0x405A)										
位	15	14	13	12	11	10	9	8		
名称	RSV				DRV_COMR[11:8]					
类型	-	-	-	-	R/W	R/W	R/W	R/W		
复位值	-	-	-	-	0	0	0	0		
	DRV_COMRL(0x405B)									
位	7	6	5	4	3	2	1	0		
名称			DRV_COMR[7:0]							
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
复位值	0	0	0	0	0	0	0	0		
位	名称		描述							
[15:12]	RSV	保留	保留							
		计数器的比较匹配值								
		当计数值	当计数值与 DRV_COMR 相等且满足 DRV_SR[DCIM]设定的条件时,产生							
[11:0]	DRV_COMR DRV 比较匹配中断请求,DRV_COMR 的值等效以时钟 12MHz i						†算。			
	匹配点对应的占空比 = DRV_COMR*4/DRV_ARR*100%									
		DRV_C	DRV_COMR 的值以时钟 12MHz 计算,取值范围[0,4095]							

18.2.7 DRV_DR (0x4058, 0x4059)

DRV_DRH(0x4058)										
位	15	14	13	12	11	10	9	8		
名称	RS	SV	DRV_DR[13:8]							
类型	-	-	R/W	R/W	R/W	R/W	R/W	R/W		
复位值	-	-	0	0	0	0	0	0		
DRV_DRL(0x4059)										
位	7	6	5	4	3	2	1	0		
名称				DRV_D	R[7:0]					
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
复位值	0	0	0	0	0	0	0	0		
位	名称		描述							
[15:14]	RSV	保留	保留							
		软件 PWM	占空比设定	官值						
		占空比 = [DRV_DR/DR	RV_ARR*100)%					
[13:0]	DRV_DR	DRV_DR f	DRV_DR 的值以时钟 48MHz 计算,取值范围[0,16383]。							
[13.0]										
		注: 当使用	该寄存器作	为比较源时	,输出 PW	M 以上桥为	参考下桥为:	插入死区		
	的互补输出									

18.2.8 DRV_DTR (0x4060)

位	7	6	5	4	3	2	1	0		
名称	DRV_DTR									
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
复位值	0	0	0	0	0	0	0	0		
位	名称	名称 描述								
[7:0]	DRV_DTR	死区时间 例:DRV_I	死区时间设置 死区时间 = (DRV_DTR + 1)*T 例:DRV_DTR = 11,则死区时间 = 12*41.67ns = 500ns 注: 如果设定 DRV_DTR = 0,不插入死区时间							

18.2.9 DRV_CNTR (0x4066, 0x4067)

			DRV_C	NTRH(0x40)66)							
位	15	14	13	12	11	10	9	8				
名称		RSV	,			DRV_CN	ITR[11:8]					
类型	-	-	ı	ı	R/W	R/W	R/W	R/W				
复位值	-	-	ı	ı	0	0	0	0				
	DRV_CNTRL(0x4067)											
位	7	6	5	4	3	2	1	0				
名称			DRV_CNTR[7:0]									
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W				
复位值	0	0	0	0	0	0	0	0				
位	名称				描述							
[15:12]	RSV	保留										
		计数器值										
		DRV_CN	TR 的值以B	寸钟 12MHz	t 计算,Dri	ver 对应占	空比 =					
[11:0]	DRV_CNTR	DRV_CN	TR*4/DRV_	ARR*100%	•							
[11.0]	DKV_CNIK	取值范围[取值范围[0,4095]									
		注: 只有在	DRV_CR[[ORVEN] = 1	1时,才能5	写入 DRV_	CNTR					

19 WDT

看门狗定时器是一个工作在内部慢时钟时域下的定时器,主要用于监控主程序运行,防止 MCU 出现死机的情况。看门狗的工作原理是: 启动看门狗后,看门狗的定时器开始计数。当看门狗定时器 溢出时,看门狗发送信号使 MCU 复位,程序从地址 0 开始运行。在主程序运行过程中,每隔一段时间对看门狗的定时器进行初始化,以防止看门狗定时器溢出,俗称喂狗。

看门狗在启动后从 0 开始计时,当计时到 0xFFFC 时输出一个长度为 4 个内部慢时钟周期的信号 使 MCU 复位,程序从地址 0 开始运行。程序在运行中定时给看门狗发送喂狗信号,看门狗定时器将 回到 WDT ARR 的设定值,并重新开始计数。

19.1 WDT 使用注意事项

- MCU进入待机模式或睡眠模式时,WDT将停止计数,但计数值仍会保留
- MCU在仿真过程中, WDT将会被自动禁用
- WDT定时器溢出使MCU复位时, RST_SR[RSTWDT]将会置1

19.2 WDT 操作说明

- 1. CCFG1[WDT_EN]置1, 启动看门狗, 看门狗从0开始计数;
- 2. 设置WDT_ARR(本操作也可以放在启动看门狗之前);
- 3. 在程序的运行中设置WDT CR[WDTRF] = 1,看门狗计数器回到WDT ARR。

19.3 WDT 寄存器

19.3.1 WDT_CR (0x4026)

位	7	6	5	4	3	2	1	0	
名称			RSV						
类型	=	-							
复位值	=	-	-	-	-	-	-	0	
位	名称		描述						
[7:1]	RSV	保留							
		看门狗初如	台化						
[0]	WDTRF	0: 无意义	D: 无意义						
		1: 看门狗ù	十数器回到 '	WDT_ARR É	的设定值,并	羊重新开始 记	计数		

19.3.2 WDT_ARR (0x4027)

位	7	6	5	4	3	2	1	0		
名称		WDT_ARR								
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
复位值	0	0	0	0	0	0	0	0		
位	名称		描述							
[7:0]	WDT_ARR	看门狗重载	看门狗重载计数器							
[7:0]	8 位									

19.3.3 CCFG1 (0x401E)

位	7	6	5	4	3	2	1	0
名称	RSV	LVWIE	WDT_EN			RSV		
类型	-	R/W	R/W	-	_	_	-	-
复位值	-	0	0	-	-	-	-	-
位	名称				描述			
[7]	RSV	保留						
		LVW 检测	中断使能					
[6]	LVWIE	0: 不使能						
		1: 使能						
		WDT 使能						
[5]	WDT_EN	0: 不使能						
		1: 使能						
[4:0]	RSV	保留						

20 RTC 与时钟校准

20.1 RTC 基本功能框图

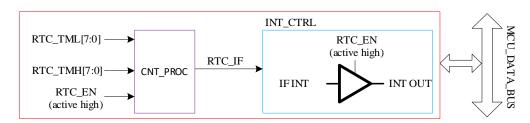


图 20-1RTC 基本功能框图

20.2 RTC 操作说明

写寄存器 RTC_TM,设置 RTC 计数的重载值。配置 RTC_STA[RTC_EN] = 1,使能 RTC 计数。

20.3 RTC 寄存器

20.3.1 RTC_TM (0x402C, 0x402D)

	RTC_TMH(0x402C)										
位	15	14	13	12	11	10	9	8			
名称				RTC_TN	4[15:8]						
类型	R/W	R/W	R/W R/W R/W R/W R/W R/W								
复位值	1	1	1	1	1	1	1	1			
	RTC_TML(0x402D)										
位	7	6	5	4	3	2	1	0			
名称				RTC_T	M[7:0]						
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
复位值	1	1	1	1	1	1	1	1			
位	名称				描述						
		RTC 计数器	寄存器								
[15.0]	RTC_TM	读: 正在计	读: 正在计数的瞬间值								
[15:0]	写: RTC 计数器以 32768Hz 的频率从 0 计数到写入值后溢出,产生中断请							中断请			
		求,计数器	B清 0 并重新	折开始计数。							

20.3.2 RTC_STA (0x402E)

位	7	6	5	4	3	2	1	0
名称	RTC_EN	RTC_IF	RSV	ISOSCEN		R	SV	
类型	R/W	R/W0	-	R/W	-	-	-	-
复位值	0	0	-	0	-	-	-	-
位	名称				描述			
[7]	RTC_EN	RTC 使能 0: 不使能 1: 使能						
[6]	RTC_IF			4 时置 1				
[5]	RSV	保留						
[4]	ISOSCEN	内部慢时银 0: 不使能 1: 使能	中使能					
[3:0]	RSV	保留						

20.4 时钟校准

20.4.1 时钟校准简介

时钟校准是利用内部慢时钟校准内部快时钟的功能。校准原理: 使用一个长度 12 位的计数器,以快时钟为时钟源,连续累积计数 4 个慢时钟周期的长度。

校准方法: 软件设置 CAL_CR0[CAL_STA] = 1,开始校准过程。读 CAL_CR0[CAL_BUSY]标志位确认校准过程是否结束,当校准完成(CAL_CR0[CAL_BUSY] = 0)后,读取 CAL_CR0[CAL_ARR]的值即是使用快时钟连续累积计数 4 个慢时钟的值。

20.4.2 时钟校准寄存器

20.4.2.1 CAL_CR0 (0x4044) CAL_CR1 (0x4045)

	CAL_CR0(0x4044)											
位	15	14	13	12	11	10	9	8				
名称	CAL_STA/ CAL_BUSY		RSV			CAL_AF	AL_ARR[11:8]					
类型	R/W1	-	-	-	R/W	R/W	R/W	R/W				
复位值	1	-	0 0 0									
			CA	L_CR1(0x40)45)							
位	7	6	5	4	3	2	1	0				
名称			CAL_ARR[7:0]									
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W				
复位值	0	0	0	0	0	0	0	0				
位	名称				描述							
[15]	CAL_STA/ CAL_BUSY	1: 表示。写:	过程完成 校准过程正4									
[14:12]	RSV	保留										
[11:0]	CAL_ARR	注: 当此	时钟连续累积				xFFF 时表示	示计数溢出				

21 IO

21.1 IO 简介

FU6332N 支持 22 个 GPIO 引脚,分别为 P0.0 ~ P0.1、P0.4 ~ P0.7、P1.0 ~ P1.2、P1.6 ~ P1.7、P2.0 ~ P2.4、P2.7、P3.0 ~ P3.2 和 P3.4 ~ P3.5。每个 GPIO 端口有相关的配置寄存器用来满足不同应用的需求。

21.2 IO 操作说明

- 端口P0.0 ~ P0.7、P1.0 ~ P1.7、P2.0 ~ P2.7、P3.0 ~ P3.7、P4.2和P4.4 ~ P4.5映射到寄存器 P0、P1、P2、P3、P4。
- P0_OE、P1_OE、P2_OE、P3_OE、P4_OE用于配置P0.0 ~ P3.7、P4.2、P4.4 ~ P4.5的数字 输入输出。当端口配置为输入时,施密特触发输入使能。
- 配置P0_PU、P1_PU、P2_PU、P3_PU、P4_PU对应的位为1, P0.0 ~ P3.7、P4.2和P4.4 ~ P4.5均可使能上拉电阻。其中P0.0 ~ P0.2、P1.3 ~ P1.6、P2.1、P3.6 ~ P3.7的上拉电阻阻值约为5.6kΩ, 其余端口的上拉电阻阻值约为33kΩ。
- P1.1/P0.1可使能下拉电阻,下拉电阻约为10kΩ,下拉电阻由P3_AN[7:6]配置
- 所有IO端口在数字输出0时上拉电阻会被自动关闭
- P0.0 ~ P0.6可配置为外部中断INTO输入,P1.0 ~ P2.7可配置为外部中断INT1输入。INTO和INT1都可以配置为上升沿触发中断、下降沿触发中断或者电平改变触发中断。
- 配置P1_AN、P2_AN和P3_AN对应的位为1, P1.3~P1.7、P2.0~P2.7和P3.0~P3.5可配置为模拟信号模式。端口配置为模拟信号端口后,所有数字功能失效,寄存器P1、P2、P3对应的位读出的端口状态为0。
- P1.6 ~ P1.7、P2.0 ~ P2.7、P3.0 ~ P3.5在端口配置为模拟模式后上拉会自动关闭,P1.3 ~ P1.5端口在配置为模拟模式上拉电阻不会自动关闭,可以根据实际应用需求选择是否开启。
- IO优先级:
 - ▶ 对于所有复用端口, GPIO的优先级最低
 - ▶ P0.0: I²C > TIMER4 > UART > GPIO
 - ▶ P0.1: I²C > TIMER4 > TIMER3 > DBG_SIG > UART > GPIO
 - ➤ P0.5: SPI > UART > GPIO
 - ➤ P0.6: SPI > UART > GPIO
 - ➤ P0.7: TIMER2 > CMP > SPI >GPIO

21.3 IO 寄存器

21.3.1 P0_OE (0xFC)

位	7	6	5	4	3	2	1	0		
名称		P0_OE								
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
复位值	0	0	0	0	0	0	0	0		
位	名称		描述							
[7:0]	P0_OE	P0.0 ~ P0. 择) 0: 输入 1: 输出	7 数字输入	输出选择(FU	J6332N 不到	支持 P0.2 ~	P0.3 数字输	入输出选		

21.3.2 P1_OE (0xFD)

位	7	6	5	4	3	2	1	0		
名称		P1_OE								
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
复位值	0	0	0	0	0	0	0	0		
位	名称		描述							
[7:0]	P1_OE	P1.0 ~ P1 择) 0: 输入 1: 输出	7 数字输入	输出选择(F	U6332N 不:	支持 P1.3 ~	P1.5 数字轴	俞入输出选		

21.3.3 P2_OE (0xFE)

位	7	6	5	4	3	2	1	0		
名称		P2_OE								
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
复位值	0	0	0	0	0	0	0	0		
位	名称		描述							
[7:0]	P2_OE	P2.0 ~ P2 择) 0: 输入 1: 输出	7 数字输入	输出选择(F	U6332N 不	支持 P2.5 ~	P2.6 数字轴	俞入输出选		

21.3.4 P3_OE (0xFF)

位	7	6	5	4	3	2	1	0		
名称		P3_OE								
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
复位值	0	0	0	0	0	0	0	0		
位	名称		描述							
[7:0]	P3_OE	P3.0 ~ P3 输出选择) 0: 输入 1: 输出	.7 数字输入	输出选择(F ^l	J6332N 不	支持 P3.3、	P3.6 ~ P3.7	7 数字输入		

21.3.5 P4_OE (0xE9)(FU6332N 不支持此功能)

位	7	6	5	4	3	2	1	0
名称	RS	SV.	P4_OI	E[5:4]	RSV	P4_OE[2]	RS	SV
类型	-	-	R/W	R/W	-	R/W	-	-
复位值	-	-	- 0 0 - 0 -					
位	名称				描述			
[7:6]	RSV	保留						
		P4.4 ~ P4	i.5 数字输入	、输出选择				
[5:4]	P4_OE[5:4]	0: 输入						
		1: 输出						
[3]	RSV	保留						
		P4.2 数字	'输入输出选	择				
[2]	P4_OE[2]	0: 输入						
		1: 输出						
[1:0]	RSV	保留	·	·	·	·		

21.3.6 P1_AN (0x4050)

位	7	6	5	4	3	2	1	0		
名称		P1_/	AN		HBMOD	RSV	ODE1	ODE0		
类型	R/W	R/W	R/W	R/W	R/W	-	R/W	R/W		
复位值	0	0	0	0	0	-	0	0		
位	名称		描述							
[7:4]	P1_AN	P1.4 ~ P1.7	模拟模式像	上能(FU633	2N 不支持 P	1.4 ~ P1.5	模拟模式使	能)		

		0: 不使能									
		1: 使能									
		P1.3 模式配	P1.3 模式配置,与 P1_OE[3]组合决定 P1.3 的功能模式如表 21-1 所示								
		(FU6332N 7	下支持 P1.3 模	莫式配置)							
				表 21-1 P1.3 模式配置							
		HBMOD	P1_OE[3]	P1.3 模式							
[3]	HBMOD	0	0	数字输入							
		0	0 1 数字输出								
		1	1 0 模拟模式								
				数字强驱动输出模式,输出高时最大输出电流可到							
		1	1	20mA,用于 Hall 的偏置电压输出。输出低的驱动							
				模式与数字输出模式相同。							
[2]	RSV	保留									
		P0.1 集电极	开漏使能								
[1]	ODE1	0: 不使能									
		1: 使能	1: 使能								
		P0.0 集电极	开漏使能								
[0]	ODE0	0: 不使能									
		1: 使能									

