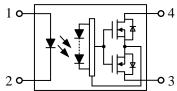


# 400V Normally Closed (1-Form-B) Optical MOSFET Relay

### **General Features**

- ➤ Low-level off State Leakage Current
- ➤ No Moving Parts
- > 1500 Vrms Input/Output Isolation
- > Fast Switching Speed
- ➤ SOP Package 4 Pin Type in Miniature Design
- Highly Efficient GaAlAs Infrared LED and Reliability MOSFETs


| <b>A</b> | nn | licat | tions | , |
|----------|----|-------|-------|---|
| 4 🏝      | PP | IICa  | uons  | , |

- > Telecommunications
- Measuring and Testing Equipment
- Industrial Control
- Security Equipments
- High speed Inspection Machine

| V <sub>OFF</sub> | I <sub>ON</sub> | R <sub>ON(TYP.)</sub> |
|------------------|-----------------|-----------------------|
| 400V             | 200mA           | $20\Omega$            |

#### SOP-4





- LED Anode
  - 2. LED Cathode
  - 3. Drain (MOSFET)

Drain (MOSFET)

(Unit: mm)

**Ordering Information** 

| Part Number | Package | Marking | Packing quantity |
|-------------|---------|---------|------------------|
| OPY414S     | SOP-4   | OPY414S | 2000pcs/REEL     |

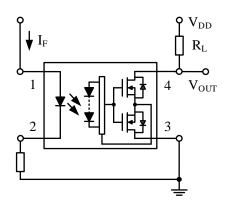
### **Absolute Maximum Ratings**

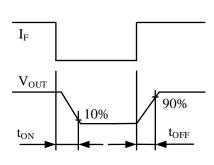
T<sub>a</sub>=25 ℃ unless otherwise specified

|                       | Item                      | Symbol                     | Note             | Value      | Unit |
|-----------------------|---------------------------|----------------------------|------------------|------------|------|
| Input                 | LED Forward Current       | $I_{\mathrm{F}}$           |                  | 50         | mA   |
|                       | LED Pulse Forward Current | $I_{FP}$                   | f=100Hz, duty=1% | 1000       | mA   |
|                       | LED Reverse Voltage       | $V_R$                      |                  | 5          | V    |
|                       | Diode Power Dissipation   | P <sub>D</sub>             |                  | 75         | mW   |
|                       | Load Voltage              | V <sub>OFF</sub>           | AC Peak or DC    | 400        | V    |
| Output                | On-state Current          | I <sub>ON</sub>            |                  | 200        | mA   |
|                       | On-state Peak Current     | I <sub>ONP</sub>           | 100ms(1 pulse)   | 0.3        | A    |
|                       | Output Power Dissipation  | Po                         |                  | 300        | mW   |
| Total Po              | wer Dissipation           | P <sub>T</sub>             |                  | 350        | mW   |
| Storage '             | Temperature               | $T_{STG}$                  |                  | -40 to 100 | °C   |
| Operatin              | g Temperature             | T <sub>OPR</sub>           |                  | -40 to 85  | °C   |
| Lead So               | ldering Temperature       | T <sub>L</sub> 10 sec max. |                  | 260        | °C   |
| Isolation Voltage [1] |                           | BV <sub>IO</sub>           | AC, RH≤60%, 60s  | 1500       | Vrms |

Caution: Stresses greater than those listed in the "Absolute Maximum Ratings" may cause permanent damage to the device.




