16bit、单通道、200kSPS、 SAR 型 ADC

主要特点

- 16 位无失码分辨率
- INL: ±1LSB (典型)
- 动态范围: 92dB
- SINAD: 92dB(20kHz)
- 模拟输入范围: 0 到 VREF (VREF 可达 VDD)
- 外部基准
- VDD 单电源工作: 2.7V 到 5.5V
- 串行接口:兼容 SPI、MICROWIRE、 QSPI 和 DSP
- 功耗: 7.5mW (5V@100kSPS), 23mW (5V@200kSPS)
- 待机电流: 200nA@5V

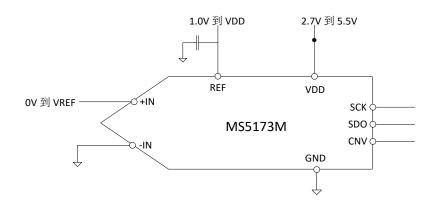
产品简述

MS5173M 是单通道、16bit、电荷再分配逐次 逼近型模数转换器,采用单电源供电。

MS5173M 包含一个低功耗、高速数据采样且 无失码的真 16 位 SAR ADC 和一个内部转换时钟。

MS5173M 使用通用的串口接口实现转换结果的接收,还包含低噪声、宽带宽、短孔径延迟的跟踪保持电路。SPI 接口还可以将多个 ADC 以菊花链的形式接在一个 3 线总线上。

MS5173M 采用小型 MSOP8 封装,工作温度 范围为-40℃ 到+85℃。

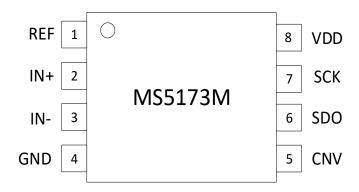

应用

- 电池供电设备
- 医疗设备
- 移动通信
- 个人数字助理(PDAs)
- 数据采样
- 仪器仪表
- 过程控制

产品规格分类

产品	封装形式	丝印名称
MS5173M	MSOP8	MS5173M

内部框图



目录

1. 主要特点	1
	1
3. 应用	
4. 产品规格分类	
5. 内部框图	
7. 管脚图	
8. 管脚说明	
9. 极限参数	
10. 电气参数	
11. 功能描述	8
11.1 概述	8
11.2 数字接口	
12. 封装外形图	g
13. 印章与包装规范	10
14. 声明	
15. MOS 电路操作注意事项	12

管脚图

管脚说明

管脚编号	管脚名称	管脚属性	管脚描述
1	REF	-	基准电压输入,需通过一个 10μF 电容去耦,去耦电容应尽可能靠近 REF。REF 范围 1.0V 至 VDD。
2	IN+	- 1	模拟通道正输入引脚。
3	IN-	-	模拟通道负输入引脚。
4	GND	-	地。
5	CNV	ı	转换输入。CNV 上升沿启动转换,当 CNV 为低电平时使能 SDO。
6	SDO	0	串行数据输出。
7	SCK	I	串行数据时钟输入。
8	VDD	-	电源。

极限参数

芯片使用中,任何超过极限参数的应用方式会对器件造成永久的损坏,芯片长时间处于极限工作 状态可能会影响器件的可靠性。极限参数只是由一系列极端测试得出,并不代表芯片可以正常工作在 此极限条件下。

此/X/K 示			
参数	符号	额定值	单位
电源电压范围	VDD	-0.3 ~ +7.0	V
模拟输入电压范围	Vin	-0.3 ~ VDD+0.3	V
参考电压范围	V_{REFIN}	-0.3 ~ VDD+0.3	V
数字输入电压范围		-0.3 ~ VDD+0.3	V
数字输出电压范围		-0.3 ~ VDD+0.3	V
输入端口电流		10	mA
工作温度范围	T _A	-40 ~ 85	°C
存储温度范围	T _{STG}	-65 ~ 150	°C
焊接温度(10s)		260	°C
ESD(HBM)		±3000	V

