

Parameter	Symbol	Rating	Units	
Load Voltage	VL	400	V	
Load Current	lι	0.12	Α	
On-Resistance	Ron	20	Ω	
I/O Breakdown Voltage	V/ıo	2500	Vrms	

- 1. LED Anode
- 2. LED Cathode
- 3.4. Drain(MOS FET)

APSEMI PhotoRelays

APSEMI Photorelays are the most reliable, technically advanced logic-to-power interface devices. Their basic function is to take a low current signal from a microprocessor to control the switching of both AC and DC loads, while providing an isolation barrier between logic and power. While this function is common to all relays, Photorelays provide distinct advantages over their mechanical counterparts including:

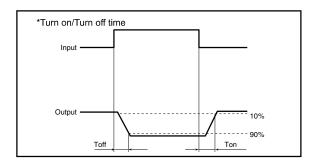
- Long life (No limit on mechanical and electrical
- lifetime)Bounce-free switching
- · Higher speed and high frequency switching
- Higher sensitivity (less power consumption)
- Immunity to EMI or RFI

- No have voltaic arc, bounce, and noise More
- · resistant to vibration and impact AC or DC load
- switching
- Small package size

Function

APSEMI PhotoRelays operate by taking a low level input current (<5mA) that energizes an input Infrared LED, which is optically-coupled to a Photo-diode array chip. This IC in turn generates a photo voltage that powers two MOSFETs typically connected in a source-to-source con¦ guration, allowing for both AC and DC output loads. Photorelay basically move photons to accomplish their switching function, they incur no mechanical wear and tear, providing consistent reliable switching.

Applications


These advantages make APSEI Photorelays the ideal choice for:

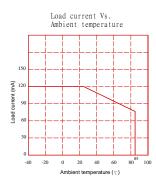
- Telecom/Datacom switching
- Multiplexers
- Meter reading systems
- Data acquisition
- Medical equipment
- Battery monitoring
- I/O Sub-Systems

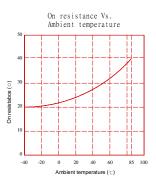
- Robotics
- Aerospace
- Home/Safety security systems
- Process Control
- Energy Management
- Reed Relay EMR Replacement
- Programmable Controllers

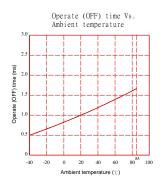
TPYES

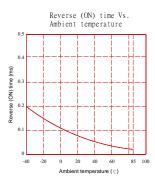
Catagoni	Output Rating		Doolsons	Part No.	Doolsing Overtity	
Category	Load Voltage	Load Current	Package	Fait NO.	Packing Quantity	
AC/DC	400V	0.12A	SOP-4	APY414S	2000pcs /reel	

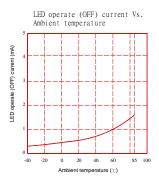
Absolute Maximum Ratings (Ta = 25°C)

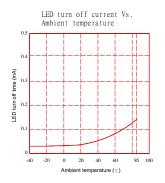

	Item	Symbol	Va l ue	Units	Note
	Continuous LED Current	lF	50	mA	
Input	Peak LED Current	I FP	500	mA	f=100Hz, duty=1%
	LED Reverse Voltage	VR	5	V	
	Input Power Dissipation	Pın	75	mW	
Output	Load Voltage	VL	400	V(AC peak or DC)	
	Load Current	IL	0.12	А	
	Peak Load Current	Peak	0.3	А	100ms(1 pulse)
	Output Power Dissipation	Pout	500	mW	
Total Powe	er Dissipation	Рт	550	mW	
I/O Breakd	own Voltage	V _{I/O}	2500	Vrms	RH=60%, 1min
Operating ⁻	Temperature	Торг	-40 to 85	င	
Storage Te	mperature	T _{stg}	-40 to 100	°C	
Pin Solderi	ng Temperature	Tsol	260	°C	10 sec max.