21.3.7 P2_AN (0x4051)

位	7	6	5	4	3	2	1	0				
名称		P2_AN										
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W				
复位值	0	0	0	0	0	0	0	0				
位	名称				描述							
		P2.0 ~ P2.	7 模拟模式(吏能(FU633	2N 不支持	P2.5 ~ P2.6	模拟模式使	能)				
[7]	P2_AN	0: 不使能										
		1: 使能										

21.3.8 P3_AN (0x4052)

位	7	6	5	4	3	2	1	0	
名称	P11_PL	P01_PL		P3_AN					
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
复位值	0	0	0	0	0	0	0	0	

位	名称	描述
		P1.1 下拉电阻使能
		0: 不使能
[7]	P11_PL	1: 使能
		注: 不能同时使能 P1.1 的上拉电阻和下拉电阻
		P0.1 下拉电阻使能
		0: 不使能
[6]	P01_PL	1: 使能
		注: 不能同时使能 P0.1 的上拉电阻和下拉电阻
		P3.0 ~ P3.5 模拟模式使能(FU6332N 不支持 P3.3、P3.6 ~ P3.7 模拟模式使能)
[5:0]	P3_AN	0: 不使能
		1: 使能

21.3.9 P0_PU (0x4053)

位	7	6	5	4	3	2	1	0				
名称		P0_PU										
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W				
复位值	0	0	0	0	0	0	0	0				
位	名称				描述							
		P0.0 ~ P0.	7 上拉电阻(吏能								
[7:0]	P0_PU	0: 不使能	0: 不使能									
		1: 使能										

21.3.10 P1_PU (0x4054)

位	7	6	5	4	3	2	1	0		
名称				P1_	_PU					
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
复位值	0	0	0	0	0	0	0	0		
位	名称				描述					
		P1.0 ~ P1.	7 上拉电阻(使能						
[7:0]	P1_PU	0: 不使能	0: 不使能							
		1: 使能								

21.3.11 P2_PU (0x4055)

位	7	6	5	4	3	2	1	0				
名称		P2_PU										
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W				
复位值	0	0	0	0	0	0	0	0				
位	名称				描述							
		P2.0 ~ P2.	7 上拉电阻(吏能								
[7:0]	P2_PU	0: 不使能	0: 不使能									
		1: 使能										

21.3.12 P3_PU (0x4056)

位	7	6	5	4	3	2	1	0	
名称				P3_	_PU				
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
复位值	0	0	0	0	0	0	0	0	
位	名称				描述				
		P3.0 ~ P3.	7 上拉电阻	使能					
[7:0]	P3_PU	0: 不使能	0: 不使能						
		1: 使能							

21.3.13 P4_PU (0x4057)(FU6332N 不支持此功能)

位	7	6	5	4	3	2	1	0		
名称	RS	V	P4_PU[5] P4_PU[4]			P4_PU[2]	RS	SV		
类型	_	-	R/W	R/W	ı	R/W	-	_		
复位值	_	_	0	0	-	0	-	_		
位	名称				描述					
[7:6]	RSV	保留								
		P4.4 ~ P4	5 的上拉电	阻使能						
[5:4]	P4_PU[5:4]	0: 不使能								
		1: 使能								
[3]	RSV	保留								
		P4.2 上拉	电阻使能							
[2]	P4_PU[2]	0: 不使能	0: 不使能							
		1: 使能	1: 使能							
[1:0]	RSV	保留								

21.3.14 PH_SEL (0x404C)

位	7	6	5	4	3	2	1	0			
名称	SPITMOD	UART1EN	UART2EN	T4SEL	T3SEL	T2SEL	T2SSEL	RSV			
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	1			
复位值	0	0	0	0	0	0	0	-			
位	名称				描述						
		SPI 从机发达	送完后 MISO	端口状态							
[7]	SPITMOD	0: 输出状态									
		1: 高阻态									
		端口复用为	RXD、TXD -	与 UART1 (吏能						
[6]	UART1EN	0: 不使能									
		1: P0.5、P0).6 复用为 RX	(D、TXD 并	F使能 UAR	Γ1					
		端口复用为	端口复用为 RXD2、TXD2 与 UART2 使能(FU6332N 不支持此功能)								
[5]	UART2EN	0: 不使能									
		1: P3.6、P3	3.7 复用为 RX	(D2、TXD2	并使能 UA	ART2					
		端口复用为	Timer4 或 Ti	mer4S							
[4]	T4SEL	0: 不复用									
		1: P0.1 或 P	0.0(PH_SEL^	1[T4CT] = 1	l)复用为 Tiı	mer4 的输力	入输出				
		端口复用为	Timer3 或 Ti	mer3S							
[3]	T3SEL	0: 不复用									
		1: P1.1 或 P	1: P1.1 或 P0.1(PH_SEL1[T3CT] = 1)作为 Timer3 的输入输出								
		端口复用为	端口复用为 Timer2								
[2]	T2SEL	0: 不复用	0: 不复用								
		1: P1.0 作为	Timer2 的辅	入输出							
		端口复用为	Timer2S								

21.3.15 PH_SEL1 (0x404D)

T2SSEL

RSV

0: 不复用

保留

1: P0.7 作为 Timer2 的输入输出

[1]

[0]

位	7	6	5	4	3	2	1	0
名称			RSV			SPICT	T4CT	T3CT
类型	-	-	-	-	-	R/W	R/W	R/W
复位值	-	-	-	-	-	0	0	0
位	名称				描述			

[7:3]	RSV	保留
		SPI 功能转移
		0: 功能不转移,P0.5 作为 SCLK,P0.6 作为 MOSI
[2]	SPICT	1: 功能转移,P0.0 作为 MOSI,P0.1 作为 SCLK
[2]	01101	
		注: FU6332N 没有 NSS 引脚,使用 SPI 功能时,配置 SPI_CR1[NSSMOD] =
		00,使 NSS 信号不连到端口引脚
		Timer4 功能转移
[1]	T4CT	0: 功能不转移,使用 P0.1 作为 Timer4 的输入输出
		1: 功能转移,使用 P0.0 作为 Timer4 的输入输出
		Timer3 功能转移
[0]	T3CT	0: 功能不转移,使用 P1.1 作为 Timer3 的输入输出
		1: 功能转移,使用 P0.1 作为 Timer3 的输入输出

21.3.16 P0 (0x80)

端口输出寄存器 P0/1/2/3/4 支持读写访问, RMW 指令访问的是寄存器的值(RMW 指令见表 21-2), 其他指令访问的是 PORT 管脚。

位	7	6	5	4	3	2	1	0	
名称	GP07	GP06	GP05	GP04	GP03	GP02	GP01	GP00	
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
复位值	0	0	0	0	0	0	0	0	
位	名称				描述				
[7]	GP07	端口 GP07	端口 GP07						
[6]	GP06	端口 GP06)						
[5]	GP05	端口 GP05	;						
[4]	GP04	端口 GP04	•						
[3]	GP03	端口 GP03	3						
[2]	GP02	端口 GP02	2						
[1]	GP01	端口 GP01							
[0]	GP00	端口 GP00)						

21.3.17 P1 (0x90)

位	7	6	5	4	3	2	1	0
名称	GP17	GP16	GP15	GP14	GP13	GP12	GP11	GP10
类型	R/W							
复位值	0	0	0	0	0	0	0	0

位	名称	描述
[7]	GP17	端口 GP17
[6]	GP16	端口 GP16
[5]	GP15	端口 GP15
[4]	GP14	端口 GP14
[3]	GP13	端口 GP13
[2]	GP12	端口 GP12
[1]	GP11	端口 GP11
[0]	GP10	端口 GP10

21.3.18 P2 (0xA0)

位	7	6	5	4	3	2	1	0
名称	GP27	GP26	GP25	GP24	GP23	GP22	GP21	GP20
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
复位值	0	0	0	0	0	0	0	0
位	名称				描述			
[7]	GP27	端口 GP27	1					
[6]	GP26	端口 GP26)					
[5]	GP25	端口 GP25	;					
[4]	GP24	端口 GP24	•					
[3]	GP23	端口 GP23	3					
[2]	GP22	端口 GP22)					
[1]	GP21	端口 GP21						
[0]	GP20	端口 GP20)					

21.3.19 P3 (0xB0)

位	7	6	5	4	3	2	1	0	
名称	GP37	GP36	GP35	GP34	GP33	GP32	GP31	GP30	
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
复位值	0	0	0	0	0	0	0	0	
位	名称				描述				
[7]	GP37	端口 GP37	1						
[6]	GP36	端口 GP36	端口 GP36						
[5]	GP35	端口 GP35	;						

[4]	GP34	端口 GP34
[3]	GP33	端口 GP33
[2]	GP32	端口 GP32
[1]	GP31	端口 GP31
[0]	GP30	端口 GP30

21.3.20 P4 (0xE8)(FU6332N 不支持此功能)

位	7	6	5	4	3	2	1	0	
名称	RS	SV	GP45	GP44	RSV	GP42	RS	SV	
类型	-	-	R/W	R/W	-	R/W	-	=	
复位值	-	-	0	0	-	0	-	=	
位	名称				描述				
[7:6]	RSV	保留							
[5]	GP45	端口 GP45	5						
[4]	GP44	端口 GP44	ŀ						
[3]	RSV	保留							
[2]	GP42	端口 GP42)						
[1:0]	RSV	保留							

表 21-2 RMW 指令表

指令	功能描述
ANL	逻辑按位与运算
ORL	逻辑按位或运算
XRL	逻辑按位异或运算
JBC	位为1判断跳转,为1时跳转,并把位清0
CPL	位取反运算
INC,DEC	加1,减1运算
DJNZ	自减后判断是否为0跳转,不为零跳转
MOV Px,y, C	将进位C赋值给端口Px,y
CLR Px,y	端口Px,y清0
SETB Px,y	端口Px,y置1

22 ADC

22.1 ADC 简介

芯片的 ADC 是一个 12 位逐次逼近寄存器 ADC,内部有 15 个通道,其中 ADC 通道 0 ~ 13 为外部引脚 ADC 通道,ADC 通道 14 为内部 ADC 通道,VCC 引脚经过 ADC_CR[URATIO]配置电阻分压比后直接送入 ADC 通道 10 进行采样。采样方式支持顺序采样(即从 ADC 通道 0 依次到 ADC 通道 14)和触发采样(包括 FOC 触发采样模式和 Timer1 触发采样模式)。顺序采样的结果会以右对齐或左次高位对齐的格式存进 ADCx_DR(x = 0 ~ 14)。触发采样的结果不会更新到 ADCx_DR,而是送到 FOC 模块或 Timer1 模块以完成电机控制。FOC 模块或 Timer1 模块的相关寄存器固定以左次高位对齐的格式存放触发采样的结果。触发采样由硬件自动完成,顺序采样则由软件控制。触发采样优先级比顺序采样优先级高,如果某一时刻同时需要触发采样和顺序采样,则先进行触发采样,触发采样完成后自动恢复为顺序采样模式。

ADC 采样时间的时钟源为 12MHz, 采样时间由 DAC_CR[5:2]、ADC_SCYC 设定。采样时间范围和转换时间请参考 ADC 电气特性。

22.2 ADC 框图

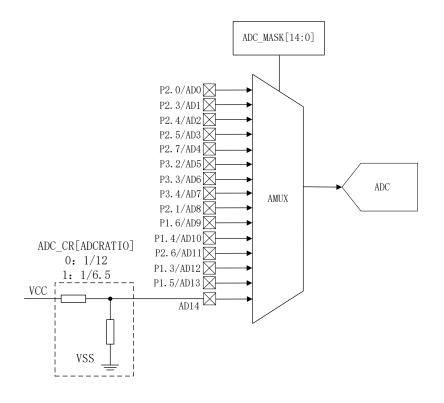


图 22-1 ADC 多路复用器框图[1]

注:

[1] FU6332N 不支持 AD3、AD6、AD10~ADC13 通道。

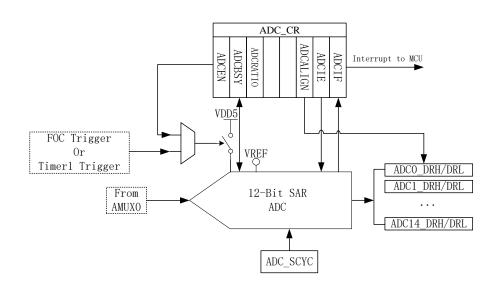


图 22-2 ADC 功能框图

22.3 ADC 操作说明

22.3.1 顺序采样模式

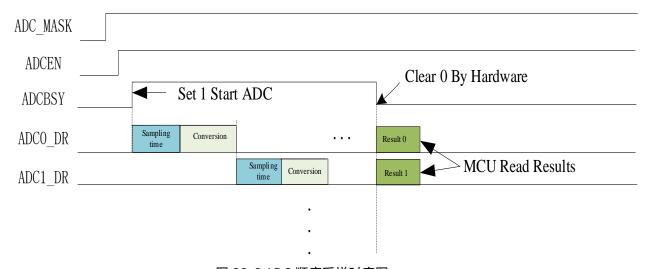


图 22-3 ADC 顺序采样时序图

ADC 操作:

- 1. 设置合适的ADC参考电压VREF;
- 2. 设置使能需采样的通道ADC_MASK;
- 3. 设置每个通道的采样周期ADC_SCYC(最小值为3);
- 4. 配置ADC_CR[ADCEN] = 1, 使能ADC;

- 5. 配置ADC CR[ADCBSY] = 1, ADC开始工作;
- 6. 确认ADC CR[ADCBSY] = 0. 再读取ADC转换结果:

注: ADC转换顺序根据使能的通道号从低到高(即当使能通道2/3/4后,依次采样转换通道2/3/4,然后在确认ADC_CR[ADCBSY] = 0后读取单次转换结果)。

22.3.2 触发采样模式

当启动 FOC 后,通道 0/1/2/4/14 可用于 FOC 触发采样。通过 FOC_CR0[UCSEL]选择通道 2 或通道 14 用于母线电压触发采样。在单电阻电流采样模式下,通道 4 为母线电流 itrip 的采样通道。在双电阻电流采样模式下,通道 0 为 ia 的采样通道,通道 1 为 ib 的采样通道。在三电阻电流采样模式下,通道 0 为 ia 的采样通道,通道 1 为 ib 的采样通道。

当启动 Timer1 后,通道 4 用于母线电流触发采样。配置 TIM1_CR3[T1TIS]选择位置检测信号输入源为 ADC,当 CMP0_CR4[CMP0FS] = 0 时,通道 10 用于 U 相电压采样,通道 9 用于 V 相电压采样,通道 8 用于 W 相电压采样。当 CMP0_CR4[CMP0FS] = 1 时,通道 10 用于 U 相电压采样,通道 12 用于 V 相电压采样,通道 13 用于 W 相电压采样。

22.3.3 输出数据格式

VREF

寄存器 ADCx_DRH 和 ADCx_DRL 包含每次转换完成时转换数据的高字节和低字节。数据可以根据 ADC_CR[ADCALIGN]选择右对齐或左次高位对齐。当输入电压从 0 ~ VREF,输出数据数值如表 22-1 所示。ADCx_DRH 和 ADCx_DRL 寄存器中未使用的位被置为 0。

输入电压右对齐左次高位对齐00x00000x0000VREF/20x08000x4000

0x0FFF

0x7FF8

表 22-1 输出数据数值与对齐方式的关系

22.4 ADC 寄存器

22.4.1 ADC_CR (0x4039)

位	7	6	5	4	3	2	1	0				
名称	ADCEN	ADCBSY	ADCRATIO	R	SV	ADCALIGN	ADCIE	ADCIF				
类型	R/W	R/W1	R/W	ı	-	R/W	R/W	R/W0				
复位值	0	0	0	ı	-	0	0	0				
位	名称				描述							
		ADC 使能										
[7]	ADCEN	0: 不使能										
		1: 使能										
		ADC 启动	BADC 忙标志	位								
		读:										
		0: ADC 空闲										
[6]	ADCBSY	1: ADC 忙										
[O]	ADCBST	写:										
		0: 无意义										
		1: 启动 AD	C 转换									
		注: ADC_N	ADC_MASK = 0 时此位写 1 无意义									
		ADC 通道	14 采 VCC 电	压内部分	压比							
[5]	ADCRATIO	0: 1/12										
		1: 1/6.5										
[4:3]	RSV	保留										
		ADC 数据	各式选择									
[2]	ADCALIGN		据右对齐,AD		_							
L—J	7 13 07 121011					DCx_DR[14:3]						
		注: 触发采	样模式不受影	响,固定	为左次高	位对齐						
		ADC 中断	吏能(不包含触	发模式中)断)							
[1]	ADCIE	0: 不使能										
		1: 使能										
		ADC 中断	事件标志位									
		当本次 AD	C 转换完成时	,硬件置	<u>.</u> 1							
		读:										
[0]	ADOLE	0: 未发生口	中断事件									
[0]	ADCIF	1: 发生中國	新事件									

