

描述

HR8833为玩具、打印机和其它机电一体化应用提供一种集成的双通道电机驱动方案。HR8833有两路H桥驱动器,可以驱动两个直流有刷电机,或者一个双极步进电机,或者螺线管及其它感性负载。

每一个H桥的功率输出级由N通道功率MOSFET组成,叫作H 桥驱动器。每个桥包含整流电路和限流电路。

内部关断功能包含过流保护,短路保护,欠压锁定保护和过温 保护,并提供一个故障检测输出管脚。

HR8833提供两种封装,一种是带有裸露焊盘的ETSSOP16封装,另一种是带裸焊盘的QFN16封装,能有效改善散热性能,且是无铅产品,符合环保要求。

应用

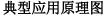
- 锂电池供电玩具
- POS 打印机
- 安防摄像机
- 办公自动化设备
- ■游戏机
- 机器人

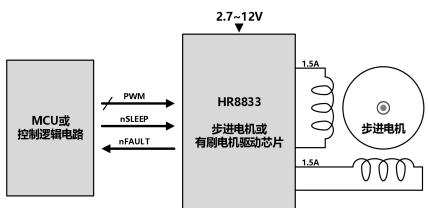
型号选择

订货型号	封装	包装
HR8833MTER	ETSSOP16	编带,3000颗/盘
HR8833SQER	QFN4*4-16	编带,5000颗/盘

特点

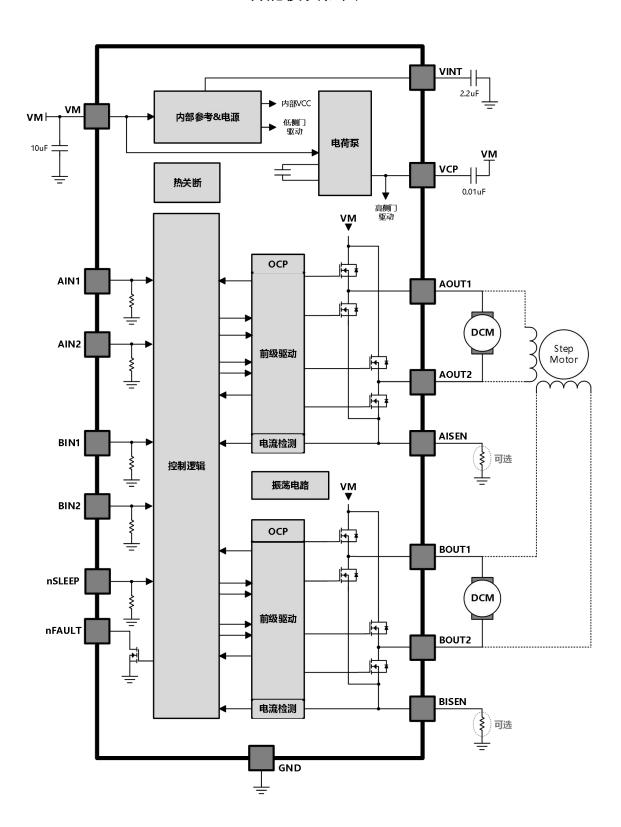
- ●双通道H桥电机驱动器
- •驱动两个直流有刷电机或者一个步进电机
- •低 $R_{DS(ON}$)电阻,450 $m\Omega$ (HS+LS)
- ●1.5A驱动输出
- ●输出可以并用,最大提供3A驱动输出
- ●宽电压供电, 2.7V-12V
- ●PWM控制接口
- ●过温关断电路
- ●短路保护
- ◆欠压锁定保护


封装形式



ETSSOP16

QFN16



版本更新记录

日期	版本	内容
2015.08	V0.1	初稿拟定
2016.01	V1.0	正式版本
2018.02	V1.1	勘误
2020.03	V1.2	1. 修正电压上限,极限电压改为工作电压; 2. 增加热阻系数; 3. 增加芯片工作特性曲线; 4. 增加包装信息。

