

FEATURES

- Timing guaranteed for data rates up to 5 Mbit/s in the CAN FD fast phase
- Suitable for 12 V and 24 V systems
- Low ElectroMagnetic Emission (EME) and high ElectroMagnetic Immunity (EMI)
- Vio function allows for direct interfacing with 3 V to 5 V system
- Dark green product (halogen free and Restriction of Hazardous Substances (RoHS) compliant)
- Functional behavior predictable under all supply conditions
- Transceiver disengages from the bus when not powered up (zero load)
- High ElectroStatic Discharge (ESD) handling capability on the bus pins
- Bus pins protected against transients in a variety of variety complex environments environments
- Transmit Data (TXD) dominant time-out function
- Undervoltage detection on pins VCC and VIO
- Thermally protected

SOP-8

QUICK REFERENCE DATA

Table 1. Quick reference data

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Vcc	supply voltage		4.5		5.5	V
V _{IO}	supply voltage on pin V _{IO}		2.8		5.5	V
V _{UVd(VCC)}	undervoltage detection voltage on pin V _{CC}		3.5		4.5	V
V _{UVd(VIO)}	undervoltage detection voltage on pin V _{IO}		1.3	2.0	2.7	V
I _{cc}	supply current Silent mode		0.1	1	2.5	mA
		Normal mode; bus recessive	2.5	5	10	mA
		Normal mode; bus dominant	20	50	70	mA
I _{IO}	supply current on pin V _{IO}	Normal/Silent mode				μА
		recessive;V _{TXD} =V _{IO}	-	80	250	μΑ
		dominant;V _{TXD} =0V	-	350	500	μА
V _{ESD}	electrostatic discharge voltage	IEC 61000-4-2 at pins CANH and CANL	-8	-		kV
V _{CANH}	voltage on pin CANH		-58	-	+58	V
V _{CANL}	voltage on pin CANL		-58	-	+58	V
T _{Vj}	virtual junction temperature		-40	-	+125	°C

BLOCK DIAGRAM

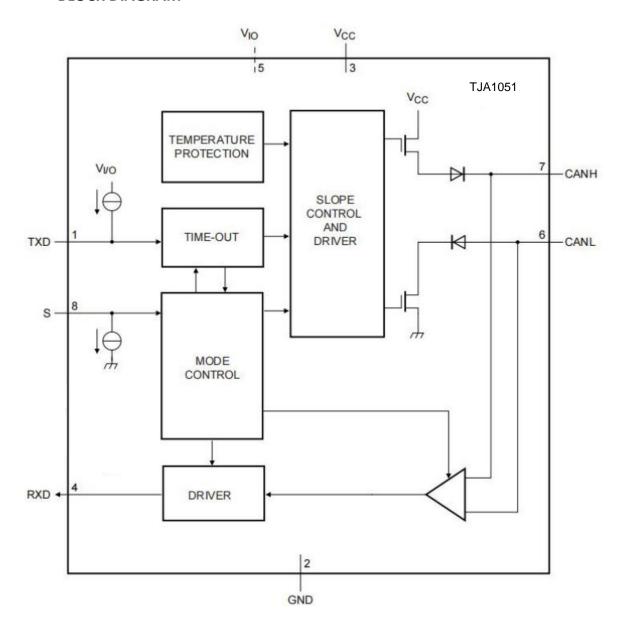
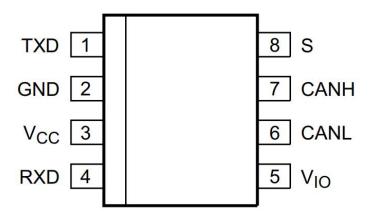



Figure 1. Block diagram

PINNING INFORMATION

Pinning

(Top View)
Figure 2. Pin configuration diagrams

Pin description

Table 3. Pin description

and of the accompany				
Symbol Pin Description				
TXD	1	transmit data input		
GND	2	ground		
V _{CC}	3	supply voltage		
RXD	4	receive data output; reads out data from the bus lines		
V _{IO}	5	supply voltage for I/O level adapter		
CANL	6	LOW-level CAN bus line		
CANH	7	IGH-level CAN bus line		
S	8	Silent mode control input		

FUNCTIONAL DESCRIPTION

The TJA 1051 is a high-speed CAN stand-alone transceiver with Silent mode. It combines the functionality of the TJA 1050 transceiver with improved EMC and ESD handling capability. Improved slope control and high DC handling capability on the bus pins provides additional application flexibility.