写: 0: 清 0 1: 无意义

22.4.2 ADC_MASK (0x4036, 0x4037)

			ADC_	MASKH(0x	4036)				
位	15	14	13	12	11	10	9	8	
名称	RSV	CH14EN	CH13EN	CH12EN	CH11EN	CH10EN	CH9EN	CH8EN	
类型	-	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
复位值	-	0	0	0	0	0	0	0	
ADC_MASKL(0x4037)									
位	7	6	6 5 4 3 2 1						
名称	CH7EN	CH6EN	CH5EN	CH4EN	CH3EN	CH2EN	CH1EN	CH0EN	
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
复位值	0	0	0	0	0	0	0	0	
位	名称				描述				
[15]	RSV	保留							
[14]	CH14EN	ADC 通道	14 使能						
[13]	CH13EN	ADC 通道	13 使能						
[12]	CH12EN	ADC 通道	12 使能						
[11]	CH11EN	ADC 通道	11 使能						
[10]	CH10EN	ADC 通道	10 使能						
[9]	CH9EN	ADC 通道	9 使能						
[8]	CH8EN	ADC 通道	8 使能						
[7]	CH7EN	ADC 通道	7 使能						
[6]	CH6EN	ADC 通道	6 使能						
[5]	CH5EN	ADC 通道	5 使能						
[4]	CH4EN	ADC 通道	ADC 通道 4 使能						
[3]	CH3EN	ADC 通道	3 使能						
[2]	CH2EN	ADC 通道	ADC 通道 2 使能						
[1]	CH1EN	ADC 通道	1 使能						
[0]	CH0EN	ADC 通道	0 使能						

注: 触发采样模式无需配置 ADC_MASK。

22.4.3 DAC_CR (0x4035)

	DAC_CR(0x4035)											
位	7	6	5 4 3 2 1 0									
名称	DAC0_1EN	DACMOD	ADC_SCYCH[3:0] RSV									
类型	R/W	R/W	R/W R/W R/W				-					
复位值	0	0	0	0	1	1	_	-				

位	名称	描述
[7]	DAC0_1EN	见 DAC 章节 DAC_CR(0x4035)说明
[6]	DACMOD	见 DAC 章节 DAC_CR(0x4035)说明
		ADC 采样周期设置,ADC 通道 8~13 共用设置
[5.0]	ADC_SCYCH	ADC_SCYCH[3] = 0: 采样周期为 ADC_SCYCH[2:0]个 ADC 时钟周期
[5:2]	[3:0]	ADC_SCYCH[3] = 1: 采样周期为(ADC_SCYCH[2:0]*8 + 7)个 ADC 时钟
		周期
[1:0]	RSV	保留

22.4.4 ADC_SCYC (0x4038)

	ADC_SCYC(0x4038)										
位	7	6	5	4	3	2	1	0			
名称		ADC_SC	ADC_SCYC[3:0]								
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
复位值	0	0	1	1	0	0	1	1			
	•				•	•					
/	A7 1h				+++ >-4-						

位	名称	描述
	[7:4] ADC_SCYC [7:4]	ADC 采样周期设置,ADC 通道 5~7、14 共用设置
[7:4]		ADC_SCYC[7] = 0: 采样周期为 ADC_SCYC[6:4]个 ADC 时钟周期
		ADC_SCYC[7] = 1: 采样周期为(ADC_SCYC[6:4]*8 + 7)个 ADC 时钟周期
	ADC SCYC	ADC 采样周期设置,ADC 通道 0~4 共用设置
[3:0]	ADC_SCYC	ADC_SCYC[3] = 0: 采样周期为 ADC_SCYC[2:0]个 ADC 时钟周期
	[3:0]	ADC_SCYC[3] = 1: 采样周期为(ADC_SCYC[2:0]*8 + 7)个 ADC 时钟周期

22.4.5 ADC0_DR (0x0300, 0x0301)

	ADC0_DRH(0x0300)										
位	15	14	13	12	11	10	9	8			
名称				ADC0_D	R[15:8]						
类型	R	R	R	R	R	R	R	R			
复位值	0	0	0	0	0	0	0	0			
	ADC0_DRL(0x0301)										
位	7	6	5	4	3	2	1	0			
名称				ADC0_0	DR[7:0]						
类型	R	R	R	R	R	R	R	R			
复位值	0	0	0	0	0	0	0	0			

位	名称	描述
[15:0]	ADC0 DR	顺序采样模式 ADC 转换完成后,ADC 通道 0 转换结果 数据根据 ADC_CR[ADCALIGN]选择对齐方式
[13.0]	/\D00_DIX	注: 触发采样模式 ADC 结果不会更新至此寄存器

22.4.6 ADC1_DR (0x0302, 0x0303)

	ADC1_DRH(0x0302)										
位	15	14	13	12	11	10	9	8			
名称		ADC1_DR[15:8]									
类型	R	R	R	R	R	R	R	R			
复位值	0	0	0	0	0	0	0	0			
	ADC1_DRL(0x0303)										
位	7	6	5	4	3	2	1	0			
名称		ADC1_DR[7:0]									
类型	R	R	R	R	R	R	R	R			
复位值	0	0	0	0	0	0	0	0			
位	名称				描述						
		顺序采样植	莫式 ADC 转	换完成后,	ADC 通道 [*]	1 转换结果					
[15:0]	ADC1_DR	数据根据 ADC_CR[ADCALIGN]选择对齐方式									
[13.0]	ADCI_DR										
		注: 触发采	样模式 AD	C 结果不会	更新至此寄	存器					

22.4.7 ADC2_DR (0x0304, 0x0305)

	ADC2_DRH(0x0304)										
位	15	14	13	12	11	10	9	8			
名称				ADC2_D	R[15:8]						
类型	R	R	R	R	R	R	R	R			
复位值	0	0	0	0	0	0	0	0			
	ADC2_DRL(0x0305)										
位	7	6	5	4	3	2	1	0			
名称				ADC2_D	R[7:0]						
类型	R	R	R	R	R	R	R	R			
复位值	0	0	0	0	0	0	0	0			
位	名称	名称 描述									

		顺序采样模式 ADC 转换完成后,ADC 通道 2 转换结果
[15:0]	ADC2_DR	数据根据 ADC_CR[ADCALIGN]选择对齐方式
		注: 触发采样模式 ADC 结果不会更新至此寄存器

22.4.8 ADC3_DR (0x0306, 0x0307)(FU6332N 不支持此通道)

	ADC3_DRH(0x0306)										
位	15	14	13	12	11	10	9	8			
名称				ADC3_D	R[15:8]						
类型	R	R	R	R	R	R	R	R			
复位值	0	0	0	0	0	0	0	0			
	ADC3_DRL(0x0307)										
位	7	6	5	4	3	2	1	0			
名称				ADC3_0	PR[7:0]						
类型	R	R	R	R	R	R	R	R			
复位值	0	0	0	0	0	0	0	0			
位	名称				描述						
		顺序采样植	莫式 ADC 转	换完成后,	ADC 通道 3	3 转换结果					
[15:0]	ADC3_DR	数据根据,	数据根据 ADC_CR[ADCALIGN]选择对齐方式								
		注: 触发采	样模式 ADO	5 结果不会	更新至此寄	存器					

22.4.9 ADC4_DR (0x0308, 0x0309)

	ADC4_DRH(0x0308)										
位	15	14	13	12	11	10	9	8			
名称				ADC4_D	R[15:8]						
类型	R	R	R	R	R	R	R	R			
复位值	0	0	0	0	0	0	0	0			
	ADC4_DRL(0x0309)										
位	7	6	5	4	3	2	1	0			
名称				ADC4_0	DR[7:0]						
类型	R	R	R	R	R	R	R	R			
复位值	0	0	0	0	0	0	0	0			
位	名称				描述						
		顺序采样植	莫式 ADC 转	换完成后,	ADC 通道 4	4 转换结果					
[15:0]	ADC4_DR	数据根据,	数据根据 ADC_CR[ADCALIGN]选择对齐方式								
		注: 触发采	样模式 AD	C结果不会	更新至此寄	存器					

22.4.10 ADC5_DR (0x030A, 0x030B)

	ADC5_DRH(0x030A)										
位	15	14	13	12	11	10	9	8			
名称				ADC5_D	R[15:8]						
类型	R	R	R	R	R	R	R	R			
复位值	0	0	0	0	0	0	0	0			
	ADC5_DRL(0x030B)										
位	7	6	5	4	3	2	1	0			
名称				ADC5_0	DR[7:0]						
类型	R	R	R	R	R	R	R	R			
复位值	0	0	0	0	0	0	0	0			
位	名称				描述						
		顺序采样植	莫式 ADC 转	换完成后,	ADC 通道 5	5 转换结果					
[15:0]	ADC5_DR	数据根据,	数据根据 ADC_CR[ADCALIGN]选择对齐方式								
		注: 触发采	样模式 ADO	C 结果不会	更新至此寄	存器					

22.4.11 ADC6_DR (0x030C, 0x030D)(FU6332N 不支持此通道)

ADC6_DRH(0x030C)											
位	15	14	13	12	11	10	9	8			
名称		ADC6_DR[15:8]									
类型	R	R	R	R	R	R	R	R			
复位值	0	0	0	0	0	0	0	0			
	ADC6_DRL(0x030D)										
位	7	6	5	4	3	2	1	0			
名称				ADC6_0	DR[7:0]						
类型	R	R	R	R	R	R	R	R			
复位值	0	0	0	0	0	0	0	0			
位	名称				描述						
[15:0]	ADC6_DR	数据根据,	ADC_CR[AD	DCALIGN]遊	ADC 通道 (译对齐方式 更新至此寄	<u>.</u> v					

22.4.12 ADC7_DR (0x030E, 0x030F)

	ADC7_DRH(0x030E)							
位	15	14	13	12	11	10	9	8
名称				ADC7_D	R[15:8]			
类型	R	R	R	R	R	R	R	R
复位值	0	0	0	0	0	0	0	0
	ADC7_DRL(0x030F)							
位	7	6	5	4	3	2	1	0
名称				ADC7_0	DR[7:0]			
类型	R	R	R	R	R	R	R	R
复位值	0	0	0	0	0	0	0	0
位	名称	描述						
		顺序采样模式 ADC 转换完成后,ADC 通道 7 转换结果						
[15:0]	ADC7_DR	数据根据,	数据根据 ADC_CR[ADCALIGN]选择对齐方式					
		注: 触发采	样模式 ADO	C 结果不会	更新至此寄	存器		

22.4.13 ADC8_DR (0x0310, 0x0311)

	ADC8_DRH(0x0310)							
位	15	14	13	12	11	10	9	8
名称				ADC8_D	R[15:8]			
类型	R	R	R	R	R	R	R	R
复位值	0	0	0	0	0	0	0	0
			ADC	8_DRL(0x03	311)			
位	7	6	5	4	3	2	1	0
名称				ADC8_0	DR[7:0]			
类型	R	R	R	R	R	R	R	R
复位值	0	0	0	0	0	0	0	0
位	名称	描述						
[15:0]	ADC8_DR	顺序扫描采样 ADC 转换完成后,ADC 通道 8 转换结果数据根据 ADC_CR[ADCALIGN]选择对齐方式注: 触发采样模式 ADC 结果不会更新至此寄存器						

22.4.14 ADC9_DR (0x0312, 0x0313)

	ADC9_DRH(0x0312)							
位	15	14	13	12	11	10	9	8
名称				ADC9_D	R[15:8]			
类型	R	R	R	R	R	R	R	R
复位值	0	0	0	0	0	0	0	0
			ADC	9_DRL(0x03	313)			
位	7	6	5	4	3	2	1	0
名称				ADC9_0	DR[7:0]			
类型	R	R	R	R	R	R	R	R
复位值	0	0	0	0	0	0	0	0
位	名称	描述 描述						
		顺序采样模式 ADC 转换完成后,ADC 通道 9 转换结果						
[15:0]	ADC9_DR	数据根据,	数据根据 ADC_CR[ADCALIGN]选择对齐方式					
		注: 触发采	样模式 AD	C结果不会	更新至此寄	存器		

22.4.15 ADC10_DR (0x0314, 0x0315)(FU6332N 不支持此通道)

	ADC10_DRH(0x0314)							
位	15	14	13	12	11	10	9	8
名称				ADC10_DF	R[15:8]			
类型	R	R	R	R	R	R	R	R
复位值	0	0	0	0	0	0	0	0
			ADC10	_DRL(0x03	15)			
位	7	6	5	4	3	2	1	0
名称				ADC10_D	R[7:0]			
类型	R	R	R	R	R	R	R	R
复位值	0	0	0	0	0	0	0	0
位	名称	描述						
		顺序采样模式 ADC 转换完成后,ADC 通道 10 转换结果						
[15:0]	ADC10_DR	数据根据 ADC_CR[ADCALIGN]选择对齐方式						
		注: 触发采	样模式 ADO	结果不会更	更新至此寄存	字器		

22.4.16 ADC11_DR (0x0316, 0x0317)(FU6332N 不支持此通道)

	ADC11_DRH(0x0316)							
位	15	14	13	12	11	10	9	8
名称				ADC11_D	R[15:8]			
类型	R	R	R	R	R	R	R	R
复位值	0	0	0	0	0	0	0	0
	ADC11_DRL(0x0317)							
位	7	6	5	4	3	2	1	0
名称				ADC11_D	R[7:0]			
类型	R	R	R	R	R	R	R	R
复位值	0	0	0	0	0	0	0	0
位	名称	描述						
		顺序采样模式 ADC 转换完成后,ADC 通道 11 转换结果						
[15:0]	ADC11_DR	数据根据。	数据根据 ADC_CR[ADCALIGN]选择对齐方式					
		注: 触发采	样模式 AD	C 结果不会	更新至此寄	存器		

22.4.17 ADC12_DR (0x0318, 0x0319)(FU6332N 不支持此通道)

	ADC12_DRH(0x0318)							
位	15	14	13	12	11	10	9	8
名称				ADC12_DF	R[15:8]			
类型	R	R	R	R	R	R	R	R
复位值	0	0	0	0	0	0	0	0
	ADC12_DRL(0x0319)							
位	7	6	5	4	3	2	1	0
名称				ADC12_DI	R[7:0]			
类型	R	R	R	R	R	R	R	R
复位值	0	0	0	0	0	0	0	0
位	名称	描述						
		顺序采样模式 ADC 转换完成后,ADC 通道 12 转换结果						
[15:0]	ADC12_DR	数据根据 ADC_CR[ADCALIGN]选择对齐方式						
		注: 触发采	样模式 ADO	5 结果不会剪	更新至此寄存	字器		

22.4.18 ADC13_DR (0x031A, 0x031B)(FU6332N 不支持此通道)

	ADC13_DRH(0x031A)							
位	15	14	13	12	11	10	9	8
名称				ADC13_D	R[15:8]			
类型	R	R	R	R	R	R	R	R
复位值	0	0	0	0	0	0	0	0
	ADC13_DRL(0x031B)							
位	7	6	5	4	3	2	1	0
名称				ADC13_D	R[7:0]			
类型	R	R	R	R	R	R	R	R
复位值	0	0	0	0	0	0	0	0
位	名称	描述						
		顺序采样模式 ADC 转换完成后,ADC 通道 13 转换结果						
[15:0]	ADC13_DR	数据根据 ADC_CR[ADCALIGN]选择对齐方式						
		注: 触发采	样模式 AD	C 结果不会	更新至此寄	存器		

22.4.19 ADC14_DR (0x031C, 0x031D)

	ADC14_DRH(0x031C)							
位	15	14	13	12	11	10	9	8
名称				ADC14_D	R[15:8]			
类型	R	R	R	R	R	R	R	R
复位值	0	0	0	0	0	0	0	0
	ADC14_DRL(0x031D)							
位	7	6	5	4	3	2	1	0
名称				ADC14_D	PR[7:0]			
类型	R	R	R	R	R	R	R	R
复位值	0	0	0	0	0	0	0	0
位	名称	描述						
		顺序采样模式 ADC 转换完成后,ADC 通道 14 转换结果						
[15:0]	ADC14_DR	数据根据。	数据根据 ADC_CR[ADCALIGN]选择对齐方式					
		注: 触发采	样模式 AD	C 结果不会	更新至此寄	存器		