功能模块框图

电路工作极限 at Ta = 25°C

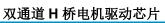
参数	符号	条件	范围	单位
负载电压	VM		-0.3 – 12.8	V
持续输出电流	I _{OUT}		±1.5	A
瞬间峰值电流	I _{PEAK}	内部限制	>2.5	A
逻辑输入电压	V _{IN}		-0.5 to 7	V
Sense 电压	V _{SENSE}		-0.3 to 0.5	V
工作温度	T _A		-40 to 85	°C
最大结温	T _J (max)		150	°C
存储温度	T_{stg}		-55 to 150	°C

热阻特性 at Ta = 25℃

热计量	ETSSOP	QFN	单位
※11 里	16PINS	16PINS	一一年 世
θ _{JA} - 硅核到环境的热阻系数 ^(*)	44.5	39	°C/W

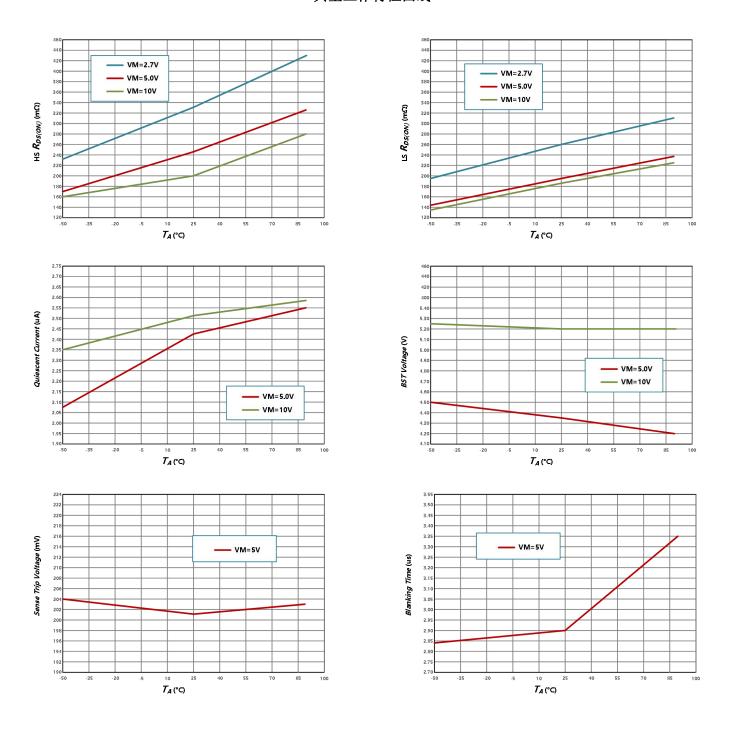
(*)自然对流条件下硅核到环境的热阻系数是通过在 JESD51-7 中所指定的 JEDEC 标准高 K 值电路板上进行实际测试获得,环境条件如 JESD51-2a 中所述。

推荐工作条件 at Ta = 25℃


参数	符号	最小	典型	最大	单位
负载供电电压	V_{M}	2.7	-	12	V
逻辑输入电压	V _{IN}	0	-	5.25	V
H 桥连续输出电流	I_{OUT}	0	-	1.0	A

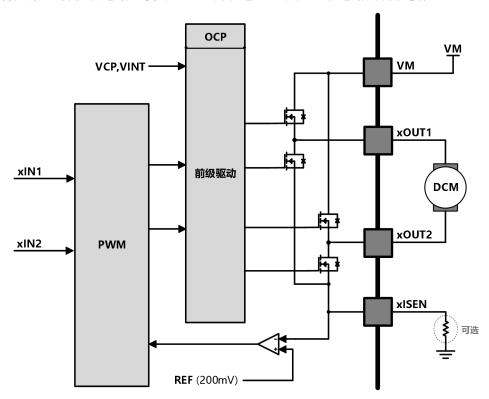
注意: HR8833 最大供电电压为 12.8V,推荐工作电压不要超过 12V,此电压是针对步进电机的应用。如使用在有刷直流电机应用方案中,请控制 VM 电压在 10V 以下。

