

SHENZHEN LONG JING MICRO-ELECTRONICS CO., LTD.

SOT-23 Plastic-Encapsulate Mosfets

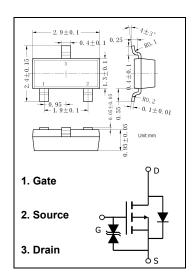
AO3415 20V P-Channel Mosfet

Features

■ V_{DS} = -20V

■ $I_D = 3A$ (V_{GS} = -4V)

■ $R_{DS(ON)} < 41 \text{m}\Omega \text{ (V}_{GS} = -4.5 \text{V)}$


■ $R_{DS(ON)} < 53m\Omega \text{ (V}_{GS} = -2.5\text{V)}$

■ $R_{DS(ON)} < 65m\Omega \text{ (V}_{GS} = -1.8V)$

■ ESD protected

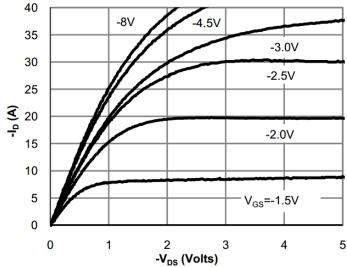
Applications

The AO3415 uses advanced trench technology to provide excellent $R_{DS(ON)}$, low gate charge and operation with gate voltages as low as 1.8V. This device is suitable for use as a load switch or in PWM applications.

Maximum Ratings (T_a=25°C unless otherwise specified)

Symbol	Parameter		Value	Unit	
V _{DS}	Drain-Source voltage		-20	V	
V _{GS}	Gate-Source voltage		±8	V	
ID	Continuous Drain Current	T _a =25°C	-4	А	
		T _a =70°C	-3.5		
I _{DM}	Pulsed Drain Current ^C		-30		
Po	Power Dissipation ^B	T _a =25°C	1.5	· w	
		T _a =70°C	1		
TJ, TSTG	Junction and Storage Temperature Range		-55 to +150	°C	

Thermal Characteristics


Symbol	Parameter		Тур	Max	Unit				
R ₀ JA	Maximum Junction-to-Ambient ^A	t ≤ 10s	65	80	°C/W				
	Maximum Junction-to-Ambient ^{A, D}	Steady-State	85	100	°C/W				
Rejl	Maximum Junction-to-Lead	Steady-State	43	52	°C/W				

Electrical Characteristics (T_J=25°C unless otherwise specified)

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
Static Par	rameters		•			
V _{(BR)DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0V$, $I_D = -250\mu A$	-20			V
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = -20V, V _{GS} = 0V			-1 -	μA
		T _J =55°C			-5	
I _{GSS}	Gate-body Leakage current	$V_{DS} = 0V$, $V_{GS} = \pm 8V$			±10	μA
V _{GS(th)}	Gate-Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = -250 \mu A$	-0.3	-0.57	-0.9	V
I _{D(ON)}	On-state Drain Current	$V_{GS} = -4.5V, V_{DS} = -5V$	-30			Α
		$V_{GS} = -4.5V$, $I_{D} = -4A$		34	41	mΩ
R _{DS(on)}		T _J =125°C		49	59	
	Static Drain-Source On-Resistance	$V_{GS} = -2.5V, I_D = -4A$		42	53	
		V _{GS} = -1.8V, I _D = -2A		52	65	
		V _{GS} = -1.5V, I _D = -1A		61		1
g fs	Forward Trans conductance	$V_{DS} = -5V, I_{D} = -4A$		20		S
V _{SD}	Diode Forward Voltage	I _S = -1A, V _{GS} =0 V		-0.64	-1	V
Is	Maximum Body-Diode Continuous Curre	ent			-2	Α
Dynamic	Parameters		•			
Ciss	Input Capacitance	V _{GS} = 0V	600	751	905	
Coss	Output Capacitance	V _{DS} = -10V	80	115	150	pF
Crss	Reverse Transfer Capacitance	f = 1.0MHz	48	80	115	
Rg	Gate resistance	V _{GS} =0V, V _{DS} =0V, f=1MHz	6	13	20	Ω
Dynamic	Parameters			I	l	I
Qg	Total Gate Charge	V _{GS} = -4.5V	7.4	9.3	11	
Q _{gs}	Gate Source Charge	V _{DS} = -10V	0.8	1	1.2	nC
Q _{gd}	Gate Drain Charge	I _D = -4A	1.3	2.2	3.1	
t _{D(on)}	Turn-On Delay Time			13		
tr	Turn-On Rise Time	$V_{GS} = -4.5V, V_{DS} = -10V,$		9		
t _{D(off)}	Turn-Off Delay Time	$R_L = 2.5\Omega$, $R_{GEN} = 3\Omega$		19		ns
tf	Turn-Off Fall Time			29		
t _{rr}	Body Diode Reverse Recovery Time	I _F = -4A, dI/dt = 500A/μs	20	26	32	ns
Q _{rr}	Body Diode Reverse Recovery Charge	I _F = -4A, dI/dt = 500A/μs	40	51	62	nC

