

1-MSPS/800-KSPS, 3.3V-5.25V, ULTRA LOW POWER, 12-/10-/8-BIT SAR ANALOG-TO-DIGITAL CONVERTER

FEATURES

- Single 3.3V to 4.8V Supply Operation for CI7476E/77E/78E Single 4V to 5.25V Supply Operation for CI7476/77/78
- Fast Throughput Rate:
 1 MSPS for CI7476E/77E/78E
 800 KSPS for CI7476/77/78
- \rightarrow \pm 1.25LSB INL, \pm 1LSB DNL (CI7476)
- ➤ No Pipeline Delays
- ➤ SPI/DSP/MICROWIRE™/QSPI™
 Compatible Serial Interface
- Variable Power Management
- Low Power (CI7476 typical):3.6mW (4V, 800KSPS)6.15mW (5V, 800KSPS)
- Second-Source for AD7476/77/78
- ➢ 6-Pin SOT-23 Package

APPLICATIONS

- Battery Powered Systems
 Personal digital assistants
 Medical instruments
 Mobile communications
- Instrumentation and Control Systems
- Data Acquisition Systems
- ➤ High Speed Modems
- Optical Sensors

Figure 1. Functional Block Diagram

DESCRIPTION

The CI7476, CI7477, and CI7478 are, respectively, 12-bit, 10-bit, and 8-bit, high speed, low power, small size, successive approximation ADCs. These devices can operate from a single 3.3 V to 4.8 V supply with a 1-MSPS throughput (CI7476E/CI7477E/CI7478E), or operate from a single 4 V to 5.25 V supply with an 800-KSPS throughput (CI7476/CI7477/CI7478) . The CI7476/CI7477/CI7478 is available in a 6-pin SOT-23 package and has an operating temperature range of -40°C to 85°C.

The C7476/C7477/ C7478 is a drop-in replacement for the AD7476/AD7477/AD7478 and consumes only half dynamic power of their counterpart.

SPECIFICATIONS

At-40°C to 85°C, fsample = 1 MSPS and fsclk = 20 MHz if $3.3 \text{ V} \le \text{VdD} \le 4.8 \text{ V}$; fsample = 800 KSPS and fsclk = 16 MHz if $4 \text{ V} \le \text{VdD} \le 5.25 \text{ V}$. (unless otherwise noted)

DADAMETED	TEST SOMBITIONS	CI	7476/76	6E	С	17477/	77E	CI7478/78E		78E	LINUTC	
PARAMETER	TEST CONDITIONS	MIN TYP MAX		MIN TYP MAX		MIN TYP MAX		UNITS				
SYSTEM PERFORMANCE												
Resolution			12			10			8		Bits	
No missing codes		12			10			8			Bits	
Integral linearity		-1.25		1.25	-1		1	-0.5		0.5	LSB	
Differential linearity		-1		1	-1		1	-0.5		0.5	LSB	
faccor Theorem and and	fsclk = 16 MHz, 4 V ≤ Vdd ≤ 5.25 V		;	800			800			800	KSPS	
fsample Throughput rate	fsclk = 20 MHz, 3.3 V ≤ Vdd ≤ 4.8 V			1			1			1	MSPS	
SNR	fin = 100 kHz		72			61.5			49.5		dB	
THD	fin = 100 kHz		-82			-73.5			-66		dB	

CI7476

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNITS
		fsample = 800 KSPS, fsclk = 16 MHz, Vdd = 4 V		0.90	1.00	
IDD Supply current, Dig	gital inputs =	fsample =800 KSPS, fsclk = 16 MHz, Vdd = 5 V		1.23	1.50	Л
normal operation 0) V or V _{DD}	fsample = 500 KSPS, fsclk = 10 MHz, Vdd = 4 V		0.46	0.52	mA
		fsample = 500 KSPS, fsclk = 10 MHz, Vdd = 5 V		0.75	0.80	
POWER DISSIPATION, CIT	7476					
Normal operation		fsample = 800 KSPS, fsclk = 16 MHz, Vdd = 4 V		3.60	4.0	mW
		fsample = 800 KSPS, fsclk = 16 MHz, Vdd = 5 V		6.15	7.5	mW

CI7477

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNITS
		fsample = 800 KSPS, fsclk = 16 MHz, Vdd = 4 V		0.87	1.05	
IDD Supply current, Digi	jital inputs =	fsample =800 KSPS, fsclk = 16 MHz, Vdd = 5 V		1.05	1.25	, no A
normal operation 0	V or V _{DD}	fsample = 500 KSPS, fsclk = 10 MHz, Vdd = 4 V		0.48	0.58	mA mA
		fsample = 500 KSPS, fsclk = 10 MHz, Vdd = 5 V		0.80	0.98	
POWER DISSIPATION, CI7	7477					
Normal operation		fsample = 800 KSPS, fsclk = 16 MHz, Vdd = 4 V		3.45	4.25	mW
		fsample = 800 KSPS, fsclk = 16 MHz, Vdd = 5 V		5.25	6.25	mW

CI7478

PARAMETER	AMETER TEST CONDITIONS		MIN	TYP	MAX	UNITS
IDD Supply current, normal operation		fsample = 800 KSPS, $fsclk = 16 MHz$, $Vdd = 4 V$		0.76	1.02	
	Digital inputs =	fsample =800 KSPS, fsclk = 16 MHz, Vdd = 5 V		1.00	1.24	^
	0 V or V _{DD}	fsample = 500 KSPS, fsclk = 10 MHz, Vdd = 4 V		0.45	0.55	mA mA
		fsample = 500 KSPS, fsclk = 10 MHz, VDD = 5 V		0.60	0.75	
POWER DISSIPATION,	CI7478					
Normal operation		fsample = 800 KSPS, fsclk = 16 MHz, Vdd = 4 V		3.05	4.10	mW
		fsample = 800 KSPS, fsclk = 16 MHz, Vdd = 5 V		4.95	6.20	mW