23 DAC

23.1 DAC 简介

芯片内部集成两个 DAC 模块,其中 DAC0 为 9 位数模转换器,DAC1 为 6 位数模转换器。

23.2 DAC0 功能框图(FU6332N 不支持 DAC0 输出至 P2.6)

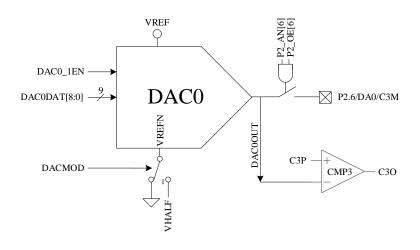


图 23-1 DAC0 功能框图

如图 23-1 所示,DAC0 将 9 位的数字数据转换为模拟电压送至 CMP3 的负输入端,用于母线过流保护,同时可配置模拟输出至 P2.6 引脚。

注: DACO 输出无电流驱动能力,只能带容性负载,片外如需用作阻性负载,需用运放跟随电压输出。 使用 DACO 的具体设定如下:

- 1. 配置 P2 AN[6] = 1、P2 OE[6] = 1, DAC0 输出至 P2.6 引脚;
- 2. 配置 VREF_CR[VREFEN] = 1、DAC_CR[DACO_1EN] = 1, DACO 使用 VREF 作参考电压;
- 3. 输出电压范围由 DAC_CR[DACMOD]设定。DAC_CR[DACMOD] = 0 时为全电压输出模式,输出电压范围为 0 ~ VREF。DAC_CR[DACMOD] = 1 时为半电压输出模式,输出电压范围为 VHALF ~ VREF。不同模式下输出电压与 DACODAT 关系如表 23-1 所示。

DAC0DAT[8:0]	DAC 输出电压 (DAC_CR[DACMOD] = 0)	DAC 输出电压 (DAC_CR[DACMOD] = 1)
0x000	0	VHALF
0x100	VREF/2	(VREF - VHALF)/2 + VHALF
0x1FF	VREF*511/512	(VREF - VHALF)*511/512 + VHALF

23.3 DAC1 功能框图

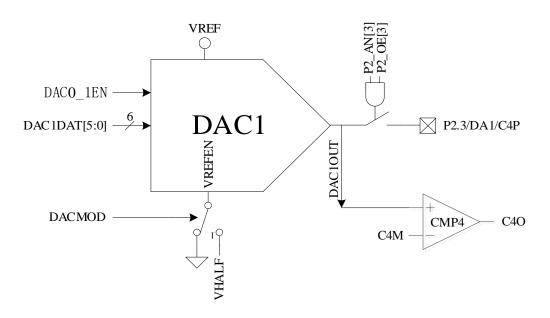


图 23-2 DAC1 功能框图

如图 23-2 所示, DAC1 将 6 位的数字数据转换为模拟电压送至比较器 4 的正输入端用于逐波限流功能,同时可配置输出至 P2.3 引脚。

注: DAC1 输出无电流驱动能力,只能带容性负载,片外如需用作阻性负载,需用运放跟随电压输出。 使用 DAC1 的具体设定如下:

- 1. 配置 P2 AN[3] = 1、P2 OE[3] = 1, DAC1 输出至 P2.3 引脚;
- 2. DAC1使用 VREF 作参考电压、配置 VREF CR[VREFEN] = 1、DAC CR[DAC0 1EN] = 1使能 DAC1;
- 3. 输出电压范围由 DAC_CR[DACMOD]设定。DAC_CR[DACMOD] = 0 时为全电压输出模式,输出电压范围为 0 ~ VREF, DAC_CR[DACMOD] = 1 时为半电压输出模式,输出电压范围 VHALF ~ VREF。不同配置下 DAC1 的输出电压如表 23-2 所示。

DAC1DAT[5:0]	DAC 输出电压	DAC 输出电压		
DACIDAT[5.0]	(DAC_CR[DACMOD] = 0)	(DAC_CR[DACMOD] = 1)		
0x00	0	VHALF		
0x20	VREF/2	(VREF - VHALF)/2 + VHALF		
0x3F	VREF*63/64	(VREF - VHALF)*63/64 + VHALF		

23.4 DAC 寄存器

23.4.1 DAC_CR (0x4035)

位	7	6	6 5 4 3 2				2	1	0
名称	DAC0_1EN	DACI	MOD		ADC_S	RSV			
类型	R/W	R/	R/W		R/W	R/W	R/W	-	ı
复位值	0	()	0	0	1	1	-	ı
位	名称					描述	<u> </u>		
[7]	DAC0_1EN 0: 7			DAC0、DAC1 使能 0: 不使能 1: 使能					
[6]	DACMOD 0: 全			模式设置 电压输出 电压输出	模式				
[5:2]	ADC_SCYCH	[3:0]	见 ADC 章节 22.4.3 DAC_CR (0x4035)说明						
[1:0]	RSV		保留						

23.4.2 DAC0_DR (0x404B)

位	7	6	5	4	3	2	1	0			
名称		DAC0DAT[8:1]									
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
复位值	0	0	0	0	0	0	0	0			
位	名	称	描述								
[7:0]	DAC0D	AT[8:1]	DAC0 控制器高 8 位数据输入								

23.4.3 DAC1_DR (0x404A)

位	7	6	5	4	3	2	1	0	
名称	DAC0_DR_0	RSV	DAC1DAT						
类型	R/W	-	R/W	R/W	R/W	R/W	R/W	R/W	
复位值	0	-	0	0	0	0	0	0	
位	名称				描述				
[7]	DAC0_DR_0	DAC0 控制	訓器最低位	数据输入					
[6]	RSV	保留							
[5:0]	DAC1DAT	DAC1 控制	DAC1 控制器 6 位数据输入						

24 DMA

24.1 DMA 功能与说明

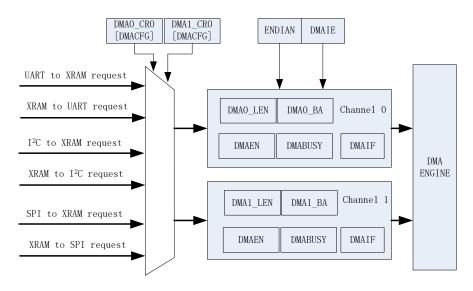


图 24-1 DMA 功能框图

DMA 模块包含一个双通道的 DMA 控制器,它实现了外设(SPI、UART、I²C)与 XRAM 之间的直接数据传输(不可以读取 IRAM 数据)。传输过程中 DMA 对 XRAM 的访问动作不干扰 CPU 对 XRAM 的正常读写操作。传输的长度和 XRAM 访问的起始地址可设置,支持传输过程中的数据传输模式设置,支持中断使能。

启动 DMA 的操作过程为:

- 1. 配置并使能外设,再根据需求通过 DMAx_CR0[DMACFG]设置 DMA 接管的外设输入输出通道;
- 2. 设置 DMA 中断使能、传输顺序以及传输长度和 XRAM 起始地址, 然后写 DMAx_CR0[DMAEN]和 DMAx_CR0[DMABSY] = 1, 启动 DMA;
- 3. 数据传输完毕后,中断标志位 DMAx_CR0[DMAIF]硬件置 1,软件将其清 0;
- 4. 写 DMAx_CR0[DMABSY] = 1,即可再次启动 DMA。

24.2 DMA 寄存器

24.2.1 DMA0_CR0 (0x403A)

位	7	6	5	4	3	2	1	0
名称	DMAEN	DMABSY	DMACFG			DMAIE	ENDIAN	DMAIF
类型	R/W	R/W1	R/W	R/W	R/W	R/W	R/W	R/W
复位值	0	0	0	0	0	0	0	0

位	名称	描述
		DMA 通道 0 使能
[7]	DMAEN	0: 不使能
		1: 使能
		DMA 通道 0 忙状态/启动
		读:
		0: 通道 0 空闲
[6]	DMABSY	1: 通道 0 正在传输
		写:
		0: 无意义
		1: 启动通道 0 开始传输
		DMA 通道 0 外设与方向选择位
		000: 从 UART1 到 XRAM
		001: 从 XRAM 到 UART1
	DMACFG	010: 从 I ² C 到 XRAM
[5:3]		011: 从 XRAM 到 I ² C
[5.5]		100: 从 SPI 到 XRAM
		101: 从 XRAM 到 SPI
		110: 从 UART2 到 XRAM
		111: 从 XRAM 到 UART2
		注: 当通道 0 忙状态时不可改变
		DMA 中断使能
[2]	DMAIE	0: 不使能
		1: 使能
		DMA 数据传输顺序
		0: 高位字节先接收或发送
[1]	ENDIAN	1: 低位字节先接收或发送
[[,]	LINDIAN	
		注: 此位的设置针对 16 位数据模式,8 位数据模式时应配置为 0;当通道 0 或
		1 忙状态时不可改变。
		DMA 通道 0 传输中断事件标志位
		读:
		0: 未发生中断事件
[0]	DMAIF	1: 发生中断事件
		写:
		0: 清 0
		1: 产生中断事件

24.2.2 DMA1_CR0 (0x403B)

位	7	6	5	4	3	2	1	0
名称	DMAEN	DMABSY		DMACFG		DBGSW	DBGEN	DMAIF
			D/M/					
类型	R/W	R/W1	R/W	R/W	R/W	R/W	R/W	R/W
复位值	0	0	0	0	0	0	0	0
位	名称				描述			

夕 四旧		•	•				0			
位	名称				描述					
		DMA 通道	1 使能							
[7]	DMAEN	0: 不使能								
		1: 使能								
		DMA 通道 1 忙状态/启动								
		读:								
		0: 通道 1 🕏	图							
[6]	DMABSY	1: 通道 1 🛚	E在传输							
		写:								
		0: 无意义								
		1: 启动通道	1 开始传输	î						
		DMA 通道	1 外设与方	向选择						
	DMACFG	000: 从 UA	RT1到XR	AΜ						
		001: 从 XR	AM 到 UAF	RT1						
		010: 从 I ² C	到 XRAM							
[5:3]		011: 从 XR	AM 到 I ² C							
[0.0]	Di ii/(Ci G	100: 从 SP	到 XRAM							
		101: 从 XRAM 到 SPI								
		110: 从 UART2 到 XRAM								
		111: 从 XR	111: 从 XRAM 到 UART2							
		注: 当通道	1 忙状态时	不可改变						
		Debug 模式	尤指向区域证	选择						
[2]	DBGSW	0: Debug [区域选择 XS	FR(导出地均	止空间: 0x	4020 ~ 0x40	OFF)			
				RAM(导出地	址空间: 0x	k0000 ~ 0x0)317)			
		Debug 模式	忧使能							
						1_CR0[DB0				
		进入 Debu	g模式。此	时使能 SPI,	DMA 自z	边将 DMA1_	CR0[DBGS\	M]指定区		
[1]	DBGEN				去,DMA	1_BA/DMA	1_LEN 用于	指定区域		
[内相关数据	的起始地址	上和范围。						
		0: 不使能								
		1: 使能								
		注: 进入 De	ebug 模式后	f,DMA 通	道1中断自	自动关闭				

		DMA 通道 1 中断事件标志位
		读:
		0: 未发生中断事件
[0]	DMAIF	1: 发生中断事件
		写:
		0: 清 0
		1: 产生中断事件

24.2.3 DMA0_LEN (0x403C)

位	7	6	5	4	3	2	1	0	
名称	RSV	/			DMA0_LEN				
类型	-	-	- R/W R/W R/W R/W R/W						
复位值	-	-	0	0	0	0	0	0	
位	名称				描述				
[7:6]	RSV	保留							
[5:0]	DMA0_LEN	读: DMA ; 写: DMA ; 注: 当通道	通道 0 XRA i 0 忙状态时	传输的字节 M 数据传输 才不可改变。	是第几字节 i长度 当 DMA0_ 设置为奇数	CR0[ENDIA		字节先接	

24.2.4 DMA0_BA (0x403E, 0x403F)

	DMA0_BAH(0x403E)										
位	15	14	14 13 12 11 10 9 8								
名称			RSV			DI	DMA0_BA[10:8]				
类型	ı	-	ı	ı	1	R/W	R/W	R/W			
复位值	ı	-	ı	ı	1	0	0	0			
	DMA0_BAL(0x403F)										
位	7	6	5	4	3	2	1	0			
名称				DMA0_E	3A[7:0]						
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
复位值	0	0	0	0	0	0	0	0			
位	名称				描述						
[15:11]	RSV	保留									

		DMA 通道 0 传输数据起始地址设定
		DMA 通道 0 XRAM 首地址
[40.0]	D1440 D4	当通道 0 忙状态时不可改变
[10:0]	DMA0_BA	
		注: 通道 0 传输的 XRAM 地址空间区域为: DMA0_BA[10:0] ~
		(DMA0_BA[10:0] + DMA0_LEN[5:0])

24.2.5 DMA1_LEN (0x403D)

位	7	6	5	4	3	2	1	0
名称	RS\	/	DMA1_LEN					
类型	-	-	- R/W R/W R/W R/W R/W					
复位值	-	-	0	0	0	0	0	0
位	名称		描述					
[7:6]	RSV	保留						
[5:0]	DMA1_LEN	读: DMA ; 写: DMA ; 注: 当通道	DMA 通道 1 传输数据长度配置 读: DMA 通道 1 目前传输的字节是第几字节(0 表示第 1 字节) 写: DMA 通道 1 XRAM 数据传输长度 注: 当通道 1 忙状态时不可改变。当 DMA0_CR0[ENDIAN] = 1(低字节先接 收或发送)时,推荐 DMA1_LEN 设置为奇数。					

24.2.6 DMA1_BA (0x4040, 0x4041)

	DMA1_BAH(0x4040)									
位	15	14	13	12	11	10	9	8		
名称			RSV			DI	MA1_BA[10	1A1_BA[10:8]		
类型	_	_	_	1	-	R/W	R/W	R/W		
复位值	_	_	_	1	-	0	0	0		
			DMA	1_BAL(0x4	041)					
位	7	6	5	4	3	2	1	0		
名称				DMA1_	BA[7:0]					
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
复位值	0	0	0	0	0	0	0	0		
位	名称				描述					
[15:11]	RSV	保留								
[10:0]	DMA1_BA	DMA 通道	DMA 通道 1 传输数据起始地址配置 DMA 通道 1 XRAM 起始地址 当通道 1 忙状态时不可改变							

注:通道 1 传输数据的 XRAM 地址空间区域为: DMA1_BA[10:0] ~
(DMA1_BA[10:0] + DMA1_LEN[5:0])

注: 当 DMA 通道外设选择为 I^2 C 时(包括从 I^2 C 到 XRAM、从 XRAM 到 I^2 C), I^2 C 通讯的 START + Address 中断需 MCU 软件清除。 I^2 C 为从机时,若遇到 STOP,配置 I^2 C 字C 中断,并重新启动 DMA 传输。

25 VREF

25.1 VREF 模块的操作说明

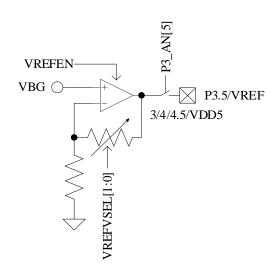


图 25-1 VREF 模块输入输出端口

VREF 模块输入输出端口如图 25-1 所示。VREF 是参考电压生成模块,给 ADC 和 DAC 模块提供内部参考基准电压。VBG 是由芯片内部提供的电压。

配置 VREF_CR[VREFEN] = 1,使能 VREF。VREF_CR[VREFVSEL]选择输出电压。配置 P3_AN[5] = 1 输出 VREF 电压至 P3.5。

25.2 VREF 寄存器

25.2.1 VREF_CR (0x404F)

位	7	6	5	4	3	2	1	0
名称	VREFV	/SEL	RSV	VREFEN		RSV		VHALFEN
类型	R/W	R/W	-	R/W	-	-	-	R/W
复位值	0	0	-	0	-	_	-	0
				•		•	•	

位	名称	描述
		VREF 模块输出参考电压选择
		00: 4.5V
[7:6]	VREFVSEL	01: VDD5
		10: 3V
		11: 4V
[5]	RSV	保留
		VREF 模块使能
[4]	VREFEN	0: 不使能。设置 P3_AN[5] = 1,外部参考电压从 P3.5 输入
[4]	VKEFEIN	1: 使能。设置 P3_AN[5] = 1,内部 VREF 参考送出至 P3.5 引脚。引脚外接
		1μF ~ 4.7μF 电容提高 VREF 稳定性。
[3:1]	RSV	保留
		VHALF 使能
[0]	VHALFEN	0: 不使能
		1: 使能

