

生命体征检测模组用户手册

模组背面

1 概述

EPCM001G100 生命体征检测模组是一款可以测量肌电信号的模组,可以通过有线(SPI)连接的方式从模组读取测量数据,模组可提供串口通讯协议。

BECAUGIGION 71. 0

BECAUGIGION 7

2 特点

● 外形尺寸: 60mm X 73.6mm;

模组正面

- 输入电压: DC5V(注:由于人体 EMG 信号比较微弱,易受市电干扰,模组工作期间采用锂电池供电,当电源开关拨到 ON 时,USB 口用于数据读取,当电源开关拨到 OFF 时,USB 用于锂电池充电);
- 输入电流: 160mA;
- 功耗: 取决于主时钟、EMG 时钟等相关时钟的设置,用户如需进一步优化功耗,请与我司联系定制,联系电话 4008605922;
- 可测量参数: EMG 信号。
- 性能参数

性能参数

显示准确度	误差≤士 10%或士 2µV	
分辨率(测量灵敏度)	≤2μV(r.m.s.)	
系统噪声	≤IµV(r.m.s.)	
通频带	OHz~500Hz (-3dB) (不包括陷波波段)	
频率误差	≤ ± 2%	
差模输入阻抗	>5MΩ	
共模抑制比	2100dB	
工频陷波器	50Hz 陷波滤波器,衰减后幅值<5μV(r.m.s.)	

nanochap.cn 第 1 页 共 15 页

用户手册 EPC001G100

3 应用范围

家庭医疗管理、健康智能硬件、健康管理平台、车载健康管理等。

目录

1	概述	1
2	特点	1
3	应用范围	2
4	电气特性	5
5	协议架构	5
	5.1 数据包结构	5
6	数据解析	6
	6.1 EMG的 AD采样值解析	6
	6.2 EMG 数据的 AD 采样值换算	7
	6.3 横坐标单位换算成秒	7
7	接口说明	8

8 功能框图	9
9 模组尺寸	9
10 使用注意事项	10
11 上位机使用说明	10
11.1 上位机概述	10
11.2 模组连接	10
11.3 功能简介	10
11.4 开始采集	12
11.5 采集结果日志	13
12 模组控制流程图	14
13 联系专术	10

文档修订记录

序号	版本号	修订日期	修订概述	修订人	审核人	批准人	备注
1	V1. 0	2024-05-28	创建文档				

nanochap.cn 第 4 页 共 15 页

4 电气特性

■ 环境要求:

环境要求		
工作环境温度	-40°C ∼ +85°C	
工作环境湿度	20% ~ 80%	
存储环境温度	-40°C ∼ +85°C	
存储环境湿度	10% ~ 80%	

5 协议架构

本协议中,如无特别说明,所有数值均表示十六进制格式。

5.1 数据包结构

MSB LSB

数据头	有效载荷	校验和	数据尾
0x24	根据实际采集情况确定,不固定	前面累加取后两位	0×0A

nanochap.cn 第 5 页 共 15 页

6 数据解析

6.1 EMG 的 AD 采样值解析

MSB LSB

数据回传

数据头	数据位(说明)	校验和	数据尾
0x24	EMG 原始波形数据	前面累加取后两位	0×0A

数据上传示例: 24 38 34 32 35 32 30 34 8D 0A

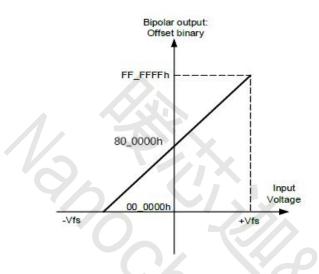
- 24 是 EMG 数据回传的数据头。
- 38 34 32 35 32 30 34 是接收到的 EMG 数据,将 16 进制转换成 ASCII 码,即可得到数据,对应的 ASCII 码为 8425204。
- 8D 是校验和;校验和: 0x8D = (0x24 + 0x38 + 0x34 + 0x32 + 0x35 + 0x32+ 0x30+ 0x34) & 0xFF。
- 0A 是回传数据的数据尾。