电气参数

VDD =2.7V 到 5.5 V,VREF = VDD, T_A = -40°C 到+85°C。

参数	测试条件	最小值	典型值	最大值	单位		
模拟输入							
模拟输入电压范围	+IN - (-IN)	0		+VREF	V		
	+IN	-0.1		VDD+0.1	V		
模拟绝对输入电压	-IN	-0.1		+0.1	V		
模拟输入CMRR	Fin=200kHz		68		dB		
25℃漏电流	采样阶段		1		nA		
	转换速	率	T		Г		
传输速率	VDD=4.5V到5.5V	0		200	kSPS		
瞬态响应	满量程阶跃		0.4		μs		
	精度		T		Г		
无失码精度			16		Bits		
积分非线性误差	VREF=2.048V		±1		LSB		
微分非线性误差	VREF=2.048V	-1.5	±0.5	+1.5	LSB		
增益误差		-30	±2	+30	LSB		
增益误差温漂			±0.3		ppm/°C		
 失调误差	VDD=4.5V到5.5V		±1		mV		
八师庆左	VDD=2.7V到4.5V		±1		mV		
失调误差温漂			±0.3		ppm/°C		
电源灵敏度	VDD=5V±5%		±1		LSB		
交流精度							
信噪比(SNR)	Fin=20kHz,VREF=2.048V		92		dB		
	Fin=20kHz,VREF=2.048V	91.5					
信纳比	Fin=20kHz,-60dB 输入,			33.5	dB		
	VREF=2.048V		55.5				

参数	测试条件	最小值	典型值	最大值	单位				
总谐波失真(THD)	Fin=20kHz,VREF=2.048V		-96		dB				
无杂散动态范围	无杂散动态范围 Fin=20kHz,VREF=2.048V		110		dB				
	采样动态性能								
-3dB输入带宽	全带宽		12		MHz				
孔径延迟	VDD=5V		2.5		ns				
	基准电	压							
电压范围	REF输入	1.0		VDD+0.3	V				
漏电流	200kSPS,VREF=5V		100		μΑ				
	数字输	λ							
输入低电平		-0.3		+0.3×VDD	V				
输入高电平		0.75×VDD		VDD+0.3	V				
低电平输入电流			±1		μΑ				
高电平输入电流			±1		μΑ				
	数字输	出							
输出高电平	Isource=-500μA	VDD-0.3			V				
输出低电平	Isink=+500μA			0.4	V				
	电源		1	,					
VDD	额定性能	2.7		5.5	V				
待机电流	VDD=5V,25°C		200		nA				
	VDD=5V,100kSPS转换速率		7.5		mW				
功耗	VDD=5V,200kSPS转换速率		23		mW				

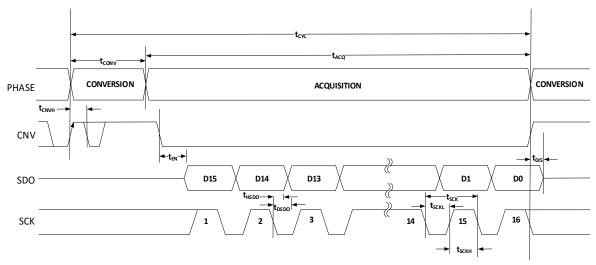
时序参数

除非另有说明,VDD=2.7V到5.5V,所有规格均相对于T_{MIN}至T_{MAX}而言。

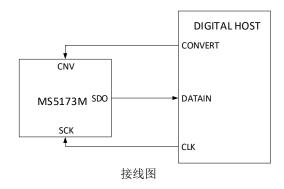
参数	符号	最小值	最大值	单位
转换时间: CNV上升沿至数据可用	t _{CONV}		3.2	μs
采样时间	t _{ACQ}	1.8		μs
转换间隔时间	t _{CYC}	5		μs
CNV脉冲宽度	tcnvh	10		ns
SCK周期	tscк	15		ns