Operating modes

The TJA 1051 supports two operating modes, Normal and Silent, which are selected via pin S. See Table 3 for a description of the operating modes under normal supply conditions.

Table 4. Operating modes

The TJA1051T/3 supports two operating modes, Normal and Silent. The operating mode is selected via pin S. See Table 4 for a description of the operating modes under normal supply conditions.

Mode	Inputs		Outputs		
	Pin S Pin TXD		CAN driver	Pin RXD	
Normal	LOW LOW		dominant	active	
	LOW	HIGH	recessive	active	
Silent	HIGH	Х	recessive	active	
Off	Х	х	floating	floating	

Normal mode

A LOW level on pin S selects Normal mode. In this mode, the transceiver is able to transmit and receive data via the bus lines CANH and CANL (see Figure 1 for the block diagram). The differential receiver converts the analog data on the bus lines into digital data which is output to pin RXD. The slopes of the output signals on the bus lines are controlled internally and are optimized in a way that guarantees the lowest possible ElectroMagnetic Emission (EME).

Silent mode

A HIGH level on pin S selects Silent mode. In Silent mode the transmitter is disabled, releasing the bus pins to recessive state. All other IC functions, including the receiver, continue to operate as in Normal mode. Silent mode can be used to prevent a faulty CAN controller from disrupting all network communications.

Fail-safe features

TXD dominant time-out functior

A 'TXD dominant time-out' timer is started when pin TXD is set LOW. If the LOW state on pin TXD persists for longer than tto(dom)TXD, the transmitter is disabled, releasing the bus lines to recessive state. This function prevents a hardware and/or software application failure from driving the bus lines to a permanent dominant state (blocking all network communications). The TXD dominant time-out timer is reset when pin TXD is set HIGH. The TXD dominant time-out time also defines the minimum possible bit rate of 20 kbit/s

Undervoltage detection on pins Vcc and Vio

Should VCC or VIO drop below their respective undervoltage detection levels (Vuvd(VCC) and Vuvd (VIO); see Table 7), the transceiver will switch off and disengage from the bus (zero load) until VCC and VIO have recovered.

Overtemperature protection

The output drivers are protected against overtemperature conditions. If the virtual junction temperature exceeds the shutdown junction temperature, Tj(sd), the output drivers will be disabled until the virtual junction temperature falls below Tj(sd) and TXD becomes recessive again. Including the TXD condition ensures that output driver oscillations due to temperature drift are avoided.

Vio supply pin

Pin VIO on the TJA 1051T/3 should be connected to the microcontroller supply voltage (see Figure 6). This will adjust the signal levels of pins TXD, RXD and S to the I/O levels of the microcontroller. This sets the signal levels of pins TXD, RXD and S to levels compatible with 3V or 5 V microcontrollers.

LIMITING VALUES

Table 4. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). All voltages are referenced to GND

Symbol	Parameter	Conditions	Min	Тур	Max
VX	voltage on pin x ^[1]	on pins CANH, CANL	-58	+58	V
		on any other pin	-0.3	+6.5	V
V _{(CANH-}	voltage between pin CANH and pin CANL		-27	+27	V
Vtrt	transient voltage	on pins CANH, CANL ^[2]			
		pulse 1	-100	-	V
		pulse 2a	-	75	V
		pulse 3a	-120	-	V
		pulse 3b	-	100	V
VESD	electrostatic discharge	IEC 61000-4-2(150 pF, 330Ω) ^[3]			
	voltage	at pins CANH and CANL	-8	+8	kV
		Human Body Model (HBM); 100 pF, 1.5 kΩ ^[4]			
	at pins CANH and CANL at any other pin Machine Model (MM); 200 pF, 0.75 μH, 10 Ω ^[5]		-8	+8	kV
			-4	+4	KV
		at any pin	-200	+200	V
	Charged Device field Induced charg				
		at corner pins	-500	+500	V
		at any pin	-300	+300	V
Tvj	virtual junction temperature	[7]	-40	+125	°C
Tstg	storage temperature		-55	+150	°C