A. The value of RθJA is measured with the device mounted on 1in2 FR-4 board with 2oz. Copper, in a still air environment with TA =25° C. The value in any given application depends on the user's specific board design.

- B. The power dissipation PD is based on T_{J(MAX)}=150° C, using ≤ 10s junction-to-ambient thermal resistance.
- C. Repetitive rating, pulse width limited by junction temperature T_{J(MAX)}=150° C. Ratings are based on low frequency and duty cycles to keep initialTJ=25° C.
- D. The $R\theta JA$ is the sum of the thermal impedance from junction to lead $R\theta JL$ and lead to ambient.
- E. The static characteristics in Figures 1 to 6 are obtained using <300µs pulses, duty cycle 0.5% max.
- F. These curves are based on the junction-to-ambient thermal impedance which is measured with the device mounted on 1in2 FR-4 board with 2oz. Copper, assuming a maximum junction temperature of TJ(MAX)=150° C. The SOA curve provides a single pulse rating.

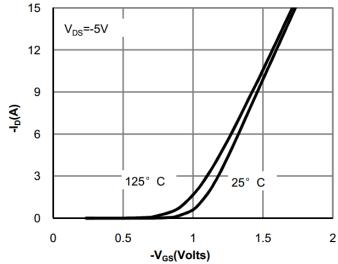
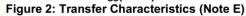
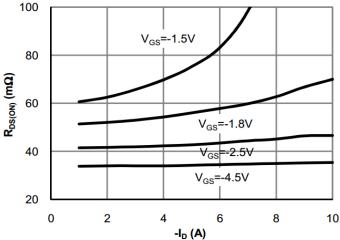
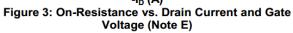





Fig 1: On-Region Characteristics (Note E)

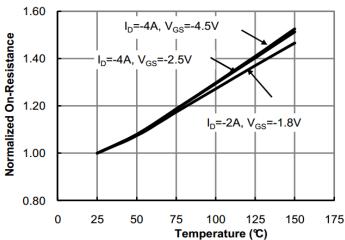


Figure 4: On-Resistance vs. Junction Temperature (Note E)

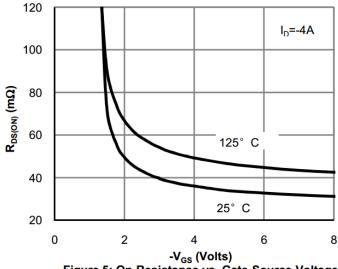


Figure 5: On-Resistance vs. Gate-Source Voltage (Note E)