电气特性 at Ta = 25°C, VM=5 V


	参数	测试条件	最小	典型	最大	单位
电源供	电					
I_{VM}	VM 静态电流	VM = 5 V, xIN1 = 0 V, xIN2 = 0 V		2	3	mA
I_{VMQ}	VM 休眠电流	VM = 5 V		0.1	2.0	uA
$V_{\rm UVLO}$	VM 欠压阈值	VM 下降		2.3	2.6	V
V_{HYS}	VM 欠压迟滞			200		mV
逻辑输	入					
V_{IL}	逻辑输入低电平	nSLEEP			0.9	V
		其他管脚			0.7	
V_{IH}	逻辑输入高电平	nSLEEP	2.2			V
		其他管脚	2			
V _{HYS}	逻辑输入迟滞			0.5		V
R _{PD}	输入内部下拉电阻	nSLEEP		500		kΩ
		其他管脚		150		
$I_{\rm IL}$	输入低电平电流	VIN = 0			1	uA
$I_{ m IH}$	输入高电平电流	VIN = 3.3 V, nSLEEP		6.6	13	uA
		VIN=3.3 V, 其他管脚		16.5	33	-
t _{DEG}	防消抖时间			450		ns
nFAUI						
V _{OL}	输出低电平	IO = 5 mA			0.5	V
Іон	关断漏电流	VO = 3.3 V			1	uA
H桥F	ETS					
	H 桥高侧 FET 导通电阻	$VM = 5 V, I_O = 500 mA$		250		
$R_{DS(\mathrm{ON})}$		$VM = 2.7 \text{ V}, I_0 = 500 \text{ mA}$		330		mΩ
	H 桥低侧 FET 导通电阻	$VM = 5 V, I_O = 500 mA$		200		-
		$VM = 2.7 \text{ V}, I_0 = 500 \text{ mA}$		260		
I _{OFF}	关断漏电流	VM = 5 V, V _{OUT} = 0 V	-2		2	uA
电机驱	_ 动	1	1	1	1	ı
f_{PWM}	电流控制 PWM 频率	内部 PWM 频率		50		kHz

t_R	 输出上升时间	VM =5V, 16Ω to GND, 10% to 90%		240		ns		
-IC								
t_{F}	输出下降时间	VM =5V, 16Ω to GND, 10% to 90%		24		ns		
t_{PROP}	INx to OUTx 延迟	VM = 5 V		0.8		us		
$t_{ m DEAD}$	死区时间	VM = 5 V		280		ns		
保护电路								
I _{OCP}	过流保护阈值		2.5	2.7		A		
t _{DEG}	过流延迟时间			5		us		
t _{OCP}	过流保护重启时间			1.1		ms		
t_{TSD}	过温阈值	结温	150	165	170	°C		
电流控	制							
V_{TRIP}	xISEN 封装电压		160	200	240	mV		
$t_{ m BLANK}$	blanking 时间			2.6		us		
休眠模	休眠模式							
t _{WAKE}	开启延迟时间	拉高 nSLEEP 到 H 桥导通		0.15	1	ms		

典型工作特性曲线



模块功能描述

HR8833 为有刷直流电机或者步进电机提供一种集成的驱动方案。芯片内部集成双通道 H 桥和整流电路。HR8833 的供电范围为 2.7V 到 12V,并提供 1.5A 的连续输出,通过简单的 PWM 接口控制,内部整流电路的周期时间为 20us。HR8833 还包含一个低功耗休眠模式,不驱动电机的时候节省功耗。

PWM 电机驱动器

HR8833 包含两路 H 桥驱动电路,使用 PWM 调节电流。下图显示电路的功能模块:

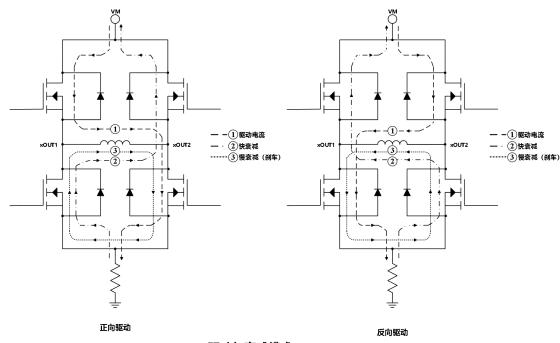
H 桥及电流斩波电路

H桥控制逻辑与衰减模式

输入管脚 AIN1 和 AIN2 控制着输出管脚 AOUT1 和 AOUT2 的状态。类似的,输入管脚 BIN1 和 BIN2 控制着输出管脚 BOUT1 和 BOUT2 的状态。下表显示了彼此间的逻辑关系。

xIN1	xIN2	xOUT1	xOUT2	功能
0	0	Z	Z	Coast / fast decay
0	1	L	Н	Reverse
1	0	Н	L	Forward
1	1	L	L	Brake / slow decay

H 桥控制逻辑


逻辑输入也可以使用 PWM 控制来达到调速功能。当用 PWM 波控制一个线圈时,当驱动电流中断,由于电机的电感特性要求电机线圈续流。为了操作让电机线圈续流,H 桥可以工作在两种不同的状态,快衰减或慢衰减。在快衰减模式中,H 桥关断,续流电流流经体二极管,在慢衰减模式中,电机的线圈两端是短路的。

当 PWM 控制用于快衰减模式中,PWM 信号控制一个 xIN 管脚,而另一个管脚维持低电平;当用于慢衰减中,其中一个管脚维持高电平。

xIN1	xIN2	功能
PWM	0	Forward PWM, fast decay
1	PWM	Forward PWM, slow decay
0	PWM	Reverse PWM, fast decay
PWM	1	Reverse PWM, slow decay

PWM 控制电机速度

下图显示了在不同驱动和衰减模式下的电流路径。

驱动与衰减模式

电流整流

流过电机线圈的电流是通过固定频率的 PWM 整流器或者电流斩波来调节的。在驱动直流电机时,整流器用于限制电机启动电流和堵转电流。在驱动步进电机时,整流功能始终存在,并且可以改变电流来做细分步进。

当一个 H 桥被使能,流过电机线圈的电流上升,上升速率由直流电压 VM 和电机线圈的电感值决定。当电流达到斩波阈值,输出 H 桥关断,电流衰减直到下一个 PWM 周期开始。注意,在 H 桥使能给电机线圈充电的那一刻,xISEN 管脚上的电压是被忽略的,经过一个固定延迟的消隐时间后,电流检测电路才起作用。这个消隐时间一般固定在 2.6us。

PWM 斩波电流是由比较器设定,xISEN 管脚外接检流电阻上的电压和一个参考电压比较。这个参考电压 V_{TRIP}一般固定是 200mV。以下公式计算斩波电流:

$$I_{CHOP} = \frac{200mV}{R_{xISEN}}$$

例如: 假如使用了一个 1Ω的电阻,这样斩波电流为 200mA。

注意: 假如不需要限流功能, xISEN 管脚需直接接地。

nSLEEP 操作逻辑

当驱动 nSLEEP 管脚为低电平时,会使芯片进入低功耗休眠模式。在这个状态下,H 桥关断,电荷泵停止工作,内部所有逻辑复位,内部所有时钟停止计数。所有输入信号被忽略直到 nSLEEP 管脚被拉高。当休眠模式解除后,需要一些时间(一般 1ms)延时,芯片才会正常工作。为了简化板级设计,nSLEEP 管脚可以上拉到 VM。在这种情况下,推荐使用一个上拉电阻,当 VM 大于 6.5V 时,这个电阻限制输入电流。nSLEEP 管脚内部下拉 $500k\Omega$ 电阻到地,同时内部还有一个 6.5V 的齐纳钳位二极管。当电流大于 250uA 时,可能会损坏内部输入结构。因此,推荐上拉电阻阻值一般在 $20k\Omega$ 到 $75k\Omega$ 之间。