26 VHALF

26.1 VHALF 模块的操作说明

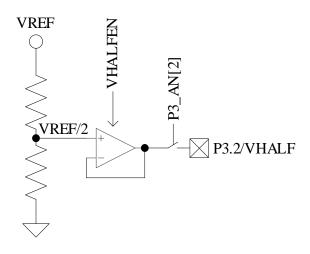


图 26-1 VHALF 模块输入输出端口

VHALF 模块输入输出端口如图 26-1 所示。该模块产生参考电压 VREF/2。 配置 VREF_CR[VHALFEN] = 1,使能 VHALF,并将其输出至 P3.2,引脚外接 1μF 电容。

26.2 VHALF 寄存器

VHALF 寄存器参考 VREF_CR (0x404F)。

27 运放

27.1 运放简介

芯片最多集成有 3 个高速独立运算放大器,分别为 AMP0、AMP1、AMP2。每个运放均有独立的使能端。其中 AMP0 可配置为可编程增益放大器。

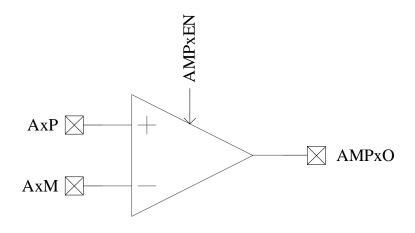


图 27-1 运算放大模块示意图

27.2 运放操作说明

27.2.1 母线电流采样运放(AMP0)

AMPO 有普通模式和 PGA 差分输入模式 2 种工作模式。

27.2.1.1 AMPO 普通模式

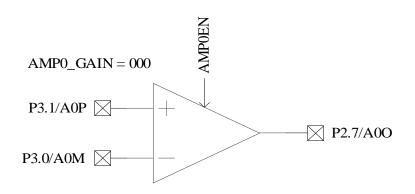


图 27-2 母线电流运放 AMPO

母线电流运放的输入输出对应的端口如图 27-2 所示。配置 AMP_CR0[AMP0EN] = 1,使能 AMP0,硬件自动将相关联的三个端口 P2.7、P3.0 和 P3.1 全部配置为模拟信号模式。

27.2.1.2 AMP0 PGA 差分输入模式

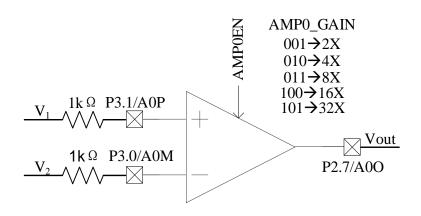


图 27-3 AMP0 工作在 PGA 差分输入模式

如图 27-3 所示, AMP0 的正输入端和负输入端在外部电路分别串联一个 1kΩ 的电阻。 使用 AMP0 PGA 差分输入模式时,通过 AMP0_GAIN 设定放大倍数,配置 AMP_CR0[AMP0EN] = 1,使能 AMP0。运放的输出与输入之间的关系为: Vout = VHALF + (V₁ - V₂)*AMP0_GAIN。

27.2.2 相电流运放(AMP1/AMP2)

27.2.2.1 AMP1

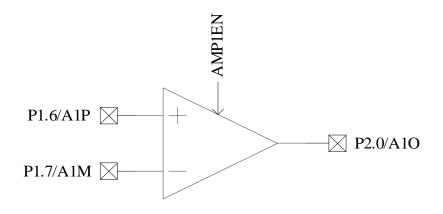


图 27-4 AMP1 输入输出相关端口

相电流运放输入输出对应的端口如图 27-4 所示。配置 AMP_CR0[AMP1EN] = 1, 使能相电流运放 AMP1, 硬件将相关联的三个端口 P1.6、P1.7 和 P2.0 全部设置成模拟信号模式。

27.2.2.2 AMP2

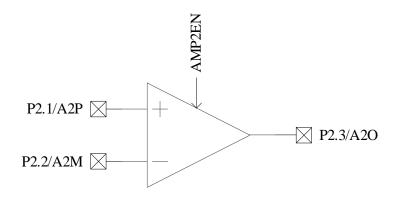


图 27-5 AMP2 输入输出相关端口

相电流运放输入输出端对应的端口如图 27-5 所示。配置 AMP_CR0[AMP2EN] = 1, 使能相电流运放 AMP2, 硬件将相关联的三个端口 P2.1、P2.2 和 P2.3 全部设置成模拟信号模式。

27.3 运放寄存器

27.3.1 AMP_CR0 (0x404E)

位	7	6	5	4	3	2	1	0		
名称			RSV			AMP2EN	AMP1EN	AMP0EN		
类型	-	-	-	-	-	R/W	R/W	R/W		
复位值	-	-	-	-	-	0	0	0		
位	名称				描述					
[7:3]	RSV	保留								
		AMP2 使制	מא							
[2]	AMP2EN	0: 不使能								
		1: 使能								
		AMP1 使制	F F							
[1]	AMP1EN	0: 不使能								
		1: 使能								
		AMP0 使制	r F							
[0]	AMP0EN	0: 不使能								
		1: 使能								

27.3.2 AMP0_GAIN (0x4034)

位	7	6	5	4	3	2	1	0	
<u></u> 名称	•		RSV AMP0_GAIN						
	_	_	_	_	_	R/W	R/W	R/W	
复位值	_	_	0 0 0						
位	名称	描述							
[7:3]	RSV	保留							
[2:0]	AMP0_GAIN	001: 2倍 010: 4倍 011: 8倍 100: 16倍 101: 32倍 110: 保留 111: 保留 注: 内置が	倍数由外部 音 法	司向放大,讀			输出电压为		

28 比较器

28.1 比较器操作说明

28.1.1 比较器 CMP3(FU6332N 不支持 P2.6 输入)

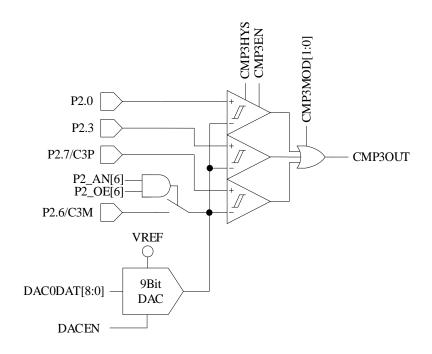


图 28-1 CMP3 的输入输出端口

CMP3 的输入输出端口如图 28-1 所示。

配置 CMP3 的步骤为:

- 1. 配置 P2_AN[6]、P2_OE[6] = 1,使比较器负端信号输入至 P2.6。负输入端参考电压可使用来自片内 DAC0 输出电压或外部电路输入电压。选择 DAC0 输出,在 P2.6 和地之间外接电容 (推荐容值 100pF, DAC0 输出一段时间后输出电压稳定)。
- 2. 配置 CMP_CR1[CMP3MOD],选择单比较器输入、双比较器输入、三比较器输入模式;
 - 配置 CMP_CR1[CMP3MOD] = 00, CMP3 为单比较器输入模式,具体输入输出端口及接 法如图 28-2 所示
 - 配置 CMP_CR1[CMP3MOD] = 01, CMP3 为双比较器输入模式,具体输入输出端口及接法如图 28-3 所示
 - 配置 CMP_CR1[CMP3MOD] = 1X, CMP3 为三比较器输入模式,具体输入输出端口及接法如图 28-4 所示
- 3. 配置 CMP CR1[CMP3HYS],选择是否有迟滞;
- 4. 配置 CMP_CR1[CMP3EN] = 1, 使能 CMP3。

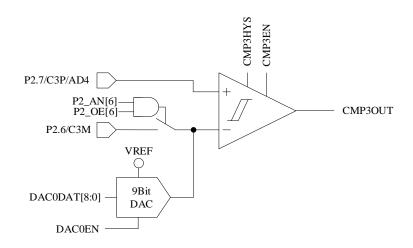


图 28-2 单比较器输入模式

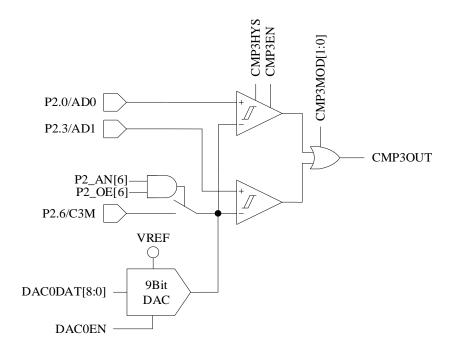


图 28-3 双比较器输入模式

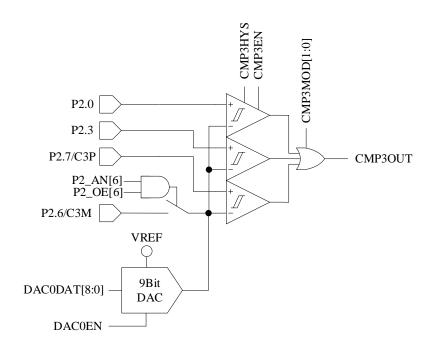


图 28-4 三比较器输入模式

28.1.1.1 过流保护

当过流保护信号产生时,自动将 DRV_OUT[MOE]清 0,输出空闲电压,停止电机的驱动,保护芯片和电机。配置 EVT_FILT[MOEMD] = 01,使能过流保护功能,电流超过设定值时自动关闭输出,同时产生过流保护中断请求。配置 EVT_FILT[MOEMD] = 00,过流时不会自动关闭输出,但会产生过流保护中断请求。

过流保护事件可配置 EVT_FILT[EFSRC]选择由 CMP3 中断或外部中断 INT0 产生。配置 EVT_FILT[EFSRC] = 1, 配置 TCON[IT0]选择外部中断 INT0 的中断触发沿,外部中断 INT0 产生过流保护信号,此时保护中断为外部中断 INT0。配置 EVT_FILT[EFSRC] = 0, 配置 CMP_CR0[CMP3IM] = 11,过流保护信号由 CMP3 的上升沿产生,此时保护中断为 CMP3 中断。当处于三电阻电流采样模式下,配置 CMP_CR1[CMP3MOD]为三比较器输入模式,任意一相电流过流时,CMP3 中断产生过流保护信号;除三电阻电流采样模式外,配置 CMP_CR1[CMP3MOD]为单比较器输入模式,母线过流时,由 CMP3 产生过流保护信号。

过流保护事件的输入信号可配置 EVT_FILT[EFDIV]使能滤波功能,通过配置 EVT_FILT[EFDIV] = 01/10/11 选择滤波宽度为 4/8/16 个时钟周期。使能滤波功能后,滤波后的信号会比滤波前的信号延迟 4/8/16 个时钟周期。

28.1.1.2 逐波限流

DRV_OUT[MOE]在 CMP3OUT 的上升沿清 0,产生保护动作。配置 EVT_FILT[MOEMD] = 10,产生保护事件后自动关闭输出,在 Driver 计数器的上溢下溢事件或 10μ s 之后,自动使能 DRV_OUT[MOE],恢复驱动。如果配置 EVT_FILT[MOEMD] = 11,产生保护事件后自动关闭输出;在 Driver 计数器的上溢下溢事件或 5μ s 之后,自动使能 DRV_OUT[MOE],恢复驱动。

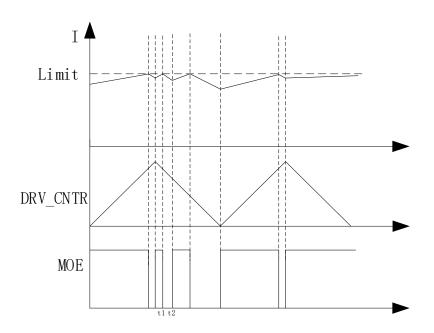


图 28-5 EVT_FILT[MOEMD] = 10, 逐波限流波形(t2 - t1 = 10 us)

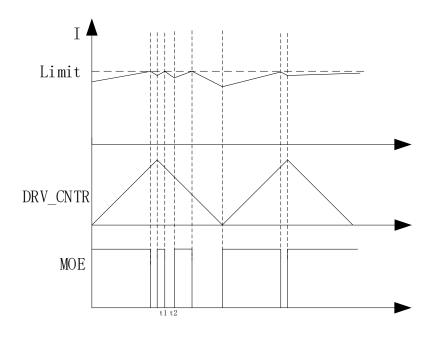


图 28-6 EVT_FILT[MOEMD] = 11, 逐波限流波形(t2 - t1 = 5 \mu s)

28.1.2 比较器 CMP4

CMP4OUT 可由软件读取或外部中断 INTO 判断是否翻转。当 CMP3 用于逐波限流保护时,使用 CMP4 用于母线电流保护。CMP4 触发母线电流过流保护后需要软件关闭输出。

配置 CMP4 的步骤为:

- 1. 配置 P2_AN[3] = 1, P2_OE[3] = 1, 使能 CMP4 正输入端参考电压。参考电压来源可为芯片内部 DAC1 输出电压或外部电路输入电压。选择 DAC1 输出,在 P2.3 和地之间外接电容 (推荐 100pF, DAC1 输出一段时间后输出电压稳定);
- 2. 配置 P2 AN[7] = 1, P2.7 为模拟信号模式;
- 3. CMP_CR2[CMP4EN] = 1, 使能 CMP4;
- 4. 外部中断 INTO 标志位清 0, 使能外部中断 INTO;
- 5. 配置 LVSR[EXTOCFG] = 111, 选择 CMP4 作为外部中断 0 的来源;
- 6. 配置 TCON[IT0] = 01,选择下降沿触发外部中断 INT0。

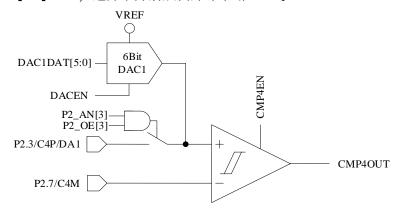


图 28-7 CMP4 模块示意图

28.1.3 比较器组 CMPG(因引脚有限、FU6332N 不支持此比较器组)

比较器组 CMPG 是 CMP0、CMP1 和 CMP2 的集合,有多种比较模式,分别用于不同应用场景。

配置 CMP_CR2[CMP0MOD] = 00,选择无内置电阻三比较器模式,输入输出端口如图 28-8 所示,用于外置虚拟中心点电阻的电机反电动势 BEMF 检测。三个比较器的负输入端连在一起接 P1.5,正输入端分别接 P1.4、P1.6、P2.1,输出分别为 CMP0OUT、CMP1OUT、CMP2OUT。此模式下具体比较器工作个数由 CMP_CR2[CMP0SEL]决定,CMP_CR2[CMP0SEL] = 00,CMP0、CMP1 和 CMP2 三个比较器同时工作,为推荐设置;CMP_CR2[CMP0SEL] = 01,仅 CMP0 工作,其余两个 CMP 闲置;CMP_CR2[CMP0SEL] = 11,仅 CMP2 工作,其余两个 CMP 闲置。

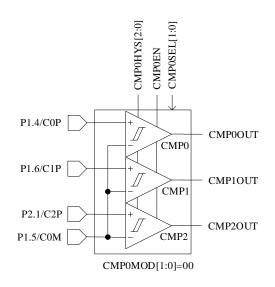


图 28-8 无内置电阻三比较器模式

配置 CMP_CR2[CMP0MOD] = 01,选择有内置电阻三比较器模式,用于内置虚拟中心点电阻的电机反电动势 BEMF 检测。此时可通过设置功能转移位 CMP_CR4[CMP0FS]选择输入端口。此模式下具体比较器工作个数由 CMP_CR2[CMP0SEL]决定,CMP_CR2[CMP0SEL] = 00,CMP0、CMP1 和 CMP2 三比较器同时工作,为推荐设置;CMP_CR2[CMP0SEL] = 01,仅 CMP0 工作,其余两个 CMP 闲置;CMP_CR2[CMP0SEL] = 10,仅 CMP1 工作,其余两个 CMP 闲置;CMP_CR2[CMP0SEL] = 11,仅 CMP2 工作,其余两个 CMP 闲置。