THERMAL CHARACTERISTICS

Table 5. Thermal characteristics

Symbol	Parameter	Conditions	Value	Unit
Rth(vj-a)	thermal resistance from virtual junction to ambient	SO8 package; in free air	160	K/W

STATIC CHARACTERISTICS

Table 6. Static characteristics

 T_{Vj} = -40 °C to +125°C; V_{CC} = 4.5 V to 5.5 V; V_{IO} = 2.8 V to 5.5 $V_{I}^{[1]}$; R_L = 60 Ω unless specified otherwise; All voltages are defined with respect to ground; Positive currents flow into the $IC_{I}^{[2]}$.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Supply; pi	n V _{cc}					
Vcc	supply voltage		4.5	-	5.5	V
		Silent mode	0.1	1	2.5	mA
		Normal mode				
		recessive; V _{TXD} =V _{IO}	-	5	10	mA
		dominant; V _{TXD} = 0 V		50	70	mA
		dominant; V _{TXD} = 0 V;				
		short circuit on bus lines;	2.5	80	110	mA
		-3 V <v<sub>CANH = V_{CANL}) <+18 V</v<sub>				
V _{uvd(VCC)}	undervoltage detection		2.5		4.5	.,
	voltage on pin V _{CC}		3.5	-	4.5	V
I/O level a	dapter supply; pin VIO ^[1]					
V _{IO}	supply voltage on pin V _{IO}		2.8	-	5.5	V
I _{IO}	supply current on pin V _{IO}	Normal/Silent mode				
		recessive; V _{TXD} = V _{OI}	-	-	200	μА
		dominant; V _{TXD} =0V	-	-	500	μA
V _{uvd(VIO)}	undervoltage detection	7 1.00			_	1
- uvu(vio)	voltage on pin V _{IO}		1.3	2.0	2.7	V
Mode con	trol inputs; pins S	I	1	1		1
V _{IH}	HIGH-level input voltage	[3]	0.7V _{IO}	_	V _{IO} +0.3	V
V _{IL}	LOW-level input voltage		-0.3	-	0.3V _{IO}	V
I _{IH}	HIGH-level input current	$V_S = V_{IO}$; $V_{EN} = V_{IO}$	1	4	10	μA
I _{IL}	LOW-level input current	$V_S = 0 \text{ V}; V_{EN} = 0 \text{ V}$	-1	0	+1	μΑ
	mit data input; pin TXD	VS O V, VEN O V				μιτ
V _{IH}	HIGH-level input voltage		0.7V _{IO}	-	V _{IO} +0.3	V
V _{IL}	LOW-level input voltage		-0.3	_	+0.3VIO	V
	HIGH-level input current	$V_{TXD} = V_{IO}$	-5.5	0	+5	μA
I _{IH}	LOW-level input current		-260	-150	-30	
I _{IL}	<u> </u>	Normal mode; V _{TXD} =0V	-200	-150		μA
CAN receiv	input capacitance		-	5	10	pF
	ve data output; pin RXD	V V 04V		1 2	1	^
I _{OH}	HIGH-level output current	$V_{RXD} = V_{IO} - 0.4 \text{ V}$	-8	-3	-1	mA
I _{OL}	LOW-level output current	V _{RXD} = 0.4 V; bus dominant	2	5	10	mA
	pins CANH and CANL			1		
$V_{O(dom)}$	dominant output voltage	$V_{TXD} = 0 \text{ V; } t < t_{to(dom)TXD}$				ļ.,
		pin CANH; $R_L = 50Ω$ to $65Ω$	2.75	3.5	4.5	V
		pin CANL; $R_L = 50\Omega$ to 65Ω	0.5	1.5	2.25	V
$V_{dom(TX)sy}$	transmitter dominant	$V_{\text{dom(TX)sym}} = V_{\text{CC}} - V_{\text{CANH}} - V_{\text{CANL}}$	-500	-	+500	mV
m	voltage symmetry				1000	
V_{TXsym}	transmitter voltage	$V_{TXsym} = V_{CANH} + V_{CANL};$				
	symmetry	$f_{TXD} = 250 \text{ kHz}, 1 \text{ MHz and } 2.5$				
		MHz;	0.9V _{cc}	-	1.1V _{CC}	V
		V _{cc} = 4.75 V to 5.25 V;				
		C _{SPLIT} = 4.7 nF				
$V_{O(dif)}$	differential output voltage	dominant: Normal mode; V _{TXD}				
		$= 0 \text{ V}; \text{t} < \text{t}_{\text{to(dom)TXD}};$				
		V _{cc} = 4.75 V to 5.25 V				
		$R_L = 45\Omega$ to 65Ω	1.5	-	3	V
		$R_L = 45\Omega$ to 70Ω	1.5	-	3.3	V
		R _L = 2240 Ω	1.5	-	5	V
		recessive; no load				
		Normal mode: V _{TXD} = V _{IO}	-100	-	+100	mV
V _{O(rec)}	recessive output voltage	Normal/Silent mode;		0.5V _C		+•
		, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2	1 U.J V C	3	l v

