

0.1-6GHz SPDT Switch for High Power Applications

Features

- Broadband frequency range: 0.1 to 6 GHz
- High power handling capability of up to 39 dBm
- Low insertion loss: 0.52 dB typical @ 6.0 GHz
- High isolation: 27 dB typical @ 6.0 GHz
- High switching speed: 1 us typical
- Low harmonic generation
- Small FCLGA (6-pin, 1.1mm x 0.7mm x 0.47mm) package

Applications

- Multi-Mode GSM/CDMA/WCDMA/LTE and NR including n77, n78, n79 bands
- Cellular modems, tablets and USB Devices
- Other RF front-end modules

General Description

The AW13612FLR is a single-pole dual-throw switch with high power handling capability of up to 39dBm and low insertion loss. It can be used to support band switching and mode switching for GSM, WCDMA, LTE, and NR applications.

The symmetrical design of internal ports makes it convenient for PCB routing and adjustment of receiving and transmitting signals. The band/mode switching is realized by the GPIO pins as referenced in the chip block diagram and the control logic.

The AW13612FLR is provided in a compact FCLGA 1.1mm x 0.7mm x 0.47mm-6L package.

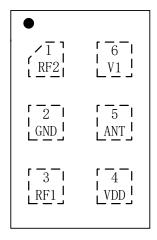
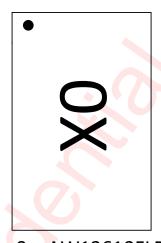

Typical Application Circuit

Figure 1 Typical Application Circuit of AW13612FLR


Pin Configuration And Top Mark

AW13612FLR (Top View)

TOP VIEW

AW13612FLR Marking (Top View)

0 – AW13612FLR X – Production Tracing code

Figure 2 Pin Configuration and Top Mark

Pin Definition

No.	NAME	DESCRIPTION	
1	RF2	RF I/O path 2	
2	GND	Ground	
3	RF1	RF I/O path 1	
4	VDD	DC power supply	
5	ANT	Antenna port	
6	V1	DC control voltage 1	

Functional Block Diagram

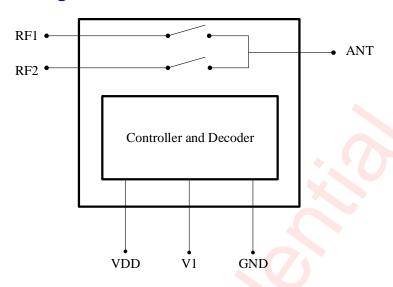


Figure 3 FUNCTIONAL BLOCK DIAGRAM

Ordering Information

Part Number	Temperature	Package	Marking	Moisture Sensitivity Level	Environmental Information	Delivery Form
AW13612FLR	-40°C∼85°C	FCLGA 1.1mmX0.7mm-6L	0	MSL3	ROHS+HF	3000 units/ Tape and Reel

Absolute Maximum Ratings(NOTE1)

PARAMETERS	RANGE	Note / Test Condition
Supply Voltage Range VDD	-0.3V to 3.6V	
Control Voltage Range V1	0V to 3.3V	
Max input power (RF1/RF2/ANT)	39dBm	900MHz, CW, VSWR=1:1
Operating Free-air Temperature Range	-40°C to 85°C	
Storage temperature T _{STG}	-65°C to 150°C	
Lead temperature (soldering 10 seconds)	260°C	
ESD		
HBM (NOTE 2)	±2000V	>
CDM (NOTE 3)	±2000V	

NOTE1: Conditions out of those ranges listed in "absolute maximum ratings" may cause permanent damages to the device. In spite of the limits above, functional operation conditions of the device should within the ranges listed in "recommended operating conditions". Exposure to absolute-maximum-rated conditions for prolonged periods may affect device reliability.

NOTE2: The HBM is a 100pF capacitor discharged through a 1.5k Ω resistor into each pin. Test condition: ESDA/JEDEC JS-001-2017.

NOTE3: Test condition: ESDA/JEDEC JS-002-2018.