ASCII 码对照表

16 进制 HEX	符号 Symbol
30	0
31	1
32	2
33	3
34	4
35	5
36	6
37	7
38	8
39	9

nanochap.cn 第 6 页 共 15 页

6.2 EMG 数据的 AD 采样值换算


模组上传的数据为根据 EMG 放大倍数对原始值放大后的 AD 采样值,若需要转换为单位为 mV 的数值,

计算公式如下:

$$value = (ad - dRef) * factor$$

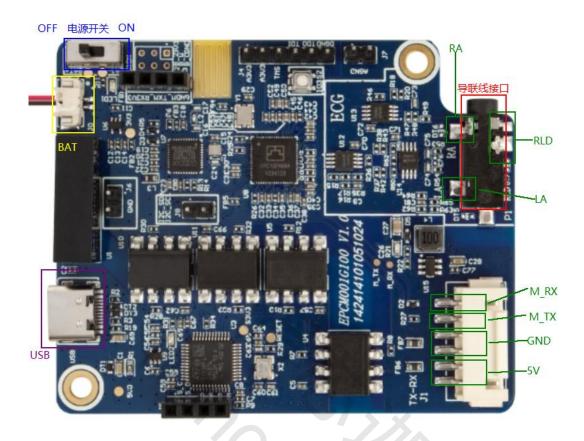
其中,

- ad 为模组上传的 AD 采样值,如 8416213。
- dRef 为参考值, dRef = 2²³, 参见下图。

■ factor 为转换系数,

factor =
$$\frac{1000 * 1.2}{2^{23}}$$

■ 则转换结果为:

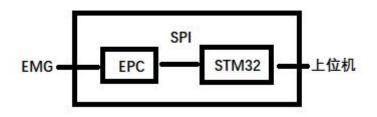

$$value = \left(8416213 - 2^{23}\right) * \frac{1000 * 1.2}{2^{23}} = 3.948927 mV$$

6.3 横坐标单位换算成秒

模组的采样率为 3715Hz, 可将采样点数转化为时间。

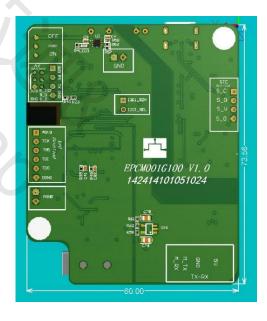
7 接口说明

模组正面


备注: 电极连接口可选择 3.5mm 的专用导联线接口或者焊接到线路板上的对应焊盘上。

S1	类型	备注
	开关	拨到 ON:模组启动工作
Cantolica		拨到 0FF: 模组停止工作
USB1	连接类型	备注
USB 插座	通过 USB 线与 PC 相连	当电源开关拨到 ON:通过 PC 上位机软件控制
		当电源开关拨到 0FF: 为锂电池充电
J1	连接类型	备注
2.54MM 6PIN座	通过端子线与外设开发板相连	与 ENS 刺激开发板联用

nanochap.cn 第 8 页 共 15 页


用户手册

8 功能框图

9 模组尺寸

模组具体尺寸如上图所示,单位均为 mm。

nanochap.cn 第 9 页 共 15 页

10 使用注意事项

本模组使用了当前最先进的生物电信号测试原理,通过分析人体的生理信号特征得出人体参数。RA 电极(红色电极导联线)与 LA 电极(黄色电极导联线)接在小臂肌肉两端,RLD 电极(绿色电极导联线)接在手肘皮肤上。为防止市电干扰,模组工作期间采用锂电池供电,请在测量前确保锂电池与模组连接正常,开关 S1 置于 ON 方向,且 LED1 正常亮起。如果安装了我司的上位机软件,开始测量后,待信号稳定后,小臂肌肉不断发力和放松,可观察到 EMG 信号。

11 上位机使用说明

11.1 上位机概述

EPCM001G100_EMG 上位机软件适用于 EPCM001G100 生命体征检测模组数据采集及结果显示。

11.2 模组连接

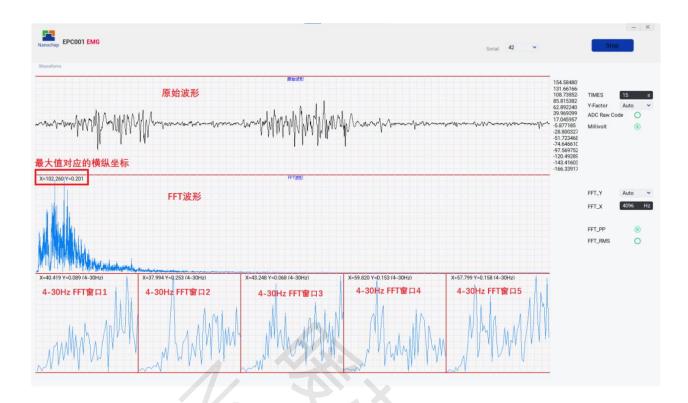
将 EPCMO01G100 生命体征检测模组通过 USB 线与电脑 USB 端口进行连接。