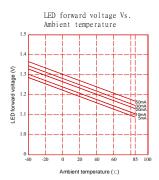

Electrical Characteristics (Ta = 25°C)

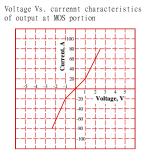

	Item	Symbol	MIN.	TYP.	MAX.	Units	Conditions
	LED Forward Voltage	VF		1.2	1.4	V	I⊧=10mA
Input	Operation LED Current	Fon		0.5	3.0	mA	
	Recovery LED Current	Foff		0.35	0.5	mA	
	Recovery LED Voltage	V _{Foff}	0.5			V	
							I⊧=0mA,I∟=Max
Output	On-Resistance	Ron		20	50	Ω	Time to flow is within 1 sec.
	Off-State Leakage	Leak			1	uA	V _∟ =Rating
	Current	Leak			•	G, t	vi raing
	Output Capacitance	Cout		165		pF	V∟=0, f=1MHz
Transmis	Turn-On Time	Ton		0.5	3.0	ms	I⊧=5mA, I∟=Max ,
sion	Turn-Off Time	Toff		0.02	1.0	ms	
Coupled	I/O Isolation Resistance	R _{I/O}	10 ¹⁰			Ω	DC500V
Coupled	I/O Capacitance	C _{I/O}		0.8	1.5	pF	f=1MHz

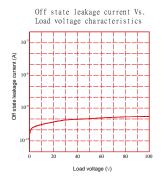

Please obey the following conditions to ensure proper device operation and resetting. Input LED current (Recommended value): IF ≥5mA and ≤30mA

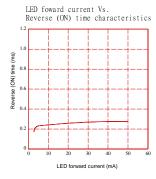

Engineering Data

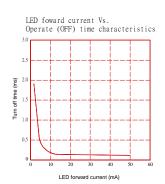


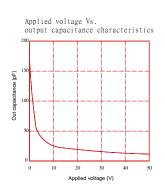


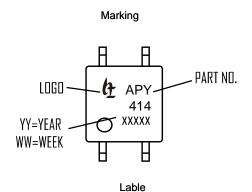


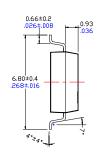


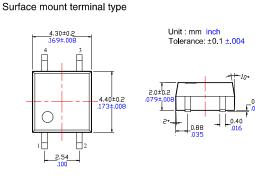




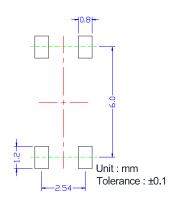


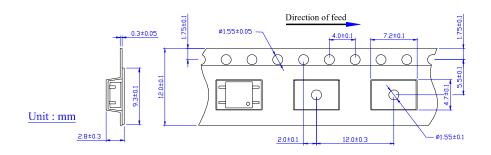


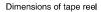


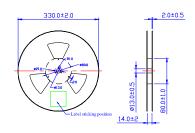


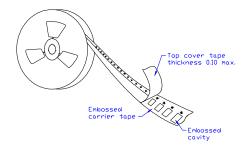
Dimensions and Package



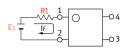


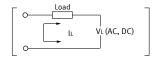

Recommended mounting pad (Top view)



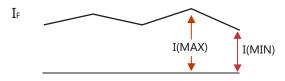


Tape dimensions





Using Methods

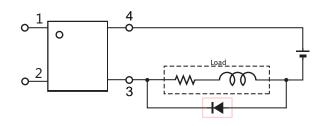

Examples of resistance value to control LED forward current (IF=5mA)

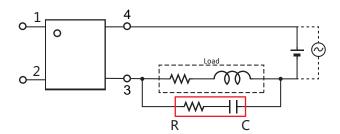
R1 (Approx)
300 Ω
600 Ω
1.9KΩ
4.1K Ω

LED forward current must be more than 5mA, at I(MIN), and less than 30mA, at I(MAX).

Recommended Operating Conditions

Please obey the following conditions to ensure proper device operation and resetting. Input LED current (Recommended value):


Characteristic	Symbol	Min	Тур.	Max	Unit
Forward current	lF	5.0	7.0	30	mA


Protection Circuit

Output spike voltages:if an inductive load generates spike voltages which exceed heabsolute maximum rating, the spike voltage shall be limited.

Clamp diode is connected in parallel with the load. Absorb capacity with external diode.

CR Snubber is connected in parallel with the load. Absorb capacity with buffer capacity.

When adding diodes, buffer circuits (C-R), and other protections, they need to be installed near the MOS RELAY to be effective. Adding protection elements may result in a slow reset time, so adjust them according to the actual situation before use.

Note: When developing designs using this product, perform the expected performance of the equipment under the operating conditions recommended by the guidelines in this document. Continuous use under heavy loads (including, but not limited to, the application of high temperatures/current/voltage and significant changes in temperature, etc.) may result in deterioration of the reliability of this product.