保护电路

HR8833 有过流保护,过温保护和欠压保护。

过流保护 (OCP)

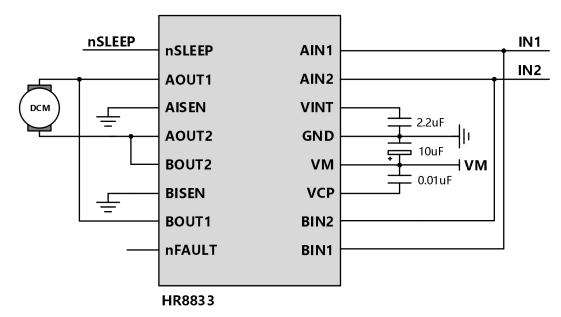
在每一个 FET 上有一个限流电路,此电路检测流过 FET 的电流。如果此电流超过过流阈值且维持时间超过 OCP 屏蔽时间,H 桥内所有 FET 输出关断,nFAULT 管脚输出低电平。经过一个 OCP 重启时间(tOCP),驱动器会被重新使能,同时 nFAULT 管脚输出高电平。如果这个故障条件仍然存在,上述这个现象重复出现。如果此故障条件消失了,芯片恢复正常工作,nFAULT 管脚保持非触发状态。注意,只有被检测到过流的 H 桥会关断,而其余 H 桥仍是正常工作的。

H 桥上管和下管的过流如对地短路,对 VM 短路,和输出之间短路,都会触发过流保护。注意,过流保护不使用用于 PWM 电流控制的电流检测电路,所以过流保护功能和 xISEN 电阻无关。

过温保护 (TSD)

如果结温超过安全阈值,H 桥的所有 FET 被关断,nFAULT 管脚输出低电平。一旦结温降到一个安全水平,芯片所有功能会自动恢复正常。

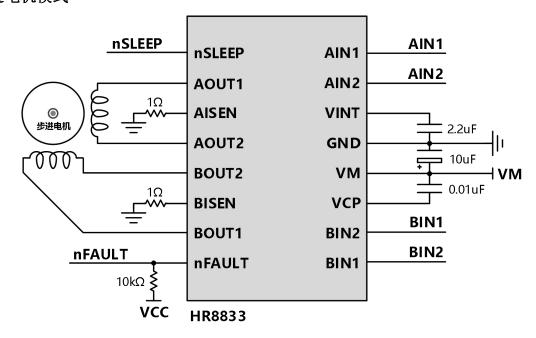
欠压锁定保护 (UVLO)

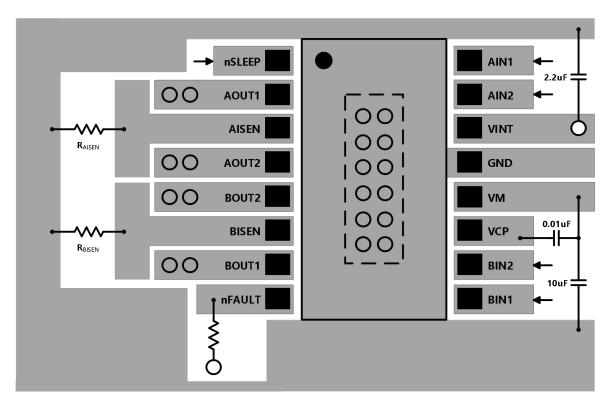

在任何时候,如果 VM 管脚上的电压降到低于欠压锁定阈值,内部所有电路关断,内部逻辑复位。当 VM 上的电压上升到 UVLO 以上,所有功能恢复正常。当欠压情况出现时,nFAULT 管脚输出低电平。

