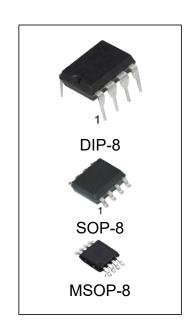


产品特点

• 内部频率补偿

● 单电源电压范围: 3V~30V


• 短路保护

双电源电压范围: ±15V

• 低功耗: 典型值 500uA @ VCC=5V

● 单位增益带宽:可达 1.2MHZ

• 封装形式: DIP-8、SOP-8、MSOP-8

产品订购信息

产品名称	品名称		包装	包装数量	
JRC4558	DIP-8	4558	管装	2000 只/盒	
JRC4558-TD	SOP-8	4558	编带	2500 只/盘	
JRC4558	MSOP-8	4558	编带	3000 只/盘	

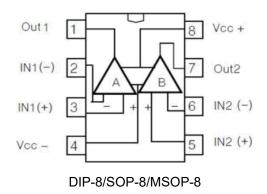
产品简介

JRC4558 是一款双路低功耗的差分式运算放大器,可以单电源或双电源供电。具有较高的开环增益、内部补偿、高共模范围和良好的温度稳定性,以及具有输出短路保护的特点。广泛应用于音频放大电路和传统的运算放大电路中。

产品用途

• 传感器信号放大器

• 直流增益


• 音频放大器

• 其它应用领域

封装形式和管脚功能定义

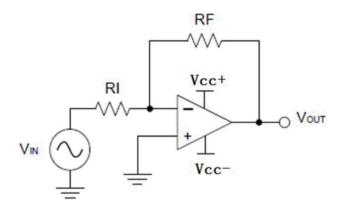
管脚序号 DIP-8/SOP-8/MSOP8	管脚定义	功能说明
1	OUT1	第1路输出
2	IN1-	第1路反相输入
3	IN1+	第1路正相输入
4	VCC-	电源负
5	IN2+	第2路正相输入
6	IN2-	第2路反相输入
7	OUT2	第2路输出
8	VCC+	电源正

极限参数

项目	符号	极限值(1)	单位
单电源供电电压	VCC	36	V
双电源供电电压	Vs _(VCC+,VCC-)	±18	V
差分输入电压②	V _{IDR}	±15	V
共模输入电压	V_{ICR}	-0.3∼36V	V
输出短路时间	t _{sc}	连续	
耗散功率	Po	400	mW
工作温度	T _A	0-70	${\mathbb C}$
储存温度	Ts	-65-150	$^{\circ}$
焊接温度,10s	T _w	245	$^{\circ}$

注:

- 1. 极限值是指无论在任何条件下都不能超过的极限值。如果达到此极限值,将有可能造成产品劣化等物理性损伤;同时在接近极限参数下,不能保证芯片可以正常工作。
- 2. 输入端 IN+相对于 IN-之间的电压差。


直流电学特性 (T_A=25℃, VCC++=5V,VCC+-=GND 除非特别指定)

项目	符号	测试条件		最小值	典型值	最大值	单位
输入失调电压	V _{IO}	VCC+=5Vto30V,V _{IC} =VICR	-	5	-	mV	
输入失调电流	I _{IO}	VO = 1.4 V		-	10	50	nA
偏置电流	I _{BIAS}	VO = 1.4 V		-	50	250	nA
共模输入电压	V _{ICR}	VCC+ =5V to 30V		VCC-	-	VCC+ -1.5V	٧
开环电压增益	A _{OL}	VCC+ =15V,VO=1V to 11\	/,RL≥2kΩ		100	-	V/mV
共模抑制比	CMRR	VCC+ =5V to MAX,V _{IC} =VI	CR(min)	-	80	-	dB
单位增益带宽	GBWP			-	1.2	-	MHZ
电源电压抑制比 PSSR	$\Delta V_{VDD}/\Delta V_{IO}$	VCC+ =5V to MAX, f=20kl	Hz	-	90	-	dB
串扰衰减抑制比 CS	V _{O1} /V _{O2}	f=1kHz to 20kHz	-	120	-	dB	
	VOH	VCC+ =15V, VID=1V	lout =-50uA	-	13.6	-	V
松山古中亚中区			lout =-1mA	-	13.5	-	V
輸出高电平电压			lout =-5mA	-	13.4	-	V
		VCC+ =28V	RL=2k		26	-	V
			lout =50uA	-	0.1	-	V
松山瓜中亚中丘	\/OI	VCC+ =15V, VID=-1V	lout =1mA	-	0.7	-	V
输出低电平电压 	VOL		lout =5mA	-	1.0	-	٧
		VCC+ =28V RL=2k		-	0.85	-	V
中海工作中济		VCC+ =5V,VO=1/2VCC+ ,	-	0.5	-	mA	
电源工作电流	l _{cc}	VCC+ =30,VO=1/2VCC+ ,No load		-	0.8	-	mA
单电源工作电压	VCC+	VCC-=0V(GND)		3	-	30	V
双电源工作电压	VS	VCC+ ,VCC-		-15	-	+15	V