配置 CMP_CR4[CMP0FS] = 0,输入输出端口如图 28-9 所示,三比较器的负输入端连在一起,接内置电阻中心点,正输入端分别接 P1.4、P1.6 和 P2.1,输出分别为 CMP0OUT、CMP1OUT 和 CMP2OUT。

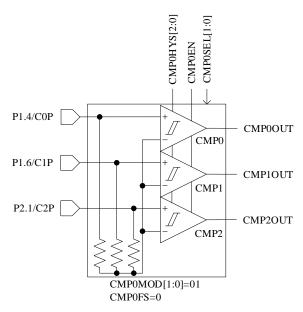


图 28-9 有内置电阻三比较器模式、无功能转移

CMP_CR4[CMP0FS] = 1,输入输出端口如图 28-10 所示,三比较器的负输入端连在一起,接内置电阻中心点,正输入端分别接 P1.4、P1.3 和 P1.5,输出分别为 CMP0OUT、CMP1OUT 和 CMP2OUT。

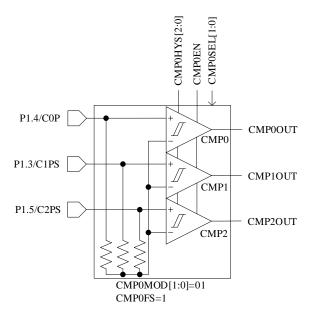


图 28-10 有内置电阻三比较器模式,功能转移

配置 CMP_CR2[CMP0MOD] = 10,选择差分三比较器模式,输入输出端口如图 28-11 所示,用于差分 Hall 传感器检测电机转子位置。三比较器的负输入端分别接 P1.5、P1.7 和 P2.2,正输入端分别接 P1.4、P1.6 和 P2.1,输出分别为 CMP0OUT、CMP1OUT 和 CMP2OUT。此模式下具体比较器工作个数由 CMP_CR2[CMP0SEL]决定,CMP_CR2[CMP0SEL] = 00,CMP0、CMP1 和 CMP2 三比较器同时工作,为推荐设置;CMP_CR2[CMP0SEL] = 01,仅CMP0 工作,其余两个CMP 闲置;CMP_CR2[CMP0SEL] = 10,仅CMP1 工作,其余两个CMP 闲置;CMP_CR2[CMP0SEL] = 11,仅CMP2 工作,其余两个CMP 闲置。

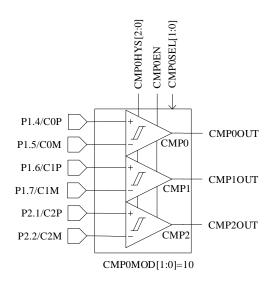


图 28-11 差分三比较器模式

配置 CMP_CR2[CMP0MOD] = 11,选择双比较器模式,输入输出端口如图 28-12 所示,用于电机转速检测。双比较器的负输入端连在一起,接 P1.5,正输入端分别接 P1.4 和 P1.3,输出分别为 CMP0OUT 和 CMP1OUT。此模式下具体比较器工作个数由 CMP_CR2[CMP0SEL]决定, CMP_CR2[CMP0SEL] = 00, CMP0 和 CMP1 双比较器同时工作,为推荐设置; CMP_CR2[CMP0SEL] = 01,仅 CMP0 工作,CMP1 闲置; CMP_CR2[CMP0SEL] = 10,仅 CMP1 工作,CMP0 闲置。

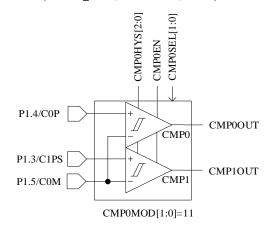


图 28-12 双比较器模式

CMP0/CMP1/CMP2 的输出信号送入滤波和采样模块后送入 Timer1。

28.1.4 比较器采样

比较器采样功能主要用于方波驱动和 RSD 顺逆风判断功能,可消除来自于驱动电路的开关干扰。 应用于方波驱动请参考 14.1.2.3,应用于 RSD 请参考章节 15.1.7.1。

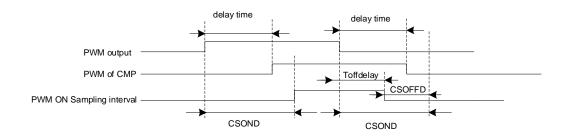


图 28-13 PWM ON 采样模式

PWM 输出反映到比较器的输出存在延迟,该延迟主要受以下因素影响: 驱动电阻的大小,功率器件的开关速度,比较器的输入延迟和迟滞设置。图中的 delay time 为从芯片输出电平到比较器输出电平的延迟时间。进行高电平采样时,采样区间应被比较器实际输出的高电平所包络,首先设置采样开始延迟时间 CMP_SAMR[CSOND]以越过延迟以及功率器件开关的振铃区间。采样区间结束时刻为芯片输出 PWM 下降沿后延迟 CMP_SAMR[CSOND],此时实际采样窗口已经超出比较器上高电平对应的区间。设置采样停止提前时间 CMP_SAMR[CSOFFD],使得采样窗口在 PWM 输出下降沿延迟Toffdelay(Toffdelay = CMP_SAMR[CSOND] - CMP_SAMR[CSOFFD])后 关闭。通过配置CMP_SAMR[CSOND]和 CMP_SAMR[CSOFDD],可使采样区间位于比较器实际输出的高电平区间。

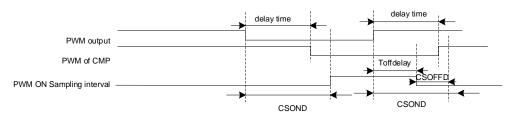


图 28-14 PWM OFF 采样模式

同理,进行低电平采样时,设置采样开始延迟时间 CMP_SAMR[CSOND]和采样停止提前时间 CMP_SAMR[CSOFFD],使实际采样区间位于比较器实际输出的低电区间。

测量 PWM 输出到比较器的延迟方法: 设置 CMP_CR3[SAMSEL] = 00,禁止比较器采样延迟功能,设置 CMP_CR3[CMPSEL]选择相应的比较器输出到比较器输出测试引脚 P0.7。使能 PWM 输出和比较器,手动转动电机使比较器值翻转,测量 PWM 输出和比较器输出之间延迟。

28.1.5 比较器输出

配置 CMP_CR3[CMPSEL],选择 1 路比较器的输出结果,输出至 CXO 端口 P0.7。

28.2 比较器寄存器

28.2.1 CMP_CR0 (0xD5)

位	7	6	5	4	3	2	1	0
名称	CMF	P3IM	CMF	P2IM	CMF	P1IM	CMF	POIM
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
复位值	0	0	0	0	0	0	0	0

位	名称	描述
		CMP3 中断模式
		00: 不产生中断
[7:6]	CMP3IM	01: 上升沿产生中断
[7.0]	CIMPSIM	10: 下降沿产生中断
		11: 上升沿使 DRV_OUT[MOE]清 0,中断事件标志位 CMP_SR[CMP3IF]置 1,
		但不使能中断(注: 用于逐波限流功能,需配置 EVT_FILT[MOEMD] = 10/11)。
[5:4]	CMP2IM	CMP2 中断模式
[5.4]		参考 CMP_CR0[CMP0IM]描述
[3:2]		CMP1 中断模式
[3.2]	CMP1IM	参考 CMP_CR0[CMP0IM]描述
		CMP0 中断模式
		00: 不产生中断
[1:0]	CMP0IM	01: 上升沿产生中断
		10: 下降沿产生中断
		11: 上升/下降沿均产生中断

28.2.2 CMP_CR1 (0xD6)

位	7	6	5	4	3	2	1	0
名称	HALLSEL	CMP3	MOD	CMP3EN	CMP3HYS	(CMP0HYS	
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
复位值	0	0	0	0	0	0	0	0
**	£ ===				144.4			

位	名称	描述
		Hall 功能转移(FU6332N 不支持此功能)
[7]	HALLSEL	0: 功能不转移,P0.2、P3.7、P3.6 作为 Hall 信号的输入
		1: 功能转移,P1.4、P1.6、P2.1 作为 Hall 信号的输入

		CMP3 的模式选择					
		负输入端接 P2.6 或 DAC0 输出(FU6332N 不支持负输入端接 P2.6)					
[6:5]	CMP3MOD	00: 单比较器模式,P2.7 接正输入端,参考图 28-2					
		01: 双比较器模式,P2.0 和 P2.3 接正输入端,参考图 28-3					
		1X: 3 比较器模式,P2.0、P2.3 和 P2.7 接正输入端,参考图 28-4					
		CMP3 使能					
[4]	CMP3EN	0: 不使能					
		1: 使能					
		CMP3 的迟滞电压选择					
[3]	CMP3HYS	0: 无迟滞					
		1: 15mV					
		CMP0/1/2 迟滞电压选择:					
		000: 无迟滞					
		001: ±2.5mV					
		010: -5mV					
[2:0]	CMP0HYS	011: +5mV					
		100: ±5mV					
		101: -10mV					
		110: +10mV					
		111: ±10mV					

28.2.3 CMP_CR2 (0xDA)

位	7	6	5	4	3	2	1	0
名称	CMP4EN	CMP0MOD		CMP0SEL		RSV		CMP0EN
类型	R/W	R/W	R/W	R/W	R/W	-	-	R/W
复位值	0	0	0	0	0	-	ı	0

位	名称	描述					
		CMP4使能					
[7]	CMP4EN	0: 不使能					
		1: 使能					
		CMPG 的模式设置					
		00: 无内置电阻三比较器模式,参考图 28-8					
[6:5]	CMP0MOD	01: 有内置电阻三比较器模式,可由 CMP_CR4[CMP0FS]配置是否功能转移,					
[6.5]	CIMPUMOD	参考图 28-9 和图 28-10					
		10: 三差分比较器模式,参考图 28-11					
		11: 双比较器模式,CMP0/CMP1 工作,CMP2 不工作,参考图 28-12					

CMPG 的端口组合选择,与 CMP_CR2[CMP0MOD]组合使用。默认值为 00。 在方波驱动应用下,由 TIM1_DBRx[T1CPE]的设定值自动控制 CMP_CR2[CMP0SEL],控制各比较器的使能。

表 28-1 CMPG 端口与 CMP_CR2[CMP0MOD]组合的功能描述

				-1 \$10·····
		CMP0MOD	CMP0SEL	功能描述
			00	CMP0/1/2 同时工作,参考图 28-8,3 个比较器的负输入端均接 COM,硬件将正输入端 COP、C1P、C2P 分别与公共负输入端 COM 比较,其输出结果分别送至CMP0OUT、CMP1OUT、CMP2OUT。
		00	01	CMP0 工作, CMP1/2 闲置, 正输入端接 C0P, 负输入端接 C0M, 输出接 CMP0OUT
	[4:3] CMP0SEL		10	CMP1 工作, CMP0/2 闲置, 正输入端接 C1P, 负输入端接 C0M, 输出接 CMP1OUT
[4:3]			11	CMP2 工作, CMP0/1 闲置, 正输入端接 C2P, 负输入端接 C0M, 输出接 CMP2OUT
		01	00	CMP0/1/2 同时工作,参考图 28-9 和图 28-10, 3 个比较器的负输入端接内置电阻的中心点。当 CMP_CR4[CMP0FS] = 0 时,硬件自动将正输入端 COP、C1P、C2P 分别与公共负输入端 COM 比较; 当 CMP_CR4[CMP0FS] = 1 时,硬件自动将正输入端 COP、C1PS、C2PS 分别与公共负输入端 COM 比较,输出结果分别送至 CMP0OUT、CMP1OUT、CMP2OUT。
			01	CMP0 工作,CMP1/2 闲置,正端接 C0P,负端接内置 BEMF 电阻的中心点, 输出接 CMP0OUT
			10	CMP1 工作,CMP0/2 闲置 CMP_CR4[CMP0FS] = 0,正输入端接 C1P,CMP_CR4[CMP0FS] = 1,正输入 端接 C1PS 负输入端接内置 BEMF 电阻的 中心点,输出接 CMP1OUT。

			11	CMP2 工作,CMP0/1 闲置 CMP_CR4[CMP0FS] = 0,正输入端接 C2P,CMP_CR4[CMP0FS] = 1,正输入 端接 C2PS 负输入端接内置 BEMF 电阻的 中心点,输出接 CMP2OUT。		
			00	CMP0/1/2 同时工作,参考图 28-11, 3 个比较器的正输入端分别接 C0P、C1P、 C2P, 与之对应的负输入端分别接 C0M、 C1M、C2M,其输出结果分别送至 CMP0OUT、CMP1OUT、CMP2OUT。		
		10	01	CMP0 工作,CMP1/2 闲置,正输入端接 C0P,负输入端接 C0M,输出接 CMP0OUT		
			10	CMP1 工作,CMP0/2 闲置, 正输入端接 C1P,负输入端接 C1M,输 出接 CMP1OUT		
			11	CMPG 选择 CMP2 对应的端口组合,正输入端接 C2P,负输入端接 C2M,输出接CMP2OUT		
			00	CMP0/1 同时工作,参考图 28-12, 2 个比较器的正输入端分别接 COP、C1PS,负输入端接 C0M,输出结果分别送至CMP0OUT、CMP1OUT。		
		11	01	CMP0 工作,CMP1 闲置,即正输入端接 C0P,负输入端接 C0M,输出接 CMP0OUT		
			10	CMP1 工作,CMP0 闲置,即正输入端接 C1PS,负输入端接 C0M,输出接 CMP1OUT		
			11	保留		
[2:1]	RSV	保留				
[0]	CMP0EN	CMP0/1/2使能 0: 不使能				
		1: 使能				

28.2.4 CMP_CR3 (0xDC)

位	7	6	5	4	3	2	1	0	
 名称	RSV	DBGSEL SAMSEL CMPSEL							
类型	_	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
复位值	-	0	0	0	0	0	0	0	
	I						1		
位	名称				描述				
[7]	RSV	保留							
[6:5]	DBGSEL	00: 不使能 01: 方波屏 10: ADC 触	输出 Debug 信号选择,输出到 P0.1 端口 00: 不使能 Debug 信号输出 01: 方波屏蔽续流结束和检测到过零点信号 10: ADC 触发信号 11: 比较器采样区间						
[4:3]	SAMSEL	00: 在 ON 01: 只在 C 10: 只在 C	CMP0、CMP1、CMP2 和 ADC 在 PWM ON/OFF 采样延迟使能 00: 在 ON 和 OFF 均采样,无延迟采样 01: 只在 OFF 采样,根据 CMP_SAMR 延迟采样 10: 只在 ON 采样,根据 CMP_SAMR 延迟采样 11: 在 ON 和 OFF 均采样,根据 CMP_SAMR 延迟采样						
[2:0]	CMPSEL	选择一路比 000: 不输比 001: CMP 010: CMP 011: CMP	比较器输出选择 选择一路比较器输出信号到 CXO 端口 P0.7 000: 不输出 001: CMP0 010: CMP1 011: CMP2 100: CMP3						

28.2.5 CMP_CR4 (0xE1)

位	7	6	5	4	3	2	1	0
名称	CMP4OUT		RS	SV	FAEN	CMP0FS	RSV	
类型	R	-	-	-	-	R/W	R/W	-
复位值	1	-	-	-	-	0	0	-
位	名称				描述			
[7]	CMP4OUT	CMP4 比\$	CMP4 比较结果					
[6:3]	RSV	保留						

111: omega 启动标志位(估算器估算角度输出标志位,参考 13.1.9.3)

		滤波采样系数扩大使能
[2]	FAEN	使能后,TIM1_CR3[T1INM]和 CMP_SAMR 的基准时钟提高 4 倍
[2]	FAEN	0: 不使能
		1: 使能
		CMP1/CMP2 功能转移
[4]	CNADOEC	0: 功能不转移,参考图 28-9
[1]	CMP0FS	1: 功能转移,仅当 CMP_CR2[CMP0_MOD] = 01 时有效,其余无意义,参考
		图 28-10
[0]	RSV	保留

28.2.6 CMP_SAMR (0x40AD)

位	7	6	5	4	3	2	1	0
名称		CSO	ND		CSOFFD			
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
复位值	0	0	0	0	0	0	0	1