www.heroic.com.cn Page 10 of 19 HR8833-S402-V1.2

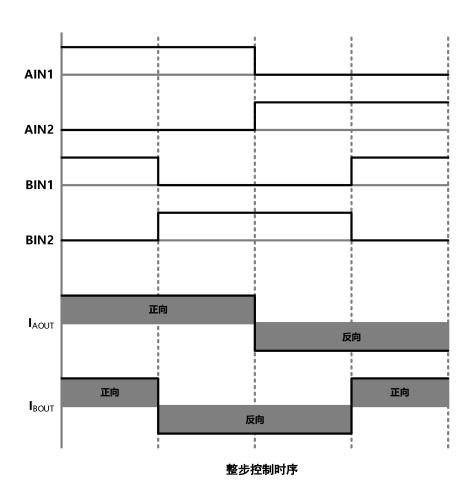
电路应用信息

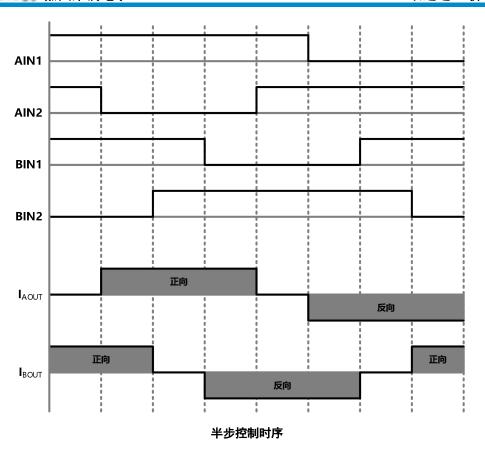
复用输出模式


HR8833 的两路 H 桥可以接在一起并行输出,这样输出电流是单路 H 桥的两倍。HR8833 内部死区时间防止两个 H 桥之间的任何穿通风险,此穿通是由于两个 H 桥的时序存在差异造成。下图显示了并行输出连接:


复用输出模式

注意,以下典型原理图和 PCB 布局图均以 ETSSOP16 封装为例。


双极步进电机模式



典型原理图

典型 PCB 布局图

版图注意事项

PCB 板上应覆设大块的散热片,地线的连接应有很宽的地线覆线。为了优化电路的电特性和热参数性能,芯片应该直接紧贴在散热片上。

对电极电源 VM,应该连接不小于 10uF 的电解电容对地耦合,电容应尽可能的靠近器件摆放。

为了避免因高速 dv/dt 变换引起的电容耦合问题,驱动电路输出端电路覆线应远离逻辑控制输入端的覆线。逻辑控制端的引线应采用低阻抗的走线以降低热阻引起的噪声。

地线设置

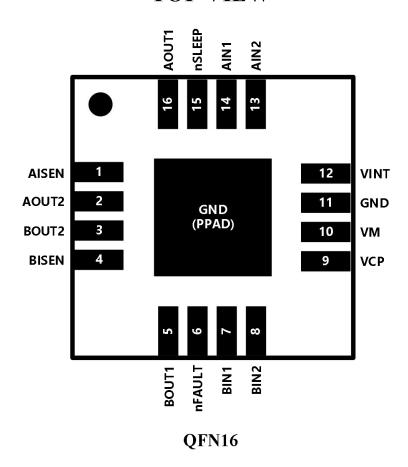
芯片所有的地线都应连接在一起,且连线还应改尽可能的短。一个位于器件下的星状发散的地线覆设,将 是一个优化的设计。

在覆设的地线下方增加一个铜散热片会更好的优化电路性能。

电流取样设置

为了减小因为地线上的寄生电阻引起的误差,马达电流的取样电阻 Rs 接地的地线要单独设置,减小其他因素引起的误差。单独的地线最终要连接到星状分布的地线总线上,该连线要尽可能的短,对小阻值的 Rs,由于 Rs 上的压降 V=I*Rs 为 0.2V,PCB 上的连线压降与 0.2V 的电压将显得不可忽视,这一点要考虑进去。

