

Step-up Controller For Capacitor Discharge Ignitor

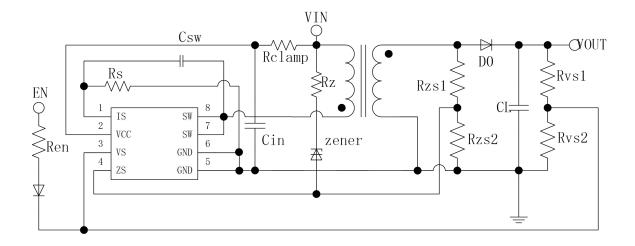
Features

- 100V MOSFET integrated.
- Wide input voltage range
- VCC clamp circuit integrated
- Transformer saturate protection
- Thermal protection and under voltage lockout circuitry integrated
- SOP8 package

Applications

- Capacitor Discharge Ignitor
- Other Step-up applications

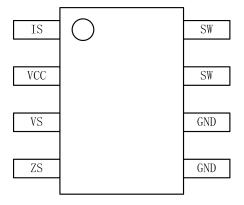
Description


The MST2218 is a step-up transformer controller intended for building a capacitor discharge ignitor. The device can control a step-up transformer to charge a capacitor to an adjustable high voltage (DC) using battery voltage. The device has a power NMOS integrated, elimminating the need of external mosfets.

The MST2218 also integrated a current limit circuit with an external current sense resistor, and a voltage feedback to stop the oscillation when the voltage of the capacitor reaches the desired voltage.

The MST2218 was designed to work in a quasi-resonance mode to speed up the charging process without increasing the space of the step-up transformer.

All input ports of the device have clamp diodes and ESD protections to ensure the robustness and reliability in the field.


Typical Application

www.mst-ic.com Page 1-9 Rev.1-0 Aug. 2023

Pin Configuration and Functions

Pin Functions

NO.	Name	Description			
1	IS	The source of power nmos, current sense terminal			
2	VCC	Power supply terminal			
3	VS	Output voltage feedback terminal			
4	ZS	Input of the zero-cross comparator.			
5,6	GND	Ground.			
7,8	SW	The drain of power nmos.			

www.mst-ic.com Page 2-9 Rev.1-0 Aug. 2023

Absolute Maximum Ratings

ITEM	Parameter	Minimum Maxmun		Unit
	VCC to GND (Note 1)	-0.3	15	V
Voltage	SW to GND	-0.3 100		V
	Input (VS\ZS\IS) to GND	-0.3	5.3	V
Current	IS peak current		4	A
Tommonotymo	Operating Temperature	-40	85	°C
Temperature	Storage Temperature	-40	150	°C
Rthj-amb	Rthj-amb SOP8		00	°C/W
Pdmax	SOP8	800		mW
ESD(HBM)	VCC/VS/ZS/GND pin	4		KV
Latch-up	VS/ZS/IS pin	200		mA

Note:

Apply voltage greater than VCCCLAMP to VCC pin may cause damage due to overheating. Take precaution methods to ensure the power dissipation within absolute maximum rating.

Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

www.mst-ic.com Page 3-9 Rev.1-0 Aug. 2023

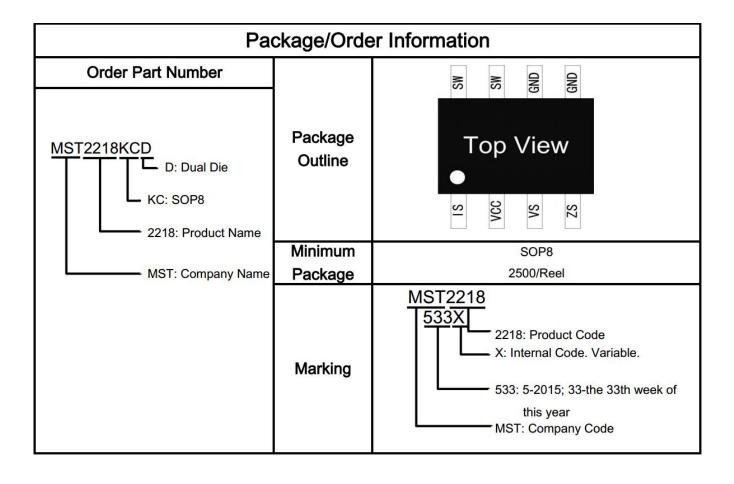
Electrical Characteristics

(VCC = 8V, $T_A = 25$ °C unless otherwise specified)