位	名称	描述
[7:4]	CSOND	CMP0/CMP1/CMP2延迟开启采样时间 在PWM从OFF到ON或ON到OFF状态时,功率器件的导通和关闭会干扰比较 器输入信号,设置CMP_SAMR[CSOND]延迟使CMP0/CMP1/CMP2延迟开启 采样,从而避开干扰。延迟时间根据CMP_CR4[FAEN]设置是否乘4倍。 CMP_CR4[FAEN] = 0: 延迟开启采样时间 = 8*CMP_SAMR[CSOND]*T CMP_CR4[FAEN] = 1: 延迟开启采样时间 = 32*CMP_SAMR[CSOND]*T 注: ■ CMP_SAMR[CSOND]必须大于或等于CMP_SAMR[CSOFFD] ■ 应用于BLDC驱动请参考采样
[3:0]	CSOFFD	■ 应用于RSD请参考RSD的比较器采样 CMP0/CMP1/CMP2提前关闭采样时间 设置CMP_SAMR[CSOND]后,超出PWM波形后沿设定的 CMP_SAMR[CSOND] - CMP_SAMR[CSOFFD]结束采样,使采样区间被PWM 区间包络。提前关闭采样时间根据CMP_CR4[FAEN]设置是否乘4倍。 CMP_CR4[FAEN] = 0: 关闭采样时间 = 8*CMP_SAMR[CSOFFD]*T CMP_CR4[FAEN] = 1: 关闭采样时间 = 32*CMP_SAMR[CSOFFD]*T 注:
		■ CMP_SAMR[CSOND]必须大于或等于CMP_SAMR[CSOFFD]■ 应用于BLDC驱动请参考采样■ 应用于RSD请参考RSD的比较器采样

28.2.7 CMP_SR (0xD7)

位	7	6	5	4	3	2	1	0
名称	CMP3IF	CMP2IF	CMP1IF	CMP0IF	CMP3OUT	CMP2OUT	CMP10UT	CMP0OUT
类型	R/W0	R/W0	R/W0	R/W0	R	R	R	R
复位值	0	0	0	0	0	0	0	0

位	名称	描述
		CMP3 中断事件标志位
		读:
		0: 未发生中断事件
[7]	CMP3IF	1: 发生中断事件
		写:
		0: 清 0
		1: 无意义
		CMP2 中断事件标志位
		读:
		0: 未发生中断事件
[6]	CMP2IF	1: 发生中断事件
		写:
		0: 清 0
		1: 无意义
		CMP1 中断事件标志位
		读:
		0: 未发生中断事件
[5]	CMP1IF	1: 发生中断事件
		写:
		0: 清 0
		1: 无意义
		CMP0 中断事件标志位
		读:
		0: 未发生中断事件
[4]	CMP0IF	1: 发生中断事件
		写:
		0: 清 0
		1: 无意义
[3]	CMP3OUT	CMP3 比较结果
[2]	CMP2OUT	CMP2 比较结果

[1]	CMP10UT	CMP1 比较结果
[0]	CMP0OUT	CMP0 比较结果

28.2.8 EVT_FILT (0xD9)

位	7	6	5	4	3	2	1	0	
名称	RSV			MOI	MOEMD		EFDIV		
类型	=	-	-	R/W	R/W	R/W	R/W	R/W	
复位值	-	-	-	0	0	0	0	0	
位	名称		描述						
[7:5]	RSV	保留						_	

位	名称	描述
[7:5]	RSV	保留
		MOE 硬件清 0 和使能选择
		发生电流保护事件会使 MOE 硬件清 0 和使能
		00: MOE 不自动清 0
[4:3]	MOEMD	01: MOE 自动清 0
[4.5]	INIOLINID	10: MOE 自动清 0,且在 Driver 计数器的上溢下溢事件或 10μs 后自动使能
		MOE(用于方波驱动)。
		11: MOE 自动清 0,且在 Driver 计数器的上溢下溢事件或 5µs 后自动使能
		MOE(用于方波驱动)。
		电流保护事件的输入来源
[2]	EFSRC	0: CMP3 中断
		1: 外部中断 INTO
		电流保护事件滤波宽度
		00: 不滤波
[1:0]	EFDIV	01: 4 个系统时钟周期
		10:8 个系统时钟周期
		11: 16 个系统时钟周期

28.2.9 TSD_CR (0x402F)

1: 使能

位	7	6	5	4	3	2	1	0	
名称	TSDEN		RSV		TSDADJ				
类型	R/W	-	-	-	R/W	R/W	R/W	R/W	
复位值	0	-	-	_	1	1	1	1	
位	名称				描述				
		温度检测功	温度检测功能使能						
[7]	TSDEN	0: 不使能							

[6:4]	RSV	保留
		过温保护温度(测量的芯片结温)
		0000: 71°C
		0001: 75°C
		0010: 80°C
		0011: 84°C
		0100: 89°C
		0101: 94°C
		0110: 99°C
[3:0]	TSDADJ	0111: 105℃
		1000: 111°C
		1001: 116℃
		1010: 123℃
		1011: 131℃
		1100: 136℃
		1101: 142℃
		1110: 150℃
		1111: 保留

29 电源模块

29.1 LDO

MCU 内部含有两个 LDO 输出模块: VDD5 和 VDD18。

29.1.1 LDO 模块的操作说明

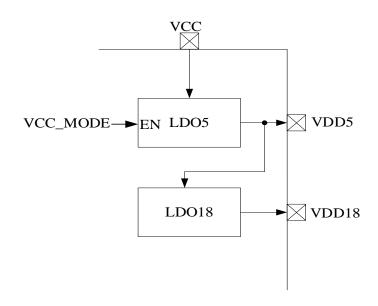


图 29-1 电源模块功能框图

LDO 模块对应的输入输出端口如图 29-1 所示。LDO 将输入电源电压降压至 5V(VDD5)和 1.85V(VDD18),分别给芯片内部模拟和数字模块供电。配置 VCC_MODE, VDD5 可选择内部 LDO5 产生或外部供给。如图 29-2 所示,在调试工具中,不勾选 Vcc Mode,则 VCC_MODE = 0,此时 VDD5 电压由内部 LDO 产生;若勾选,则 VCC_MODE = 1,外接 5V 电压至 VDD5。

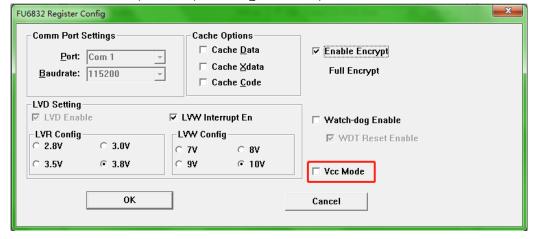


图 29-2 VCC_MODE 配置

29.2 低压检测

29.2.1 低压检测简介

芯片低压检测包括两个部分: 低电压预警和低电压复位。

29.2.2 低压检测操作说明

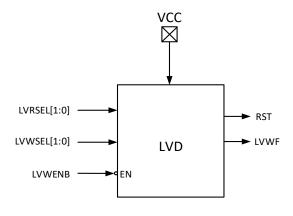
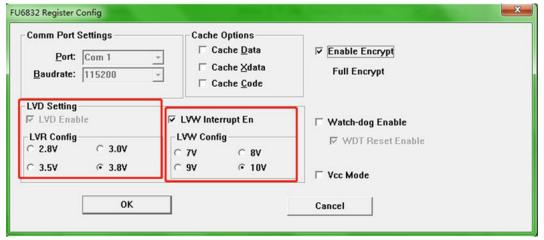



图 29-3 低电压检测模块

低压检测模块操作说明如下:

- 低电压预警和低电压复位默认一直使能
- 低电压预警电压可设置为 7/8/9/10V 四个档位,可使能中断。使能中断后当 VCC 电压低于 预警电压设定值时,触发中断。
- 低电压复位电压可设置为 2.8/3.0/3.5/3.8V 四个档位。当 VCC 电压低于复位电压设定值后, 芯片复位

低电压预警电压、中断配置以及低电压复位电压通过编译器中配置选项完成,如图 29-4 所示。 其中,LVR Config 设置低电压复位电压,LVW Interrupt En 设置低电压中断使能,LVW Config 设置低电压预警电压。

图 29-4 低电压预警电压、中断配置以及低电压复位电压设置

29.2.3 低压检测寄存器

29.2.3.1 LVSR (0xDB)

位	7	6	5	4	3	2	1	0			
名称	RS	SV		EXT0CFG		TSDF	LVWF	LVWIF			
类型	-	-	R/W	R/W	R/W	R	R	R/W0			
复位值	-	-	0	0	0	0	0	0			
位	名称				描述						
[7:6]	RSV	保留									
		外部中断	INT0 接口ì	选择							
		000: P0.0									
		001: P0.1									
		010: P0.2									
[5:3]	EXT0CFG	011: P0.3									
		100: P0.4									
		101: P0.5									
		110: P0.6									
		111: CMP	4 输出								
		过温状态值	$\dot{\underline{\mathbf{v}}}$								
		0: 当前温度未超过设定温度									
[2]	TSDF	1: 当前温度超过设定温度									
		注: 此标志	位常与 TS	D 中断事件标	示志位 TCO	N[5]配合使	用				
		VCC 低电	压标志位								
[4]	1.\/\/	反映当前是	是否处于低	电压状态							
[1]	LVWF	0: 当前无何	低电压报警	<u> </u>							
		1: 当前低	电压报警								
		VCC 低电	压中断事件	-标志位							
		读:									
		0: 未发生中断事件									
[0]	LVWIF	1: 发生中	断事件								
ſΟ]	LVVVIF	写:									
		0: 清 0									
		1: 无意义									
	1	ı									

注: 当低电压检测中断不使能, 该位不会硬件置 1

30 Flash

30.1 Flash 简介

芯片片内提供 16k 字节的 Flash 空间。不仅支持全芯片擦除/写入,还支持扇区擦除/写入。 主要特性:

- 每个扇区为 128 字节, 共计 128 个扇区
- 最后一个扇区(地址范围: 0x3F80 ~ 0x3FFF)任何时刻不会被擦除
- 扇区擦除和芯片擦除时间约 120ms~150ms

30.2 Flash 操作说明

- 为确保对 Flash 操作的安全性,在自烧录前禁止所有中断事件,避免中断处理中的 MOVX 指令对 Flash 进行误操作。
- Flash 在执行擦除和编程操作之前先解锁 Flash,向 Flash 开锁寄存器 FLA_KEY 依次写入 0x5A, 0x1F 后开启软件编程 Flash 功能。若顺序不对或写其它值将使此功能冻结,直到下一次复位。 开锁后,任何一次写 FLA_CR 的动作都会使 FLA_KEY 再次上锁。
- 程序执行过程中如果对 Flash 进行改写操作,CRC 也会随之改变

30.3 Flash 寄存器

30.3.1 FLA_CR (0x85)

1: 使能

位	7	6	5	4	3	2	1	0		
名称		RSV		FLAERR	RSV	FLAPRE	FLAERS	FLAEN		
类型	-	_	-	R	-	R/W	R/W	R/W		
复位值	-	-	ı	0	ı	0	0	0		
位	名称				描述					
[7:5]	RSV	保留								
编程出错标志位 [4] FLAERR 0: 对 Flash 自写时,编程或预编程操作成功										
		1: 对 Flash	讨 Flash 自写时,编程或预编程操作失败							
[3]	RSV	保留	留							
[2]	FLAPRE	0: 不使能 1: 使能	扇区预编程使能(扇区擦除前须先对本扇区预编程)): 不使能							
[1]	FLAERS			_AEN] = 1 B	寸,FLA_CR	[FLAERS]オ	-起作用			
[0]	FLAEN	编程使能 0: 不使能								

30.3.2 FLA_KEY (0x84)

位	7	6	5	4	3	2	1	0			
名称		FLA_KEY									
类型	W	W	W	W	W	W	W	W			
复位值	0	0	0	0	0	0	0	0			
位	名称				描述						
[7.0]	FLA_KEY	写: 按顺序	写: 按顺序写入 0x5A,0x1F 以解除 Flash 操作限制;往 FLA_CR 写任意值以								
[7:0]		限制 Flash 操作									

位	7	6	5	4	3	2	1	0		
名称			RS	SV			FLA	KSTA		
类型	-	-	-	-	-	-	R	R		
复位值	-	-	-	-	-	-	0	0		
位	名称		描述							
[7:2]	RSV	保留								
		读:反映的:	是 Flash 解領	淡状态						
		00: 上锁								
[1:0]	FLAKSTA	01: 0x5A i	已经写入,	等待 0x1F 5	写入					
		10: 冻结								
		11: 开锁								

31 CRC

31.1 CRC 功能框图

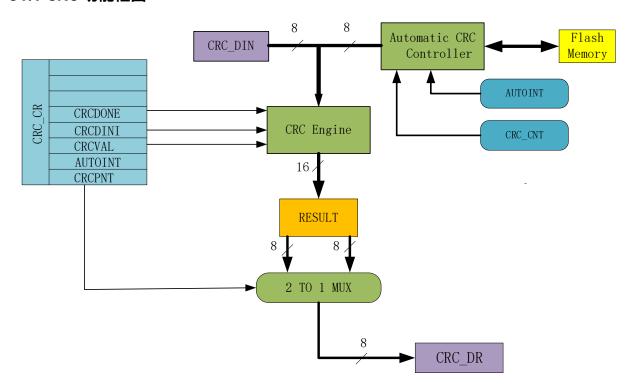


图 31-1 CRC 功能框图

CRC 根据固定的生成多项式得到任一 8 位数据的 CRC 计算结果。如图 31-1 所示,CRC 接收 CRC_DIN 寄存器的 8 位数据,计算完成后将 16 位结果发送至内部寄存器,通过 CRC_CR[CRCPNT]和 CRC DR 间接访问内部结果寄存器。

31.2 CRC16 多项式

芯片基于 CRC16/CCITT-FALSE 标准的多项式。

表 31-1 CRC 标准与多项式

CRC 标准	生成多项式	16 进制表示
CRC16/CCITT-FALSE	x^16+x^12+x^5+1	0x1021

31.3 CRC16 基本逻辑图

串行 CRC16 的电路原理如图 31-2 所示。芯片采用并行算法实现,对每个输入字节,MCU 用 1 个系统时钟即可计算出结果。

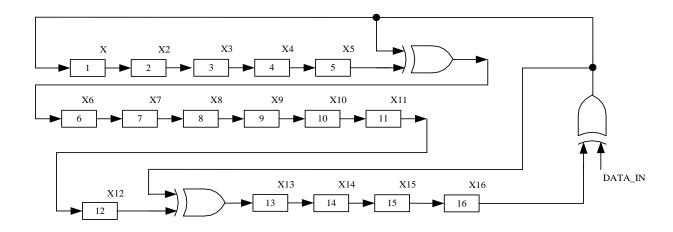


图 31-2 CRC16 电路原理图

31.4 CRC 操作说明

31.4.1 计算单个字节的 CRC

计算单个字节的 CRC 值,按以下步骤进行:

- 初始化 CRC_DR,有两种方式可以选择:配置 CRC_CR[CRCVAL]并将 CRC_CR[CRCDINI]置 1, 初始值为 0x0000 或 0xFFFF。通过 CRC_CR[CRCPNT]和 CRC_DR 配合进行 CRC 初始操作, 可配置任意初始值;
- 2. 向输入数据寄存器 CRC_DIN 写入数据,下个时钟周期 CRC 计算完成;
- 3. 读取 CRC 结果: 配置 CRC_CR[CRCPNT] = 1, 软件读取结果输出寄存器 CRC_DR, 得到高字节数据; 配置 CRC_CR[CRCPNT] = 0, 读 CRC_DR 得到低字节数据。

31.4.2 批量计算 ROM 数据 CRC

计算 ROM 中某片连续区域数据的 CRC 值按以下步骤进行:

- 1. 初始化 CRC_DR, 方法同单字节 CRC;
- 2. 配置 CRC BEG、设置要计算的 ROM 的起始扇区:
- 3. 配置 CRC_CNT,设置起始扇区到结束扇区的扇区偏移量;
- 4. 向 CRC_CR[AUTOINT]写 1, 保持其它位不变, 会启动自动计算过程;
- 5. 读取 CRC 结果。

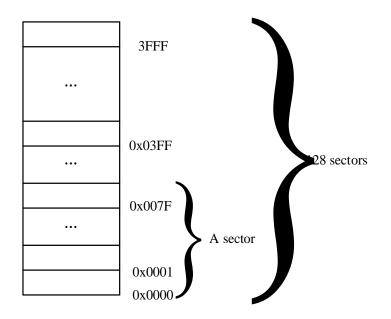


图 31-3 ROM 访问分区图

如图 31-3 所示,ROM 共有 16k 字节,分成 128 个 sector,编号从 sector 0 到 sector 127。每个 sector 包含 128 个字节。在进行 CRC 批量计算时,起始 sector 的值 CRC_BEG 可以是 $0x00 \sim 0x7F$ 之间的任何值,包括 0x00 和 0x7F。需要计算的 sector 总数的数值 CRC_CNT 可以是 $0x00 \sim 0x7F$,包括 0x00 和 0x7F。