PCB 尽量避免使用测试转接插座,测试插座的连接电阻可能会改变 Rs 的大小,对电路造成误差。Rs 值的 选择遵循下列公式:


$$R_S = 0.2/I_{TRIPmax}$$

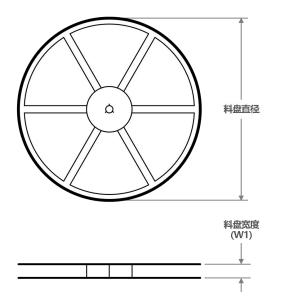
热保护

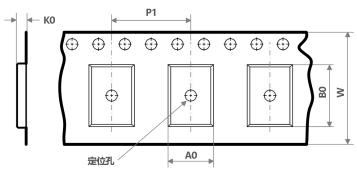
当内部电路结温超过 165℃时,过温保护电路开始工作,关断内部所有电路,直到温度降低 20℃才恢复正常工作状态。

管脚定义

TOP VIEW

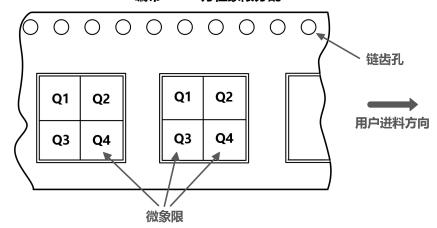
16 AIN1 nSLEEP AOUT1 15 AIN2 AISEN 3 14 VINT AOUT2 4 13 GND **GND** (PPAD) BOUT2 5 12 VM BISEN 6 **11** VCP BOUT1 10 BIN2 nFAULT 8 9 BIN1

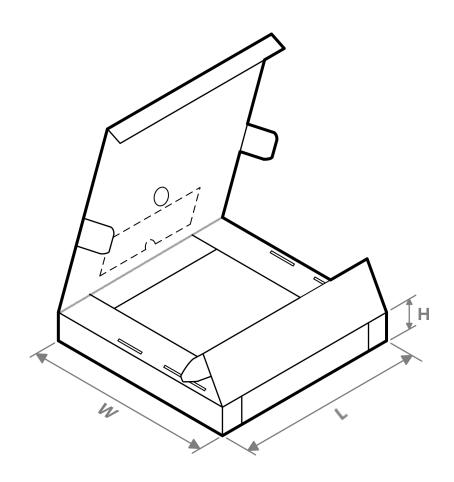

ETSSOP16



管脚列表

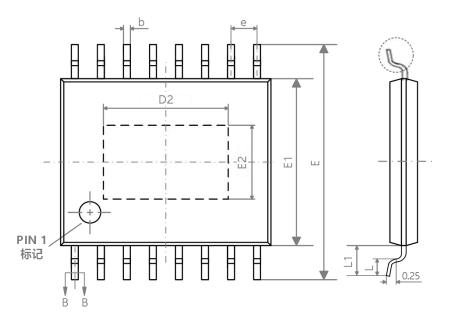
管脚名	管脚	编号	管脚描述	外部元件或连接			
	ETSSOP	QFN					
电源与地							
GND	13	11					
PPAD	-	-	器件地	所有地管脚和裸焊盘需连到系统地。			
VM	12	10	器件电源	电机电源,做好滤波,最小10uF电容到地。			
VINT	14	12	内部整流	接一个2.2uF电容到地。			
VCP	11	9	高侧栅极驱动储能	接一个0.01uF电容到VM。			
控制							
AIN1	16	14	H桥A输入1	逻辑输入,控制AOUT1,内部下拉。			
AIN2	15	13	H桥A输入2	逻辑输入,控制AOUT2,内部下拉。			
BIN1	9	7	H桥B输入1	逻辑输入,控制BOUT1,内部下拉。			
BIN2	10	8	H桥B输入2	逻辑输入,控制BOUT2,内部下拉。			
nSLEEP	1	15	休眠模式输入	高电平使芯片正常工作; 低电平使芯片进入休眠低功耗模式。			
状态							
nFAULT	8	6	故障输出	当出现过温或过流时,输出低电平,开漏输出,使用需外部上拉。			
输出							
AISEN	3	1	A组检流	A组检流,接检流电阻到地;若不使用检流,直接接地。			
BISEN	6	4	B组检流	B组检流,接检流电阻到地;若不使用检流,直接接地。			
AOUT1	2	16	H桥A输出1				
AOUT2	4	2	H桥A输出2	接电机A组线圈			
BOUT1	7	5	H桥B输出1				
BOUT2	5	3	H桥B输出2	接电机B组线圈			