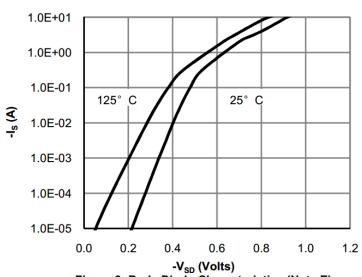
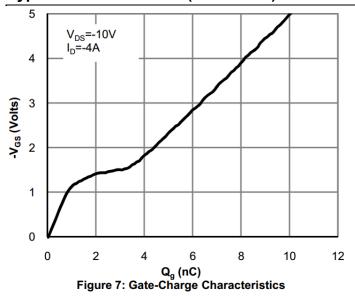
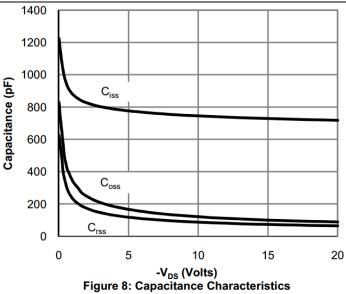
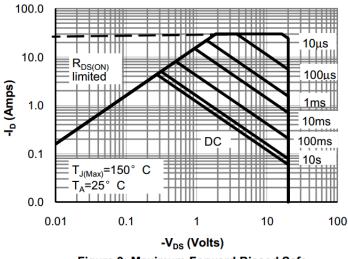





Figure 6: Body-Diode Characteristics (Note E)

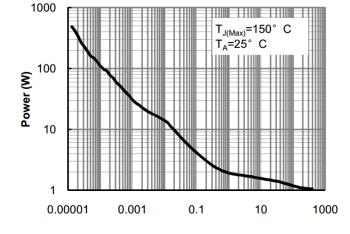
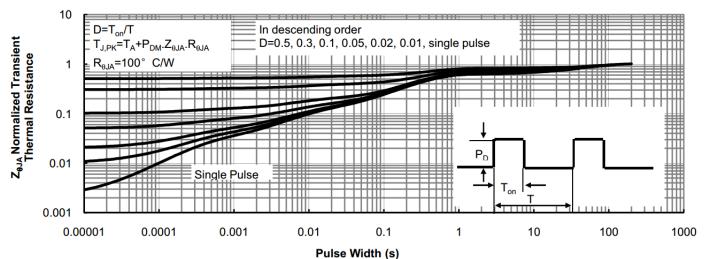
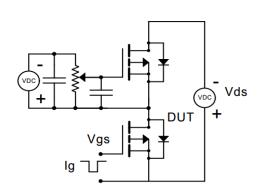
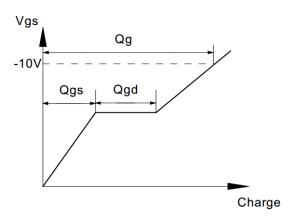
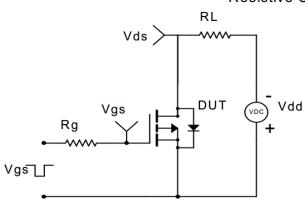
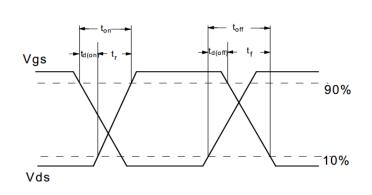


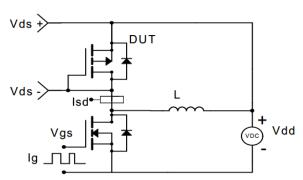
Figure 9: Maximum Forward Biased Safe Operating Area (Note F)

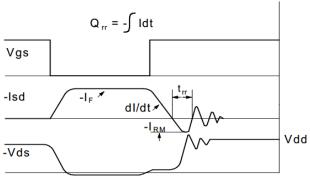
Pulse Width (s) Figure 10: Single Pulse Power Rating Junction-to-Ambient (Note F)


Figure 11: Normalized Maximum Transient Thermal Impedance (Note F)


Gate Charge Test Circuit & Waveform




Resistive Switching Test Circuit & Waveforms

Diode Recovery Test Circuit & Waveforms

