July 2015 # MOC3010M, MOC3011M, MOC3012M, MOC3020M, MOC3021M, MOC3022M, MOC3023M 6-Pin DIP Random-Phase Triac Driver Output Optocoupler (250/400 Volt Peak) #### **Features** - Excellent I_{FT} Stability—IR Emitting Diode Has Low Degradation - Peak Blocking Voltage - 250 V, MOC301XM - 400 V, MOC302XM - · Safety and Regulatory Approvals - UL1577, 4,170 VAC_{RMS} for 1 Minute - DIN EN/IEC60747-5-5 ## **Applications** - Industrial Controls - Solenoid/Valve Controls - · Traffic Lights - Static AC Power Switch - · Vending Machines - Incandescent Lamp Dimmers - · Solid State Relay - Motor Control - · Lamp Ballasts # **Description** The MOC301XM and MOC302XM series are optically isolated triac driver devices. These devices contain a GaAs infrared emitting diode and a light activated silicon bilateral switch, which functions like a triac. They are designed for interfacing between electronic controls and power triacs to control resistive and inductive loads for 115 V_{AC} operations. # Schematic Package Outlines ANODE 1 6 MAIN TERM. 6 MAIN TERM. 6 MAIN TERM. 7 DO NOT CONNECT (TRIAC SUBSTRATE) Figure 2. Package Outlines Figure 1. Schematic # **Safety and Insulation Ratings** As per DIN EN/IEC 60747-5-5, this optocoupler is suitable for "safe electrical insulation" only within the safety limit data. Compliance with the safety ratings shall be ensured by means of protective circuits. | Parameter | | Characteristics | |--|------------------------|-----------------| | Installation Classifications per DIN VDE | < 150 V _{RMS} | I–IV | | 0110/1.89 Table 1, For Rated Mains Voltage | < 300 V _{RMS} | I–IV | | Climatic Classification | | 40/85/21 | | Pollution Degree (DIN VDE 0110/1.89) | | 2 | | Comparative Tracking Index | | 175 | | Symbol | Parameter | Value | Unit | |-------------------|--|-------------------|-------------------| | V | Input-to-Output Test Voltage, Method A, $V_{IORM} \times 1.6 = V_{PR}$, Type and Sample Test with $t_m = 10$ s, Partial Discharge < 5 pC | 1275 | V _{peak} | | V _{PR} | Input-to-Output Test Voltage, Method B, V _{IORM} x 1.875 = V _{PR} , 100% Production Test with t _m = 1 s, Partial Discharge < 5 pC | 1594 | V _{peak} | | V _{IORM} | Maximum Working Insulation Voltage | 850 | V _{peak} | | V _{IOTM} | Highest Allowable Over-Voltage | 6000 | V _{peak} | | | External Creepage | ≥ 7 | mm | | | External Clearance | ≥7 | mm | | | External Clearance (for Option TV, 0.4" Lead Spacing) | ≥ 10 | mm | | DTI | Distance Through Insulation (Insulation Thickness) | ≥ 0.5 | mm | | R _{IO} | Insulation Resistance at T _S , V _{IO} = 500 V | > 10 ⁹ | Ω | # **Absolute Maximum Ratings** Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only. $T_A = 25^{\circ}$ C unless otherwise specified. | Symbol | Parameters | Device | Value | Unit | | |------------------|--|--|-----------------------|-------|--| | TOTAL DEV | /ICE | | | • | | | T _{STG} | Storage Temperature | All | -40 to +150 | °C | | | T _{OPR} | Operating Temperature | All | -40 to +85 | °C | | | TJ | Junction Temperature Range | All | -40 to +100 | °C | | | T _{SOL} | Lead Solder Temperature | All | 260 for
10 seconds | °C | | | Б | Total Device Power Dissipation at 25°C Ambient | AII | 330 | mW | | | P _D | Derate Above 25°C | All | 4.4 | mW/°C | | | EMITTER | | | | | | | I _F | Continuous Forward Current | All | 60 | mA | | | V _R | Reverse Voltage | All | 3 | V | | | В | Total Power Dissipation at 25°C Ambient | AII | 100 | mW | | | P_{D} | Derate Above 25°C | All | 1.33 | mW/°C | | | DETECTOR | R | | | | | | | | MOC3010M
MOC3011M
MOC3012M | 250 | | | | V_{DRM} | Off-State Output Terminal Voltage | MOC3020M
MOC3021M
MOC3022M
MOC3023M | 400 | V | | | I _{TSM} | Peak Repetitive Surge Current (PW = 100 μs, 120 pps) | All | 1 | А | | | D | Total Power Dissipation at 25°C Ambient | All | 300 | mW | | | P_{D} | Derate Above 25°C | AII | 4 | mW/°C | | #### **Electrical Characteristics** $T_A = 25$ °C unless otherwise specified. # **Individual Component Characteristics** | Symbol | Parameters | Test Conditions | Device | Min. | Тур. | Max. | Unit | |------------------|--|--|--------|------|------|------|------| | EMITTER | | | | | | | | | V _F | Input Forward Voltage | I _F = 10 mA | All | | 1.15 | 1.50 | V | | I _R | Reverse Leakage Current | V _R = 3 V, T _A = 25°C | All | | 0.01 | 100 | μΑ | | DETECTO | OR | | | | | | | | I _{DRM} | Peak Blocking Current,