典型应用

1. 线路图

2. 设计要求

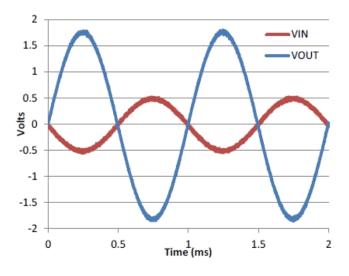
必须选择大于输入电压范围和输出范围的电源电压。

例如,将信号源 VIN 从±0.5 V 放大到±1.8V。将电源设置为±5 V 足以适应此应用要求。

3. 设计过程

根据公式(1)计算放大倍数(增益) AV

 $A_V = -VO/VIN - - - - (1)$

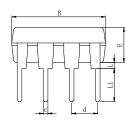

 $A_V = -VO/VIN = -1.8/0.5 = -3.6$

一旦确定了所需的增益 AV,就要为 RI 或 RF 电阻选择一个值。根据运放的电特性及功耗的需要,可选择 $1k\Omega-100k\Omega$ 范围内的值。本例将选择 RI=10 $k\Omega$,则 RF=36 $k\Omega$ 。这由方程式 2 确定。

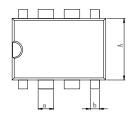
$$A_V = -RF/RI - - - (2)$$

RF= $-A_V$ * RI=3.6*10 = 36 k Ω

4. 应用曲线图

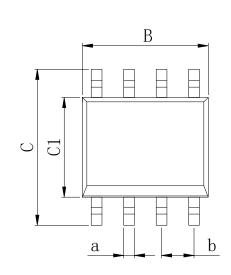


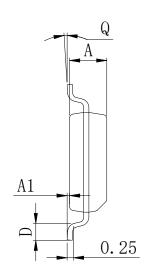
反相放大器的输入电压 VS 输出电压



封装外型尺寸

DIP-8





Dimensions In Millimeters(DIP-8)											
Symbol:	Α	В	D	D1	Е	L	L1	а	b	С	d
Min:	6.10	9.00	8.10	7.42	3.10	0.50	3.00	1.50	0.85	0.40	2.54 BSC
Max:	6.68	9.50	10.9	7.82	3.55	0.70	3.60	1.55	0.90	0.50	2.04 BSC

SOP-8 $_{(150mil)}$



Dimensions In Millimeters(SOP-8)										
Symbol:	Α	A1	В	С	C1	D	Q	а	b	
Min:	1.35	0.05	4.90	5.80	3.80	0.40	0°	0.35	1.27 BSC	
Max:	1.55	0.20	5.10	6.20	4.00	0.80	8°	0.45	1.27 650	

封装外型尺寸

MSOP-8

Dimensions In Millimeters(MSOP-8)										
Symbol:	А	A1	В	С	C1	D	Q	а	b	
Min:	0.80	0.05	2.90	4.75	2.90	0.35	0°	0.25	0.65.000	
Max:	0.90	0.20	3.10	5.05	3.10	0.75	8°	0.35	0.65 BSC	