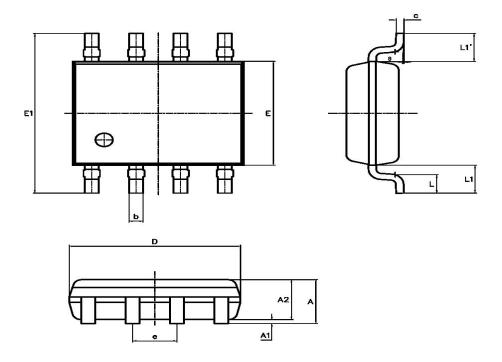
Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Power Supply	V _{IN}		4.5	14	-	V
Clamp Voltage	VCC _{CLAMP}		10	13	16	V
Clamp Current	I _{CLAMP}	VCC=15V	30			mA
VCC supply current	Icc	VCC=8V,switching@100kHz		500		uA
Feedback threshold voltage	Vs		1.92	2	2.08	V
VS blank time trigger voltage	Vssth			2.5		V
ZS Output short-circuit protection threshold	Vzssth			1.5		V
VS Output short-circuit protection threshold	Vvssth	For 8 cycle continueous		0.15		V
Leading edge blocking time	Ton _{min}			1.3		uS
Minimum shutoff time	Toff _{min}			3		uS
Over current threshold voltage	V_{IS}			150		mV
Blank time	Tprotect			1.5		mS
VCC under voltage lockout	$V_{\rm UVLO}$			3.3	3.5	V
On resistance of power mos	R _{DSon}	VCC=10V,ID=3A(pulse test)		100		mΩ
Thermal shutdown temperature	T_{OFF}			140		°C
Thermal shutdown temperature hysteresis	$T_{ m HYS}$			20		°C

Note: (1) Dropout Voltage is the voltage difference between the input and the output at which the output voltage drops 2% below its nominal value.

www.mst-ic.com Page 4-9 Rev.1-0 Aug. 2023


Functional Block Diagram

www.mst-ic.com Page 5-9 Rev.1-0 Aug. 2023


Ordering And Marking Information

www.mst-ic.com Page 6-9 Rev.1-0 Aug. 2023

Package Outline

	Dimensions	In Millimeters	Dimensions In Inches		
Symbol	Min	Max	Min	Max	
Α	1. 595	1.775	0.063	0.070	
A 1	0. 145	0. 250	0. 006	0.010	
A2	1. 350	1. 550	0.053	0.061	
ь	0. 375	0, 425	0.015	0. 017	
¢	0, 170	0. 250	0. 007	0.010	
D	4, 700	5. 100	0. 185	0. 200	
E	3. 875	3. 925	0. 153	0. 155	
E1	5. 800	6. 200	0. 228	0. 244	
е	1.270(BSC)		0.050(BSC)		
L	0. 615	0. 765	0.024	0.030	
L1	1. 04REF		0. 04	1REF	
L1-L1'	(10-10-1)	0.12		0. 005	
θ	0°	8°	0°	8°	

www.mst-ic.com Page 7-9 Rev.1-0 Aug. 2023

Revision History and Checking Table

Version	Date	Revision Item	Modifier	Function & Spec Checking	Package & Tape Checking
1-0	2023-8-11		Xingxiaolin	Xingxiaolin	Xingxiaolin

www.mst-ic.com Page 8-9 Rev.1-0 Aug. 2023

IMPORTANT NOTICE

MST INCORPORATED MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).

MST Incorporated reserves the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. MST Incorporated does not assume any liability arising out of the application or use of this document or any product described herein; neither does MST Incorporated convey any license under its patent or trademark rights, nor the rights of others. Any Customer or user of this document or products described herein in such applications shall assume all risks of such use and will agree to hold MST Incorporated and all the companies whose products are represented on MST Incorporated website, harmless against all damages.

MST Incorporated does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel. Should Customers purchase or use MST Incorporated products for any unintended or unauthorized application, Customers shall indemnify and hold MST Incorporated and its representatives harmless against all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application.

Products described herein may be covered by one or more United States, international or foreign patents pending. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks.

www.mst-ic.com Page 9-9 Rev.1-0 Aug. 2023