Either Direction | Rated V _{DRM} , I _F = 0 ⁽¹⁾ | All | | 10 | 100 | nA | | V _{TM} | Peak On-State Voltage,
Either Direction | $I_{TM} = 100 \text{ mA peak}, I_F = 0$ | All | | 1.8 | 3.0 | V | #### **Transfer Characteristics** | Symbol | DC Characteristics | Test Conditions | Device | Min. | Тур. | Max. | Unit | | |--------------------------|-----------------------------------|------------------------------|----------|----------|------|------|------|--| | | | | MOC3020M | | | 30 | | | | | | | | MOC3010M | | | 45 | | | | | | MOC3021M | MOC3021M | | 15 | | | | I _{FT} LED Trig | LED Trigger Current | Voltage = 3 V ⁽²⁾ | MOC3011M | | | 10 | mA | | | | | | MOC3022M | | | | | | | | | | MOC3012M | | | 5 | | | | | | | MOC3023M | | | | | | | I _H | Holding Current, Either Direction | | All | | 100 | | μΑ | | #### **Isolation Characteristics** | Symbol | Parameter | Test Conditions | Device | Min. | Тур. | Max. | Unit | |-----------|----------------------------------|-----------------|--------|------|------|------|--------------------| | V_{ISO} | Isolation Voltage ⁽³⁾ | t = 1 Minute | All | 4170 | | | VAC _{RMS} | #### Notes: - 1. Test voltage must be applied within dv/dt rating. - 2. All devices are guaranteed to trigger at an I_F value less than or equal to max I_{FT}. Therefore, recommended operating I_F lies between max I_{FT} (30 mA for MOC3020M, 15 mA for MOC3010M and MOC3021M, 10 mA for MOC3011M and MOC3022M, 5 mA for MOC3012M and MOC3023M) and absolute maximum I_F (60 mA). - 3. Isolation voltage, V_{ISO} , is an internal device dielectric breakdown rating. For this test, pins 1 and 2 are common, and pins 4, 5 and 6 are common. # **Typical Performance Curves** Figure 3. LED Forward Voltage vs. Forward Current Figure 5. Trigger Current vs. Ambient Temperature Figure 6. LED Current Required to Trigger vs. LED Pulse Width Figure 8. Leakage Current, I_{DRM} vs. Temperature - The mercury wetted relay provides a high speed repeated pulse to the D.U.T. - 100x scope probes are used, to allow high speeds and voltages. - 3. The worst-case condition for static dv/dt is established by triggering the DUT with a normal LED input current, then removing the current. The variable R_{TEST} allows the dv/dt to be gradually increased until the DUT continues to trigger in response to the applied voltage pulse, even after the LED current has been removed. The dv/dt is then decreased until the DUT stops triggering. τ_{RC} is measured at this point and recorded. #### Note: This optoisolator should not be used to drive a load directly. It is intended to be a trigger device only. Figure 9. Static dv/dt Test Circuit Figure 10. Resistive Load Figure 11. Inductive Load with Sensitive Gate Triac ($I_{GT} \le 15 \text{ mA}$) Figure 12. Inductive Load with sensitive Gate Triac ($I_{GT} \le 15 \text{ mA}$) In this circuit the "hot" side of the line is switched and the load connected to the cold or ground side. The 39 Ω resistor and 0.01 μ F capacitor are for snubbing of the triac, and the 470 Ω resistor and 0.05 μ F capacitor are for snubbing the coupler. These components may or may not be necessary depending upon the particular and load used. Figure 13. Typical Application Circuit Figure 14. Reflow Profile Time (s) 180 270 360 120 60 20 # Ordering Information(4) | Part Number | Package | Packing Method | |--------------|--|----------------------------| | MOC3010M | DIP 6-Pin | Tube (50 Units) | | MOC3010SM | SMT 6-Pin (Lead Bend) | Tube (50 Units) | | MOC3010SR2M | SMT 6-Pin (Lead Bend) | Tape and Reel (1000 Units) | | MOC3010VM | DIP 6-Pin, DIN EN/IEC60747-5-5 Option | Tube (50 Units) | | MOC3010SVM | SMT 6-Pin (Lead Bend), DIN EN/IEC60747-5-5 Option | Tube (50 Units) | | MOC3010SR2VM | SMT 6-Pin (Lead Bend), DIN EN/IEC60747-5-5 Option | Tape and Reel (1000 Units) | | MOC3010TVM | DIP 6-Pin, 0.4" Lead Spacing, DIN EN/IEC60747-5-5 Option | Tube (50 Units) | #### Note: 4. The product orderable part number system listed in this table also applies to the MOC3011M, MOC3012M, MOC3020M, MOC3022M, and MOC3023M product families. # **Marking Information** Figure 15. Top Mark | Тор Ма | Top Mark Definitions | | | | | | |--------|---|--|--|--|--|--| | 1 | Fairchild Logo | | | | | | | 2 | Device Number | | | | | | | 3 | DIN EN/IEC60747-5-5 