11.3 功能简介

点击 EPCM001 EMG 文件夹打开 EPCM001G100_EMG 软件,如下图所示。

初始界面

nanochap.cn 第 10 页 共 15 页


配置:

- Serial: 串口号,选择对应串口号。
- Measure/Stop: 开启、停止数据采集。
- TIMES:原始波形 X 坐标轴(时间单位 s)。
- Y-Factor: 原始波形 Y 坐标轴(每个小格对应的电压值,可选范围: 1mV、3mV、5mV、 10mV、20mV、30mV、40mV、Auto, 默认选择 Auto)。
- ADC Raw Code: 显示 AD 值。
- Millivolt: 显示电压值。
- **FFT_Y:** FFT 的 Y 轴坐标范围(每个小格对应的电压值,可选范围: 1mV、3mV、5mV、10mV、20mV、30mV、40mV、Auto,默认选择 Auto)。
- FFT_X: FFT 的 X 轴坐标范围(单位 Hz)。
- FFT_PP:显示 FFT 对应的峰峰值。
- FFT_RMS:显示 FFT 对应的有效值。

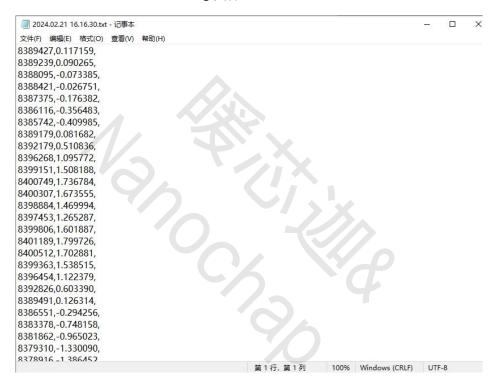
nanochap.cn 第 11 页 共 15 页

用户手册

11.4 开始采集

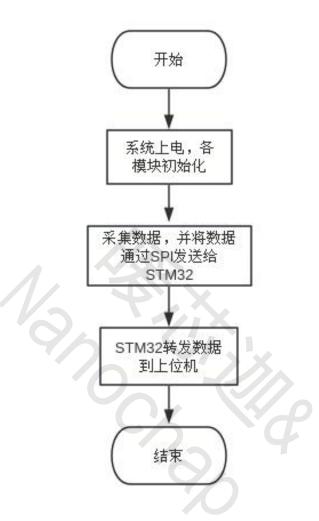
FFT 波形图 4--30Hz 波形窗口,从左到右依次为:窗口 1、窗口 2、窗口 3、窗口 4、窗口 5,窗口数据填满后,后面窗口数据会覆盖前面窗口波形,最后一个为最新的 FFT 波形图。

nanochap.cn 第 12 页 共 15 页


11.5 采集结果日志

软件同文件夹下 log 文件夹内将存储采集信息,文件名记录采集时间,文件由 AD 采样值及计算所得电压值组成。

log 文件夹



log 文件

nanochap.cn 第 13 页 共 15 页

12 模组控制流程图

nanochap.cn 第 14 页 共 15 页

用户手册

13 联系方式

可通过以下方式了解更多产品详情:

1) 公司电话: 4008605922; 180 9470 6680

2) 技术人员 QQ: 1708154204

3) 公众号: 暖芯迦电子

Copyright© 2024 by Hangzhou Nanochap Electronics Co., Ltd.

使用指南中所出现的信息在出版当时相信是正确的,然而暖芯迦对于说明书的使用不负任何责任。文中提到的应用目的仅仅是用来做说明,暖芯迦不保证或表示这些没有进一步修改的应用将是适当的,暖芯迦拥有不事先通知而修改产品的权利,对于最新的信息,请参考我们的网址 https://www.nanochap.cn或与我们直接联系(4008605922)。

nanochap.cn 第 15 页 共 15 页