Electrical Characteristics

VDD=1.8V, V1=0/1.8V, P_{IN} =0dBm, Temp=+25°C, Z_0 =50 Ω . (unless otherwise noted)

	PARAMETER	TEST CONDITION	MIN	TYP	MAX	UNIT
DC Specifi	cations				•	•
VDD	Supply Voltage		1.65	1.8	3.3	V
IDD	Supply Current			47	100	μА
VCTL_H VCTL_L	Control Voltage High Low		1.35 -0.3	1.8	3.3 0.45	V
ICTL	Control Current	VCTL = 1.8V		0.1	1	μΑ
Tsw	Turn-on Switching Time	50% of final control voltage to 90% of final RF power, switching between RF1/2		1.0	2.0	μS
RF Specific	cations					
•		617-960MHz		0.20	0.29	dB
	Insertion loss	960-2170 MHz 2170-2700 MHz		0.26 0.28	0.36 0.39	dB dB
IL		3300-3800 MHz		0.26	0.39	dВ
		3800-5000 MHz		0.37	0.58	dB
		5150-5925 MHz		0.52	0.79	dB
	. ()	617-960MHz	38	41		dB
		960-2170 MHz	30	37		dB
ISO	Landad's a ANT to DE4/0 Days	2170-2700 MHz	29	34		dB
ANT-RFx	Isolation ANT to RF1/2 Port	3300-3800 MHz	26	31		dB
		3800-5000 MHz	25	29		dB
		5150-5925 MHz	21	26		dB
		617-960MHz	44	50		dB
		960-2170 MHz	36	43		dB
ISO	Isolation RF1/2 to RF2/1 Port	2170-2700 MHz	33	40		dB
RFx-RFx	Isolation RF 1/2 to RF2/1 Fort	3300-3800 MHz	28	33		dB
		3800-5000 MHz	25	30		dB
		5150-5925 MHz	21	27		dB
		617-960MHz	25	29		dB
RL	Input return loss	960-2170 MHz	18	22		dB
IXL	Input return loss	2170-2700 MHz	17	20		dB
		3300-3800 MHz	16	19		dB

	PARAMETER	TEST CONDITION	MIN	TYP	MAX	UNIT
		3800-5000 MHz	13	17		dB
		5150-5925 MHz	10	15		dB
2fo	Second harmonics	PIN=+35dBm, 900MHz,CW		-66	-54	dBm
3fo	Third harmonics	PIN=+35dBm, 900MHz,CW		-58	-50	dBm
IMD2	Second order intermodulation	IMD2 Testcases	•	-116	-101	dBm
IMD3	Third order intermodulation	IMD3 Testcases		-89	-81	dBm
IIP2	Second order intercept point	IMD2 Testcases	110	125		dBm
IIP3	Third order intercept point	IMD3 Testcases	70	74		dBm
P _{0.1dB}	0.1dB Compression Point (ANT pin to RF1/RF2)	900MHz, CW VSWR = 1:1		39		dBm

IMD2 Testcases

Band	In-Band Frequency [MHz]	Blocker Frequency 1 [MHz]	Blocker Power 1 [dBm]	Blocker Frequency 2 [MHz]	Blocker Power 2 [dBm]
Band1	2140	1950	24	4090	-15
Band2	1960	1880	24	3840	-15
Band7	2652	2535	24	5187	-15

IMD3 Testcases

Band	In-Band Frequency [MHz]	Blocker Frequency 1 [MHz]	Blocker Power 1 [dBm]	Blocker Frequency 2 [MHz]	Blocker Power 2 [dBm]
Band1	2140	1950	20	1760	20
Band2	1960	1880	20	1800	20
Band5	881.5	836.5	20	791.5	20

Power ON and OFF Sequence

It is very important that the user adheres to the correct power-on/off sequence in order to avoid damaging the device. The control signal V1 should be set to 0V unless VDD is set in the operating voltage range.

Power ON:

- 1) Apply voltage supply --- VDD
- 2) Set Controls---V1
- 3) Apply RF input

Change switch position from one RF port to another:

- 1) Remove RF input
- 2) Change control voltages V1 to set the switch to desired RF port
- 3) Apply RF input

Power OFF:

- 1) Remove RF input
- 2) Remove control voltages-V1
- 3) Remove VDD input

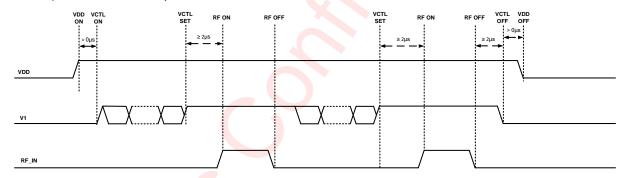


Figure 4 Power on/Change switch/Power off sequence

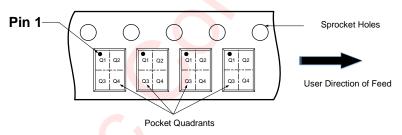
AW13612FLR Control Logic

State	Active Path	V1
0	ANT to RF1	0
1	ANT to RF2	1

B0

Tape And Reel Information

REEL DIMENSIONS D1 p0


A0: Dimension designed to accommodate the component width

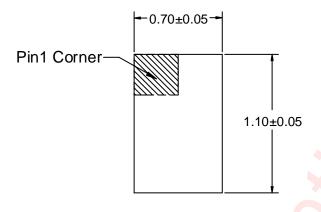
TAPE DIMENSIONS

- B0: Dimension designed to accommodate the component length
- K0: Dimension designed to accommodate the component thickness
- W: Overall width of the carrier tape
- P0: Pitch between successive cavity centers and sprocket hole
- P1: Pitch between successive cavity centers
- P2: Pitch between sprocket hole
- D1: Reel Diameter
- D0: Reel Width

Cavity

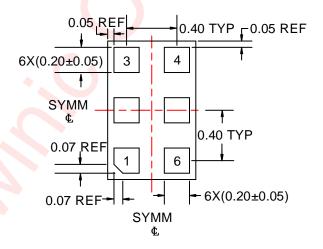
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

DIMENSIONS AND PIN1 ORIENTATION


D1	D0			K0					Pin1 Quadrant
(mm)	Fiiii Quadrant								
180	8.4	0.8	1.2	0.56	2	4	4	8	Q1

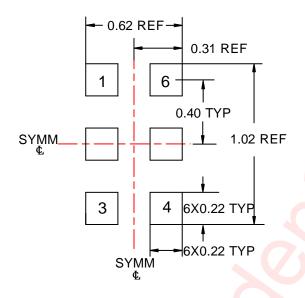
All dimensions are nominal

Figure 5 Tape and Reel


Package Description

TOP VIEW

SIDE VIEW


BOTTOM VIEW

Unit:mm

Figure 6 Package Outline

Land Pattern Data

Unit: mm

Figure 7 Land Pattern Data

Reflow

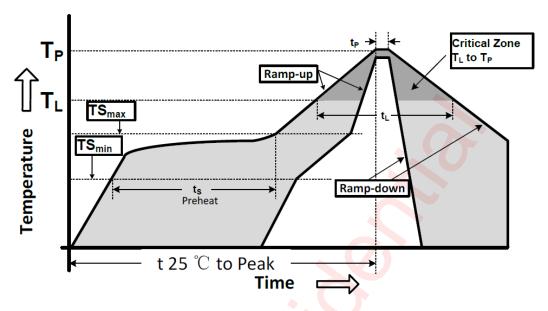


Figure 8 Recommended Lead-Free Reflow Profile

Reflow Note	Spec
Ramp-up rate (TS _{max} to T _p)	3°C/second max.
Preheat temperature (TS _{min} to TS _{max})	150°C to 200°C
Preheat time (t _s)	60 - 180 seconds
Time above T _L , 217°C (t _L)	60 - 150 seconds
Peak temperature (T _p)	260°C
Time within 5°C of peak temperature (t _p)	20 - 40 seconds
Ramp-down rate	6°C/second max.
Time 25°C to peak temperature	8 minutes max.

Revision History

Version	Date	Change Record			
V1.0	Nov. 2020	Officially Released			
V1.1	Dec. 2020	Updated ESD and RF Specifications			
V1.2	Feb. 2021	Updated RF Specifications			
V1.3	Nov. 2022	Updated Features and General Description			

Disclaimer

All trademarks are the property of their respective owners. Information in this document is believed to be accurate and reliable. However, Shanghai AWINIC Technology Co., Ltd (AWINIC Technology) does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

AWINIC Technology reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. Customers shall obtain the latest relevant information before placing orders and shall verify that such information is current and complete. This document supersedes and replaces all information supplied prior to the publication hereof.

AWINIC Technology products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of an AWINIC Technology product can reasonably be expected to result in personal injury, death or severe property or environmental damage. AWINIC Technology accepts no liability for inclusion and/or use of AWINIC Technology products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications that are described herein for any of these products are for illustrative purposes only. AWINIC Technology makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

All products are sold subject to the general terms and conditions of commercial sale supplied at the time of order acknowledgement.

Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Reproduction of AWINIC information in AWINIC data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. AWINIC is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of AWINIC components or services with statements different from or beyond the parameters stated by AWINIC for that component or service voids all express and any implied warranties for the associated AWINIC component or service and is an unfair and deceptive business practice. AWINIC is not responsible or liable for any such statements.