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{th(RX)dif}	differential receiver	Normal/Silent mode;				
	thresholdvoltage	$-30 \text{ V} \le \text{V}_{\text{CANL}} \le +30 \text{ V};$	0.5	.7	0.9	V
		$-30 \text{ V} \leq \text{V}_{\text{CANH}} \leq +30 \text{ V}$				
V _{rec(RX)}	receiver recessive voltage	Normal/Silent mode;			0.5	
		$-30 \text{ V} \le \text{V}_{\text{CANL}} \le +30 \text{ V};$	-4	-		V
		$-30 \text{ V} \leq \text{V}_{\text{CANH}} \leq +30 \text{ V}$				
$V_{dom(RX)}$	receiver dominant voltage	Normal/Silent mode;				
		$-30 \text{ V} \le \text{V}_{\text{CANL}} \le +30 \text{ V};$	0.9	-	9.0	V
		$-30 \text{ V} \le \text{V}_{\text{CANH}} \le +30 \text{ V}$				
$V_{hys(RX)dif}$	differential receiver	Normal/Silent mode;				
	hysteresis voltage	$-30 \text{ V} \le \text{V}_{\text{CANL}} \le +30 \text{ V};$	50	150	300	mV
		$-30 \text{ V} \le \text{V}_{\text{CANH}} \le +30 \text{ V}$				
I _{O(sc)dom}	dominant short-circuit	$V_{TXD} = 0 V; t_{< tto(dom)TXD};$				
	output current	V _{cc} = 5 V				
		pin CANH; V _{CANH} =	-100	-70	-40	mA
		-15V to+ 40 V	100	/ / /		111/5
		pin CANL; V _{CANL} =	40	70	100	mA
		-15 V to + 40 V		,,,	100	1117
l _{O(sc)rec}	recessive short-circuit	Normal/Silent mode; V _{TXD} =		-	+5	
	output current	V _{IO} ;	-5			mA
	. .	$V_{CANH} = V_{CANL} = -27 \text{ V to } +32 \text{ V}$				
IL	leakage current	$V_{CC} = V_{IO} = 0 \text{ V or } V_{CC} = V_{IO} =$				
		shorted to ground via 47 k Ω ;	-5	0	+5	μΑ
		$V_{CANH} = V_{CANL} = 5V$				
R _i	input resistance	$-2 \text{ V} \le \text{V}_{\text{CANL}} \le +7 \text{ V};$ [5]	9	_	52	kΩ
		-2 V ≤ V _{CANH} ≤ +7 V				1
R_{i}	nput resistance deviation	$0 V \leq V_{CANL} \leq +5 V; $ [5]	-6	_	+6	%
		$0 \text{ V} \leq \text{V}_{\text{CANH}} \leq +5 \text{ V}$, ,
$R_{i(dif)}$	differential input	$-2 \text{ V} \le \text{V}_{\text{CANL}} \le +7 \text{ V};$ [5]	19	48.5	55	kΩ
	resistance	-2 V ≤ V _{CANH} ≤ +7 V	13	10.5		1.22
$C_{i(cm)}$	common-mode input	[5]	_	_	20	pF
	capacitance					ρ,
Ci(dif)	differential input	[5]	_	_	10	pF
	capacitance	<u> </u>				1 '
•	ure protection	T-1	1	1		
Tj(sd)	shutdown junction	[5]	-	180	-	°C
	temperature					