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

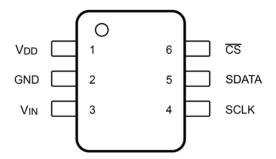


Figure 2. Pin Configuration

TERMINAL		DESCRIPTION				
NAME	NO.	DESCRIPTION				
V_{DD}	1	Power Supply Input.				
GND	2	The ground return for the supply and signals.				
V _{IN}	3	Analog Input. This signal can range from 0 V to V_{DD} .				
SCLK	4	Digital clock input. This clock directly controls the conversion and readout processes.				
SDATA	5	Digital data output. The output samples are clocked out of this pin on falling edges of the SCLK pin.				
CS	6	Chip Select. On the falling edge of $\overline{\text{CS}}$, a conversion process begins.				

TYPICAL CONNECTION

Figure 3 shows a typical connection diagram for the CI7476/77/78. The 5 V supply should come from a stable power supply such as an LDO. The supply to CI7476/77/78 should be decoupled to the ground. A 1- μ F and a 10-nF decoupling capacitor are required between the V_{DD} and GND pins of the converter. This capacitor should be placed as close as possible to the pins of the device. Always set the V_{DD} supply to be greater than or equal to the maximum input signal to avoid saturation of codes.

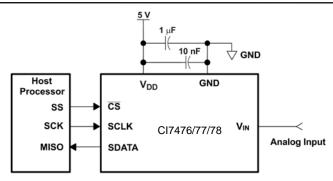


Figure 3. Typical Circuit Configuration

TIMING DIAGRAM

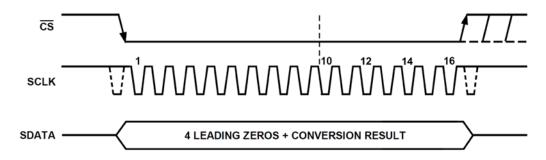
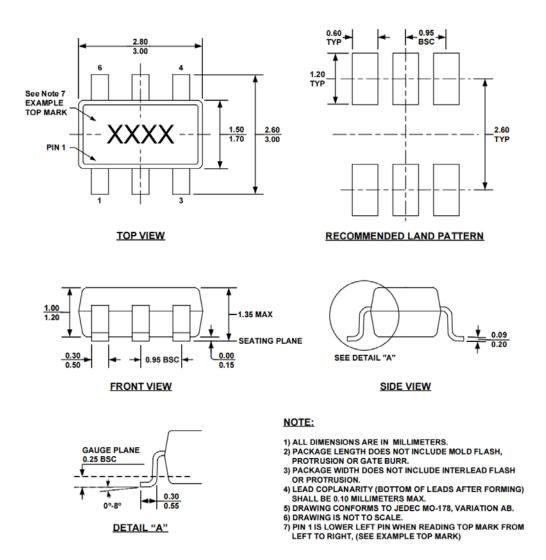


Figure 4. Timing Diagram

The conversion is initiated on the falling edge of $\overline{\text{CS}}$. The device outputs data while the conversion is in progress, and it requires 16/14/12 serial clock cycles to complete the conversion and access the full results. The CI7476/CI7477 CI7478 data word contains 4 leading zeros, followed by 12 -bit/10-bit/8-bit data in MSB first format.

Once a data transfer is complete, SDATA will return to the tri-state mode, and another conversion can be initiated after the quiet time has elapsed by again bringing $\overline{\text{CS}}$ low.


POWER-DOWN MODE

The CI7476/77/78 family has an auto power-down feature. Besides powering down all circuitry, the converter consumes only a small amount of current in this mode. The device automatically wakes up when \overline{CS} falls. However, not all of the functional blocks are fully powered until sometime before the third falling edge of SCLK. The device powers down once it reaches the end of conversion which is the 16th falling edge of SCLK for the CI7476 (the 14th and 12th for the CI7477 and CI7478, respectively). The device enters power down mode if \overline{CS} goes high before the 10th SCLK falling edge. Ongoing conversion stops and SDATA goes to three-state under this power down condition.

These converters achieve lower power dissipation for a fixed throughput rate by using higher SCLK frequencies. Higher SCLK frequencies reduce the acquisition time and conversion time. This means the converters spend more time in auto power-down mode per conversion cycle. For a particular SCLK frequency, the acquisition time and conversion time are fixed. Therefore, a lower throughput increases the proportion of the time the converters are in power down, thereby reducing power consumption.

OUTLINE DIMENTIONS

NOTES

- 1. Unpacked ICs, tube-mounted ICs, etc. must be stored in a drying cabinet, and the humidity in the drying cabinet < 20% R.H.
- 2. After access, the components are stored in an electrostatic packaging protective bag.
- 3. Anti-static damage: the device is an electrostatic sensitive device, and sufficient anti-static measures should be taken during transmission, assembly and testing.
- 4. The user should conduct a visual inspection before use, and the bottom, side and surrounding of the circuit can be welded only if it is bright. If oxidation occurs, the circuit can be processed by means of oxidation, and the circuit must be soldered within 12 hours after processing.