需要注意的是,随着 CRC_BEG 的增大,CRC_CNT 应该相应减小。例: 如 CRC_BEG 的值为 0x7F,则 CRC_CNT 的值只能是 0x00,即计算最后一个 sector 中数据的 CRC 值。此时,如误操作将 CRC_CNT 的值设置为一个大的值,CRC 控制器会硬件自动限制计算的字节数,使 CRC 模块只计算最后一个 sector 的 CRC 值。

31.5 CRC 寄存器

31.5.1 CRC_CR (0x4022)

位	7	6	5	4	3	2	1	0	
名称		RSV		CRCDONE	CRCDINI	CRCVAL	AUTOINT	CRCPNT	
类型	-	1	ı	R	W1	R/W	W1	R/W	
复位值	-	1	ı	1	0	0	0	0	
位	名称				描述				
[7:5]	RSV	保留							
[4]	CRCDONE	在 CRC 批	CRC 批量计算完成标志位 E CRC 批量计算模式过程中,硬件自动将这一位写 0,并且软件代码也会停止 执行;在其它情况下,硬件自动将这一位置为 1,所以,软件读取这一位始终 医回 1。						
[3]	CRCDINI	0: 无意义	CRC 结果初始化触发						
[2]	CRCVAL	0: CRC 结:	初始化选择(果初始化为 果初始化为	0x0000					
[1]	AUTOINT	0: 无意义 1: 启动批量	I: CRC 结果初始化为 0xFFFF CRC 批量计算启动 D: 无意义 I: 启动批量 CRC 计算 参考批量计算 ROM 数据 CRC						
[0]	CRCPNT		RC_DR 访问I	的是 16 位 (的是 16 位 (

注: 计算单个字节 CRC 校验时,配置 CRC_CR[AUTOINT] = 0。

31.5.2 CRC_DIN (0x4021)

位	7	6	5	4	3	2	1	0			
名称		CRC_DIN									
类型	W	W	W	W	W	W	W	W			
复位值	0	0	0	0	0	0	0	0			
位	名称				描述						
		CRC 模块	· 渝入数据								
[7:0]	CRC_DIN	■ ■ 每次向此寄存器写入一个数据时,CRC 模块自动在现有 CRC 结果的基础上,									
	根据输入数据计算出新的 CRC 结果,并覆盖原 CRC 结果。										

	注: 此寄存器是一个虚拟寄存器,	写入的数据并不保存。	读取此地址时返回
	0x00		

31.5.3 CRC_DR (0x4023)

位	7	6	5	4	3	2	1	0
名称		CRC_DR						
类型	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
复位值	0	0	0	0	0	0	0	0
位	名称				描述			
		CRC 结果软	渝出					
[7:0]	CRC_DR	每次读、写	每次读、写此寄存器时,会根据控制寄存器 CRC_CR[CRCPNT]来决定访问的					
		是 CRC 结	果的高8位	还是低 8 位	0			

31.5.4 CRC_BEG (0x4024)

位	7	6	5	4	3	2	1	0	
名称	RSV		CRC_BEG						
类型	-	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
复位值	-	0	0	0	0	0	0	0	
位	名称				描述				
[7]	RSV	保留							
		自动计算(CRC 的 RON	4 起始扇区					
[6:0]	CRC_BEG	例: 如果 C	RC_BEG 的	值是 1,则日	自动计算 CF	RC 的起始地	业为 1*128	3 = 128,	
实际上是从第二个扇区的第一个字节开始。									

31.5.5 CRC_CNT (0x4025)

位	7	6	5	4	3	2	1	0	
名称	RSV		CRC_CNT						
类型	-	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
复位值	-	0	0	0	0	0	0	0	
位	名称				描述				
[7]	RSV	保留							
		自动 CRC	计算的扇区	偏移量					
[6:0]	[6:0] CRC_CNT 此值定义了需要计算 CRC 值的 ROM 扇区的偏移量,通过此值可决定自动						定自动		
		CRC 计算的结束扇区。							

32 休眠模式

32.1 休眠模式简介

芯片提供了三种工作模式: 正常,待机和睡眠。通过设置寄存器 PCON[IDLE]和 PCON[STOP]的值选择不同的工作模式。

各种功耗模式下的模块工作情况总结如表 32-1 所示:

表 32-1 功耗模式

电源模式	描述	唤醒源	功耗性能
正常	除去被关掉的外设,其他模块全速工作	NA	功耗较高,性能最好
	CPU 时钟被暂停,其他功能模块关闭或	任何中断	
待机	工作,由其控制位决定,看门狗时钟被	外部 Reset/Debug	功耗低,性能灵活
	暂停。	复位	
睡眠	Flash 深度睡眠。模拟快时钟电路关闭, MCU 软件应注意在进入睡眠前,确保 ADC、FOC、驱动电路已处于空闲。看 门狗时钟被关闭。	外部中断,RTC 中 断,外部 Reset/Debug 复位	功耗很低,性能灵活

注: 进入睡眠模式后建议插入 3 条空语句。

PCON = 0x02;

nop();

nop();

nop();

32.2 休眠模式寄存器

32.2.1 PCON(0x87)

位	7	6	5	4	3	2	1	0	
名称	RS	SV	GF3	GF2	GF1	RSV	STOP	IDLE	
类型	ı	-	R/W	R/W	R/W	ı	R/W	R/W	
复位值	ı	-	0	0	0	1	0	0	
位	名称		描述						
[7:6]	RSV	保留							
[5]	GF3	通用标志位	ኔ 3						
[4]	GF2	通用标志位	<u>ት</u> 2						
[3]	GF1	通用标志位	通用标志位 1						
[2]	RSV	保留	保留						
[1]	STOP	写 1 使芯片	写 1 使芯片进入睡眠模式,唤醒后由硬件自动清 0						
[0]	IDLE	写 1 使芯	†进入待机村	莫式,唤醒原	5由硬件自云				

功耗模式 PCON[STOP:IDLE]:

00: 正常 01: 待机

1X: 睡眠

33 代码保护

33.1 代码保护简介

芯片支持 Flash 全芯片加密的方式,用于保护客户的软件知识产权,免受非法的用户操作。当 Flash 被加密后,数据无法读取,只能通过硬件 CRC 校验来对比程序是否一致。

33.2 代码保护操作说明

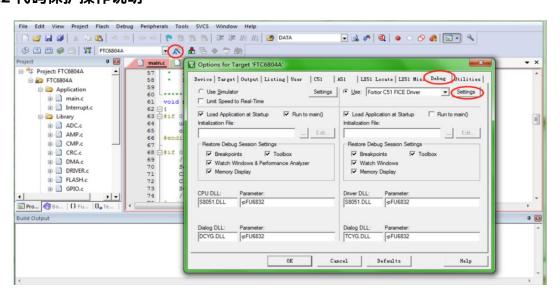


图 33-1 代码保护配置

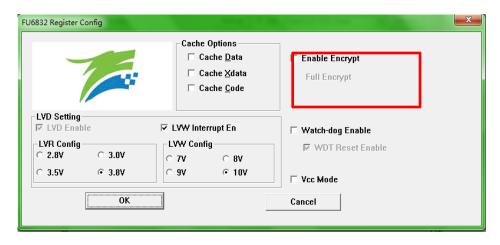


图 33-2 代码保护全保护模式

加密步骤为:

- 1. 打开 8051 集成开发工具,编译前进入 Target Options 中并选择 Debug 选项卡,按照上图 33-1 所示进行选择,并点击 Settings 进入下一步设置;
- 2. 按照图 33-2 所示进行选择并设置,点击 OK。然后编译工程并下载,得到 BIN 文件并烧录 到 Flash 后即可达到代码保护的效果。

34 磁阻传感器

34.1 简介

FU6332 内置 AMR 磁阻技术为基础的角度传感器,磁阻元件检测旋转磁场得到两对幅值在 120mV 左右的差分正弦信号输出到芯片管脚,通过芯片运放 1 和运放 2 放大后使用。角度传感器 可以提供 180°的角度测量范围、配合 Hall 或者其他技术时可以获得 360°绝对位置。

34.2 使用说明

图 34-1 展现了基本角度测量过程中芯片与磁铁的位置关系,当传感器表面受到 80G 或者更大的磁场施加在平行于传感器表面,例如使用径向磁化的永磁铁放置在传感器的上方,永磁体安装在电机或者其他设备的转轴末端。当磁铁随着电机旋转时,传感器感受的磁场方向随之发生改变,同时提供对应于磁场方向 θ 的输出,图 34-2 传感器管脚输出的电压波形和角度关系,由该图可以看出,电桥 A 和 B 的输出信号都是 180°的周期。在 0°~180°和 180°~360°,输出的波形是完全一样的。因此,结合电桥 A 和 B 的输出,我们可以在 0~180°的范围内唯一地确定角度 θ 。在具有霍尔或者其他技术的帮助下,0~360°的角度范围内的角度都可以被精确地确定。芯片管脚输出电压如下,其中 S 典型值 12mV/V。

电桥 A 的输出电压 $V = VDD * S * \sin(2\theta)$

电桥 B 的输出电压 $V = VDD * S * \cos(2\theta)$

Off-axis Misalignment N S Air Gap

图 34-1 芯片磁铁安装方式

符号	参数	Min	Тур	Max	Unit
Dmag	磁铁直径	-	6	-	mm
Tmag	磁铁厚度	-	2.5	-	mm
Bpk	表磁强度	80	-	-	Gs
AG	空气间隙	0.5	2	-	mm

符号	参数	Min	Тур	Max	Unit
DISP	径向抖动	-	-	0.3	mm
TCmag1	NdFeB	-	-0.12	-	%/°C
TCmag2	SmCo	-	-0.035	-	%/°C

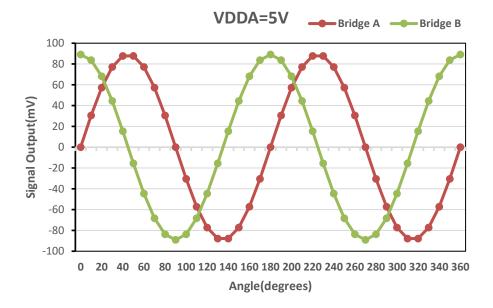


图 34-2 芯片输出角度电压波形

34.3 传感器功能框图

FU6332 关于磁传感器应用的简化框图如图 34-3,由两个交错惠斯通电桥产生正余弦模拟信号, 经过外部配置的电阻调节运放放大倍数送给芯片运放,通过数模转换器(ADC)和硬件解码处理单元 完成角度解码。

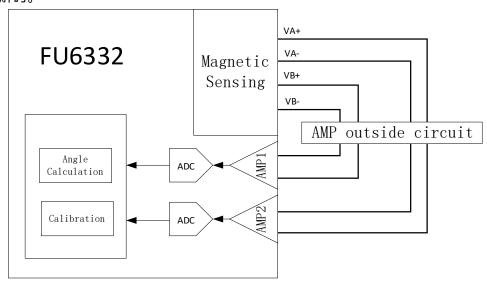


图 34-3 模块功能框图

34.4 应用电路推荐

如图 34-4, 角度传感器输出的信号(VA, VB 管脚)通过芯片 AMP1 和 AMP2 运算放大器差分放大, 建议放大倍数 10-20 倍,偏置电压使用芯片 VHALF 偏置电压。100pF 的电容放置在反馈回路中来降低 系统带宽,同时进一步排除传感器和放大电路之外的噪声。

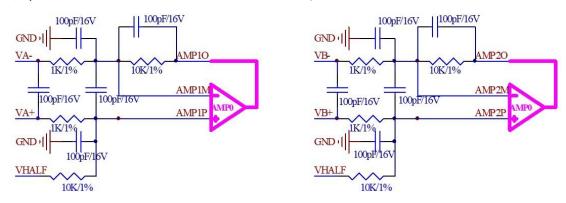


图 34-4 电路连接设计

35 修改记录

版本	主要修改内容	生效日期	修订者
V1.0	初始版本	2021/11/16	龙财
V1.1	 删除 LIN 模块; 更新 1~5章; 纠正文档的一些不足之处; 标注 FU6332N 不支持的部分功能; 采用数据手册标准 V7.8。 	2023/11/28	朱兵华
V1.2	 标准化部分寄存器及位的写法; 1.1 特性更新 ADC 通道数 8 为 9; 统一 VDD18 LDO 输出电压为 1.85V; 4 订购信息修改 MIPS 为主频 (MHz) ,统一比较器数量为 3; 更新 13.2.7 FOC_TRGDLY (0x40A5)描述; 2.2 FU6332N QFN40 引脚图增加图 2-2 Sensor 位置示意 图; 5.2 全局电气特性增加工作温度范围; ADC 区分转换时间与采样时间时钟源; 6.4 低电压保护复位更新芯片的内部电路会对 VDD 进行监测为芯片的内部电路会对 VCC 进行监测; 7.5.9 P2_IE (0xD3)增加[7]位描述; 14.3.6 TIM1_IER (0x406D)更新 T1UPD 类型 W 为 W1; 15 Timer 2 图 15-1 输出模式原理框图、图 15-5 输入捕获模式原理框图删除寄存器 T2OPM; 更新 15.2.2 TIM2_CR1 (0xA9)[1]复位值-为 0; 16.1.1 分频器增加注: Timer3 的输入捕获模式下,TIM3_CR0[T3PSC] = 111 对应的是 48MHz; 18 Driver 增加内置 Pre-driver 信号真值表; 更新 22 1 ADC 多路复用器框图,增加 AD14,修改 VCC的连接方法; 更新 25.2.1 VREF_CR (0x404F)[VREFEN]描述引脚外接电容值为 1μF ~ 4.7μF 电容; 更新图 26 1 VHALF 模块的端口输入输出情况为图 26 1 VHALF 模块输入输出端口; 更新 27.2.2.2 AMP2"配置 CMP_CR0[AMP2EN] = 1"为"配置 AMP_CR0[AMP2EN] = 1"; 	2024/07/30	朱兵华

版本		主要修改内容	生效日期	修订者
	20.	28.1.1 比较器 CMP3 更新配置 CMP3 的步骤第一步"配置		
		负输入端参考电压,可使用来自片内 DAC0 输出或使用外		
		部电路输入。"为"配置 P2_AN[6]、P2_OE[6] = 1,使比较		
		器负端信号输入至 P2.6。";		
	21.	28.1.2 比较器 CMP4 删除 CMP4 为一个迟滞比较器的说		
		明;		
	22.	比较器采样测试引脚说明删除封装与引脚名;		
	23.	图 28 2 单比较器输入模式、图 28 3 双比较器输入模式更		
		新 DAC0 为 9 位;		
	24.	更新 28.2.3 CMP_CR2 (0xDA)[0]位描述 CMP0 使能为		
		CMP0/1/2 使能;		
	25.	表 31 1 CRC 标准与多项式删除不适用的标准,调整表格至		
		31.2 CRC16 多项式;		
	26.	优化文档。		

版权说明

版权所有©峰岹科技(深圳)股份有限公司(以下简称:峰岹科技)。

为改进设计和/或性能,峰岹科技保留对本文档所描述或包含的产品(包括电路、标准元件和/或软件)进行更改的权利。本文档中包含的信息供峰岹科技的客户进行一般性使用。峰岹科技的客户应确保采取适当行动,以使其对峰岹科技产品的使用不侵犯任何专利。峰岹科技尊重第三方的有效专利权、不侵犯或协助他人侵犯该等权利。

本文档版权归峰昭科技所有,未经峰昭科技明确书面许可,任何单位及个人不得以任何形式或方式 (如电子、机械、磁性、光学、化学、手工操作或其他任何方式),对本文档任何内容进行复制、 传播、抄录、存储于检索系统或翻译为任何语种,亦不得更改或删除本内容副本中的任何版权或其 他声明信息。

峰岹科技 (深圳) 股份有限公司

深圳市南山区科技中二路深圳软件园二期 11 栋 2 楼 203

邮编: 518057

电话: 0755-26867710 传真: 0755-26867715

网址: www.fortiortech.com

本文件所载内容

峰岹科技(深圳)股份有限公司版权所有、保留一切权利。