## **Electrical Characteristics**


 $T_a$ =25°C unless otherwise specified

| Item         |                             | Symbol           | Min.             | Тур. | Max. | Unit | Test Conditions                                     |  |
|--------------|-----------------------------|------------------|------------------|------|------|------|-----------------------------------------------------|--|
|              | LED Forward Voltage         | $V_{\mathrm{F}}$ | 1                | 1.3  | 1.5  | V    | I <sub>F</sub> =10mA                                |  |
| Input        | LED Reverse Current         | $I_R$            |                  |      | 5.0  | μΑ   | V <sub>R</sub> =5V                                  |  |
|              | Trigger LED Current         | $I_{FC}$         | 1                | 0.2  | 2.0  | mA   | I <sub>OFF</sub> =100μA                             |  |
|              | Return LED Current          | $I_{FT}$         | 0.1              | 0.2  |      | mA   | I <sub>ON</sub> =100mA                              |  |
|              | Return LED Voltage          | $V_{FC}$         | 0.7              |      |      | V    | I <sub>OFF</sub> =100μA                             |  |
|              | On - state Resistance [2]   | Ron              |                  | 20   | 50   | Ω    | I <sub>ON</sub> =100mA                              |  |
| Output       | Off-State Leakage Current   | I <sub>OFF</sub> |                  |      | 1.0  | μΑ   | V <sub>OFF</sub> =400V, I <sub>F</sub> =5mA         |  |
|              | Output Capacitance          | $C_{OUT}$        |                  | 45   |      | pF   | V <sub>OFF</sub> =0V, f=1MHz<br>I <sub>F</sub> =5mA |  |
| Transmission | Turn-on Time [3]            | Ton              | -1               | 0.02 | 0.5  | ms   | I <sub>F</sub> =5mA, I <sub>ON</sub> =100mA         |  |
|              | Turn-off Time [3]           | $T_{OFF}$        |                  | 0.1  | 0.5  | ms   |                                                     |  |
| Coupled      | Capacitance Input to Output | C <sub>IO</sub>  | 1                | 0.6  |      | pF   | V <sub>IO</sub> =0V, f=1MHz                         |  |
|              | Isolation Resistance        | R <sub>IO</sub>  | 10 <sup>10</sup> |      |      | Ω    | DC=500V                                             |  |
|              | Isolation Voltage           | BV <sub>IO</sub> | 1500             |      |      | V    | AC, 60s                                             |  |

#### NOTE:

- [1] LED pins are shorted together. Detector pins are also shorted together.
- [2] Measurement Taken within 1 Second of On-time.
- [3] Switching Time Test Circuit.







## **Typical Device Performance**

Figure 1. Load Current Vs. Ambient Temperature 250 Load Current (mA) 200 150 100 50 0 -40 -20 0 20 40 60 80 100 Ambient Temperature (°C)

Figure 2. On Resistance Vs. Ambient Temperature

50
40
10
10
-40 -20 0 20 40 60 80 100

Ambient Temperature (°C)

Figure 3. Operate (OFF) time Vs. Ambient
Temperature

3

(St. 2.5

2

1

1.5

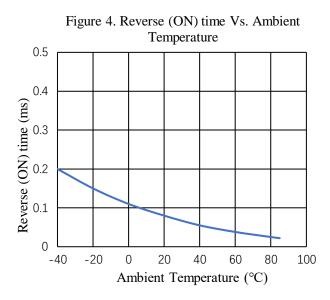
0

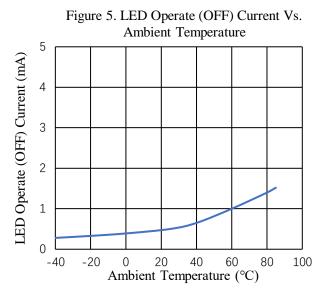
-40

-20

0

20


40


60

80

100

Ambient Temperature (°C)