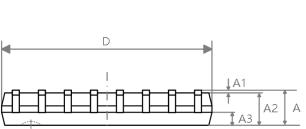

编带料盘信息

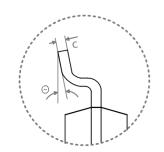

Α0	料槽宽度					
В0	料槽长度					
КО	料槽厚度					
W	载带整体宽度					
P1	相邻槽中心间距					

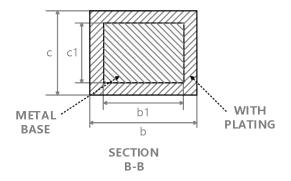
编带 PIN1 方位象限分配

器件	封装 类型	封装标识	管脚数	SPQ	料盘 直径 (mm)	料盘 宽度 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 象限
HR8833MTE	ETSSOP	MTE	16	3000	330	16	6.8	5.6	1.55	8	16	Q1
HR8833SQ	QFN	SQ	16	5000	330	12	4.45	4.45	1.2	8	12	Q2

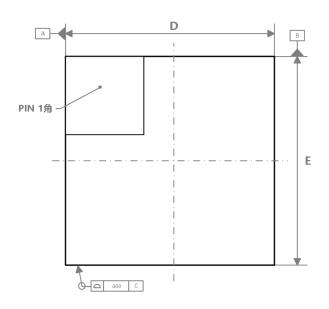

编带料盘包装尺寸

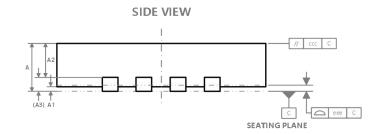



器件	封装类型	封装标识	管脚数	SPQ	长度(mm)	宽度(mm)	高度(mm)
HR8833MTE	ETSSOP	MTE	16	3000	360	345	65
HR8833SQ	QFN	SQ	16	5000	360	345	50


封装信息

ETSSOP16





符号	毫米(mm)					
	MIN	NOM	MAX			
А	-	-	1.20			
A1	0.05	-	0.15			
A2	0.90	1.00	1.05			
A3	0.39	0.44	0.49			
b	0.20	-	0.30			
b1	0.19	0.22	0.25			
С	0.13	-	0.19			
c1	0.12	0.13	0.14			
D	4.86	4.96	5.06			
D2	2.90	3.00	3.10			
E	6.20	6.40	6.60			
E1	4.30	4.40	4.50			
E2	2.20	2.30	2.40			
e	0.65BSC					
L	0.45	-	0.75			
L1	1.00BSC					
θ	0	-	8°			

QFN16

PIN 1标记

BOTTOM VIEW D2

<i>⁄</i> ∕⁄⊤□	毫米(mm)					
符号	MIN	NOM	MAX			
Α	0.7	0.75	0.8			
A1	0	0.02	0.05			
A2		0.55				
А3	0.203 REF					
b	0.25	0.3	0.35			
D	4 BSC					
E	4 BSC					
е	0.65 BSC					
D2	2	2.1	2.2			
E2	2	2.1	2.2			
L	0.45	0.55	0.65			
K	0.2 MIN					
aaa	0.1					
ссс	0.1					
eee	0.08					
bbb	0.1					
fff	0.1					