参数	符号	最小值	最大值	单位
VDD高于4.5V		17		ns
VDD高于3V		18		ns
VDD高于2.7V		19		ns
SCK低电平时间	t sckl	7		
SCK高电平时间	t sckh	7		ns
SCK下降沿至数据仍然有效	t _{HSDO}	5		ns
SCK下降沿至数据有效延迟时间	t _{DSDO}			
VDD高于4.5V			14	
VDD高于3V			15	ns
VDD高于2.7V			16	ns
CNV或SDO低电平至SDO D15 MSB有效	t _{EN}			
VDD高于4.5V			15	ns
VDD高于2.7V			18	ns

功能描述

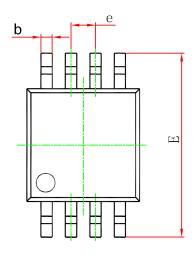

概述

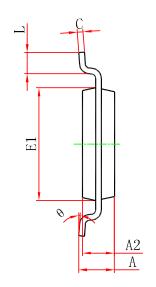
MS5173M 是高速、低功耗、16 位、逐次逼近 ADC,每秒能够转换 200k 个采样点,两次转换之间器件关断。MS5173M 的额定工作电压为 2.7V 至 5.5V。

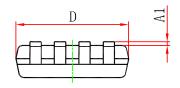

数字接口

MS5173M 使用 CNV、SCK 和 SDO 信号的 3 线接口,与 SPI、MICROWIRE、QSPI、数字主机和 DSP 兼容。

CNV 上升沿启动转换,转换期间 CNV 无效,CNV 必须在最小转换时间之前置高。当转换完成时,MS5173M 进入采样阶段,SDO 从高阻态变为 MSB,余下数据位随 SCK 下降沿输出。数据在 SCK 上下沿都有效。在第 16 个 SCK 下降沿或 CNV 置高后,SDO 将回到高阻态。




接口时序图



封装外形图

MSOP8

	尺寸(氧	毫米)	尺寸 (英寸)		
符号	最小	最大	最小	最大	
А	-	1.100	1	0.043	
A1	0.020	0.150	0.001	0.006	
A2	0.750	0.950	0.030	0.037	
b	0.250	0.380	0.010	0.015	
С	0.090	0.230	0.004	0.009	
D	2.900	3.100	0.114	0.122	
e	0.650(BSC)	0.026(BSC)		
E	4.750	5.050	0.187	0.199	
E1	2.900	3.100	0.114	0.122	
L	0.400	0.800	0.016	0.031	
θ	0°	6°	0°	6°	

印章与包装规范

1. 印章内容介绍

MS5173M XXXXXXX

产品型号: MS5173M 生产批号: XXXXXXX

2. 印章规范要求 采用激光打印,整体居中且采用 Arial 字体。

3. 包装规范说明

型号	封装形式	只/卷	卷/盒	只/盒	盒/箱	只/箱
MS5173M	MSOP8	3000	1	3000	8	24000

声明

- 瑞盟保留说明书的更改权,恕不另行通知!客户在下单前应获取最新版本资料,并验证相关信息 是否完整。
- 在使用瑞盟产品进行系统设计和整机制造时,买方有责任遵守安全标准并采取相应的安全措施, 以避免潜在失败风险可能造成的人身伤害或财产损失!
- 产品提升永无止境,本公司将竭诚为客户提供更优秀的产品!

MOS 电路操作注意事项

静电在很多地方都会产生,采取下面的预防措施,可以有效防止 MOS 电路由于受静电放电的影响而引起的损坏:

- 1、操作人员要通过防静电腕带接地。
- 2、设备外壳必须接地。
- 3、装配过程中使用的工具必须接地。
- 4、必须采用导体包装或抗静电材料包装或运输。

+86-571-89966911

杭州市滨江区伟业路 1 号 高新软件园 9 号楼 701 室

http://www.relmon.com