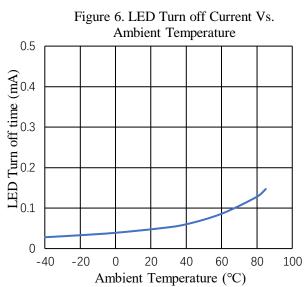





Figure 7. LED Forward Voltage Vs. Ambient Temperature

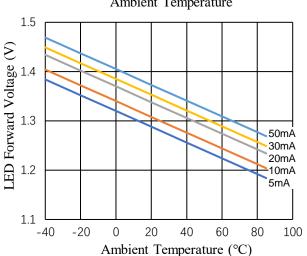



Figure 8. Voltage Vs. Currennt Characteristics of Output at MOS Portion

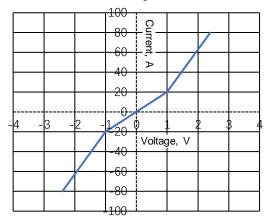
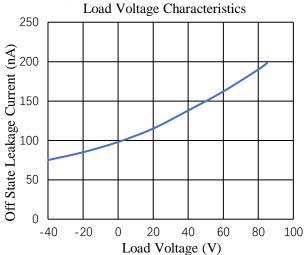
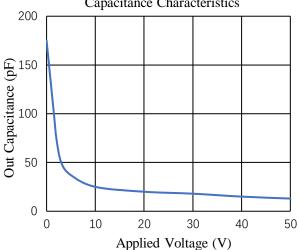
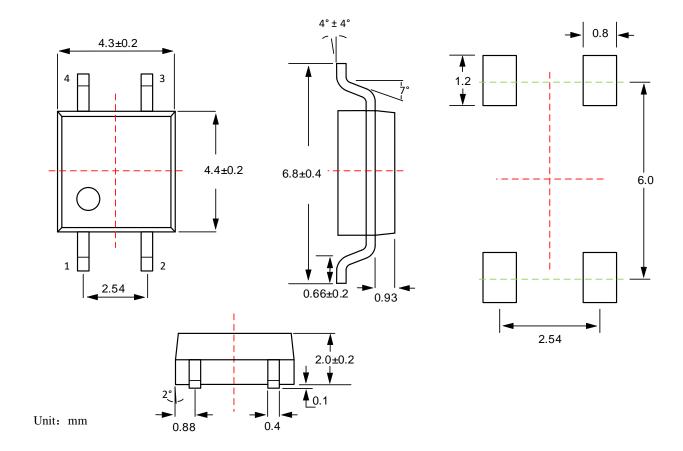



Figure 9. Off State Leakage Current Vs. Load Voltage Characteristics



Figure 10. Applied Voltage Vs. Output Capacitance Characteristics





# **Package Dimensions**

### **SOP -4**





**Published by** 

ARK Microelectronics Co., Ltd.

ADD: D26, UESTC National Science Park No. 1 Shuangxing Avenue, Chengdu, Sichuan. All Rights Reserved.

#### **Disclaimers**

ARK Microelectronics Co., Ltd. reserves the right to make change without notice in order to improve reliability, function or design and to discontinue any product or service without notice. Customers should obtain the latest relevant information before orders and should verify that such information is current and complete. All products are sold subject to ARK Microelectronics Co., Ltd's terms and conditions supplied at the time of order acknowledgement.

ARK Microelectronics Co., Ltd. warrants performance of its hardware products to the specifications at the time of sale, Testing, reliability and quality control are used to the extent ARK Microelectronics Co., Ltd deems necessary to support this warrantee. Except where agreed upon by contractual agreement, testing of all parameters of each product is not necessary performed.

ARK Microelectronics Co., Ltd. does not assume any liability arising from the use of any product or circuit designs described herein. Customers are responsible for their products and applications using ARK Microelectronics Co., Ltd's components. To minimize risk, customers must provide adequate design and operating safeguards.

ARK Microelectronics Co., Ltd. does not warrant or convey any license either expressed or implied under its patent rights, nor the rights of others. Reproduction of information in ARK Microelectronics Co., Ltd's data sheets or data books is permissible only if reproduction is without modification or alteration. Reproduction of this information with any alteration is an unfair and deceptive business practice. ARK Microelectronics Co., Ltd. is not responsible or liable for such altered documentation.

Resale of ARK Microelectronics Co., Ltd's products with statements different from or beyond the parameters stated by ARK Microelectronics Co., Ltd. for the product or service voids all express or implied warrantees for the associated ARK Microelectronics Co., Ltd's product or service and is unfair and deceptive business practice. ARK Microelectronics Co., Ltd. is not responsible or liable for any such statements.

### Life Support Policy:

ARK Microelectronics Co., Ltd's products are not authorized for use as critical components in life devices or systems without the expressed written approval of ARK Microelectronics Co., Ltd.

#### As used herein:

- 1. Life support devices or systems are devices or systems which:
  - a. are intended for surgical implant into the human body,
  - b. support or sustain life,
  - c. whose failure to perform when properly used in accordance with instructions for used provided in the labeling, can be reasonably expected to result in significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.