DYNAMIC CHARACTERISTICS

Table 8. Dynamic characteristics

Tvj = -40 °C to +125°C; V $_{CC}$ = 4.5 V to 5.5 V; V $_{IO}$ = 2.8 V to 5.5 V $_{II}$; R $_{L}$ = 60 Ω unless specified otherwise. All voltages are defined with respect to ground. Positive currents flow into the IC. $_{II}$

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Transceiver tim	ing; pins CANH, CANL, TXD and RXD; see Figu	re 6 and Figure 2				
td _(TXD-busdom)	delay time from TXD to bus dominant	Normal mode	-	65	-	ns
td _(TXD-busrec)	delay time from TXD to bus recessive	Normal mode	-	90	-	ns
td _(busdom-RXD)	delay time from bus dominant to RXD	Normal/Silent mode	-	60	-	ns
td _(busrec-RXD)	delay time from bus recessive to RXD	Normal/Silent mode	-	65	-	ns
td _(TXDL-RXDL)	delay time from TXD LOW to RXD LOW	Normal mode: versions with V _{IO} pin	40	-	300	ns
		Normal mode: other versions	40	-	250	ns
td _(TXDH-RXDH)	d _(TXDH-RXDH) delay time from TXD HIGH to RXD HIGH		40	-	280	ns
		Normal mode: other versions	40	-	250	ns
t _{bit(bus)}	transmitted recessive bit width	$t_{bit(TXD)} = 500 \text{ ns}$ [3]	435	-	550	ns
		$t_{bit(TXD)} = 200 \text{ ns}$ [3]	155	-	230	ns
t _{bit(RXD)}	bit time on pin RXD	$t_{bit(TXD)} = 500 \text{ ns}$ [3]	400	-	550	ns
		t _{bit(TXD)} = 200 ns [3]	120	-	220	ns
Δt_{rec}	receiver timing symmetry	$t_{bit(TXD)} = 500 \text{ ns}$ [3]	-65	-	+40	ns
		t _{bit(TXD)} = 200 ns [3]	-45	-	+15	ns
$t_{\text{to(dom)TXD}}$	TXD dominant time-out time	V _{TXD} = 0 V; Normal mode [4]	0.3	2	5	ms