Option (only appears on component ordered with this option) | | | | | | | 4 | One-Digit Year Code, e.g., '5' | | | | | | | 5 | Two-Digit Work Week, Ranging from '01' to '53' | | | | | | | 6 | Assembly Package Code | | | | | | ### NOTES: - A) NO STANDARD APPLIES TO THIS PACKAGE. - B) ALL DIMENSIONS ARE IN MILLIMETERS. - C) DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSION - D) DRAWING FILENAME AND REVSION: MKT-N06BREV4. LAND PATTERN RECOMMENDATION - A) NO STANDARD APPLIES TO THIS PACKAGE. - B) ALL DIMENSIONS ARE IN MILLIMETERS. - C) DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSION - D) DRAWING FILENAME AND REVSION: MKT-N06CREV4. #### NOTES: - A) NO STANDARD APPLIES TO THIS PACKAGE. - B) ALL DIMENSIONS ARE IN MILLIMETERS. - C) DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSION - D) DRAWING FILENAME AND REVSION: MKT-N06Drev4 #### TRADEMARKS The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks. $\begin{array}{lll} \mathsf{AccuPower^{\mathsf{TM}}} & \mathsf{F-PFS^{\mathsf{TM}}} \\ \mathsf{AttitudeEngine^{\mathsf{TM}}} & \mathsf{FRFET}^{\texttt{®}} \end{array}$ Awinda[®] Global Power Resource SM AX-CAP®* GreenBridge™ BitSiC™ Green FPS™ Build it Now™ Green FPS™ e-Series™ Current Transfer Logic™ Making Small Speakers Sound Louder DEUXPEED® and Better™ Dual Cool™ MegaBuck™ EcoSPARK® MICROCOUPLER™ EfficientMax™ MicroFET™ ESBC™ MicroPak™ MicroPak2™ MicroPak2™ MillerDrive™ Fairchild Semiconductor® MotionMax™ MotionGrid® FACT Quiet Series™ FACT® FastvCore™ FETBench™ FPS™ MotionGrid® MTi® MTx® MVN® MVN® MVN® MWSaver® OptoHiT™ OPTOLOGIC® OPTOPLANAR® Power Supply WebDesigner™ PowerTrench® PowerTrench[®] PowerXSTM Programmable Active Droop™ QS™ Quiet Series™ RapidConfigure™ OFFT Saving our world, 1mW/W/kW at a time™ SignalWise™ SmartMax™ SMART START™ Solutions for Your Success™ SPM® STEALTH™ SuperFET® SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SupreMOS® SyncFET™ Sync-Lock™ SYSTEM GENERAL®* TinyBoost® TinyBuck® TinyCalc™ TinyLogic® TinyPOPTO™ TinyPower™ TinyPWM™ TinyWire™ TranSiC™ TriFault Detect™ TRUECURRENT®* uSerDes™ SerDes* UHC® Ultra FRFET™ UniFET™ Ultra FRFET™ UniFET™ VCX™ VisualMax™ VoltagePlus™ XS™ Xsens™ 仙童® #### DISCLAIMER FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. TO OBTAIN THE LATEST, MOST UP-TO-DATE DATASHEET AND PRODUCT INFORMATION, VISIT OUR WEBSITE AT http://www.fairchildsemi.com, FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS. #### AUTHORIZED USE Unless otherwise specified in this data sheet, this product is a standard commercial product and is not intended for use in applications that require extraordinary levels of quality and reliability. This product may not be used in the following applications, unless specifically approved in writing by a Fairchild officer: (1) automotive or other transportation, (2) military/aerospace, (3) any safety critical application – including life critical medical equipment – where the failure of the Fairchild product reasonably would be expected to result in personal injury, death or property damage. Customer's use of this product is subject to agreement of this Authorized Use policy. In the event of an unauthorized use of Fairchild's product, Fairchild accepts no liability in the event of product failure. In other respects, this product shall be subject to Fairchild's Worldwide Terms and Conditions of Sale, unless a separate agreement has been signed by both Parties. #### ANTI-COUNTERFEITING POLICY Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Terms of Use Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors. #### PRODUCT STATUS DEFINITIONS #### **Definition of Terms** | 20 | | | |--------------------------|-----------------------|---| | Datasheet Identification | | Definition | | Advance Information | Formative / In Design | Datasheet contains the design specifications for product development. Specifications may change in any manner without notice. | | Preliminary | First Production | Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design. | | No Identification Needed | Full Production | Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design. | | Obsolete | Not In Production | Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only. | Rev. 177 ^{*} Trademarks of System General Corporation, used under license by Fairchild Semiconductor.