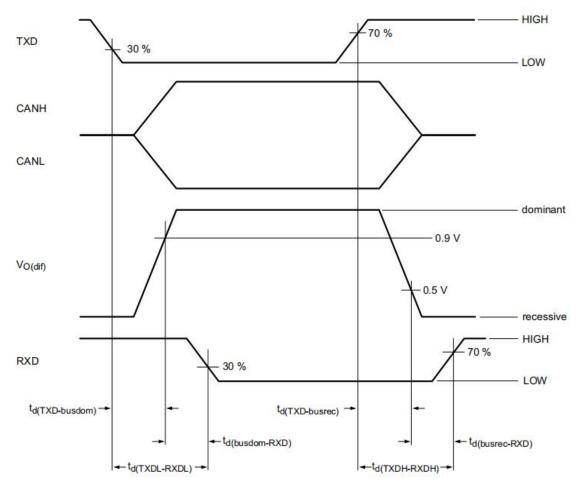


Figure 3. CAN transceiver timing diagram

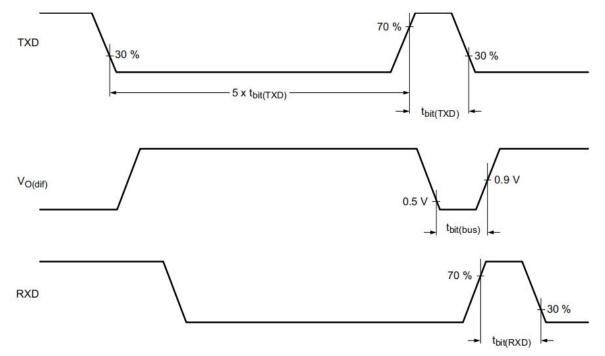
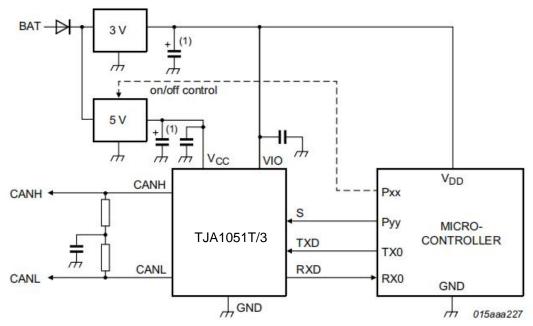



Figure 4. CAN FD timing definitions according to ISO 11898-2:2016

APPLICATION INFORMATION

Application diagrams

(1) Optional, depends on regulator.

Figure 5. Typical application of the TJA1051T/3 with 3V system

TEST INFORMATION

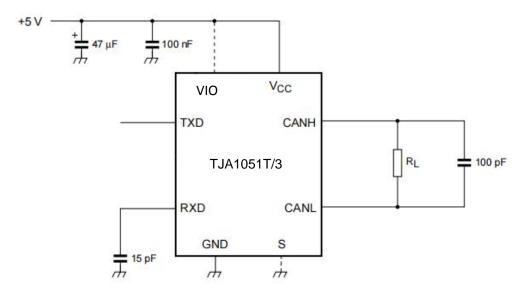


Figure 6. Timing test circuit for CAN transceiver

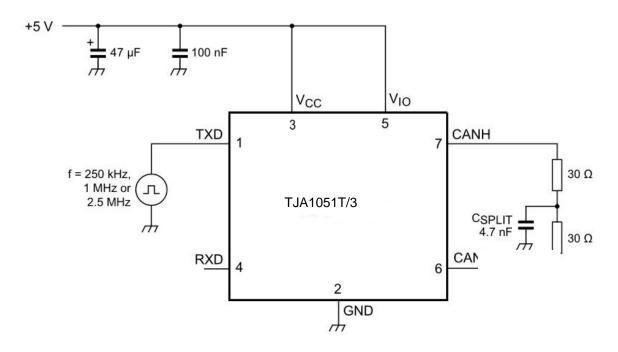
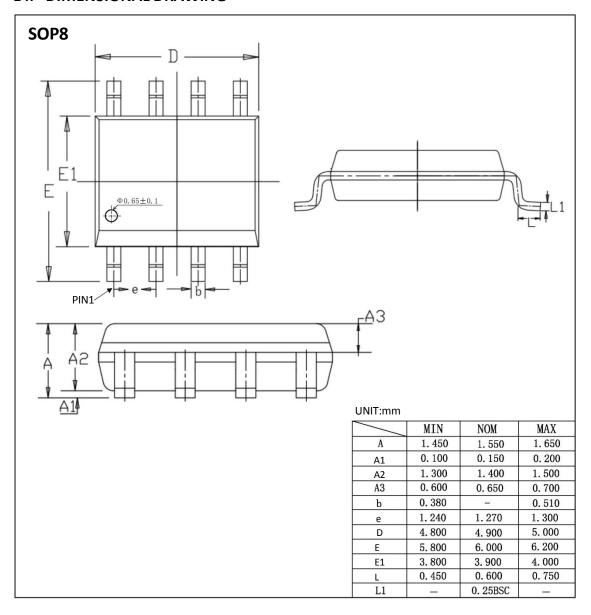


Figure 7. Test circuit for measuring transceiver driver symmetry



ORDERING INFORMATION

Ordering Information

Part Number	Device Marking	Package Type	Body size (mm)	Temperature (°C)	MSL	Transport Media	Package Quantity
TJA1051T/3	TJA1051T/3	SOP8	4.90 * 3.90	- 40 to 125	MSL3	T&R	2500

14. DIMENSIONAL DRAWING

