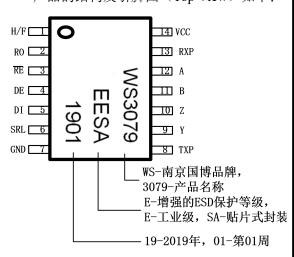


RS422 通讯接口芯片

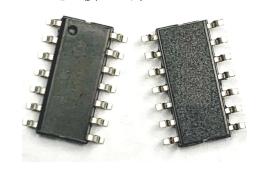

产品介绍

南京国微电子有限公司研制的 WS3079 是兼容 3.3V/5V 工作电压的 RS-485/RS-422 收 发器电路,电路内部包含一路驱动器和一路接 收器。WS3079 总线具有故障保护功能,当接 收器输入开路或者短路时,可以保证接收器输 出为高电平状态。如果终端总线上所有驱动器 都被禁用(高阻抗),则接收器也输出为高电 平状态。

WS3079 可以工作于半双工或全双工模式下,还具有独立可编程的引脚来控制接收器和驱动器的输出相位。

WS3079接收器输入阻抗为1/8单位负载, 允许多达256个收发器挂接在总线上。所有驱动器输出提供±15kV人体模式ESD保护,采 用14脚SO封装,工作于-40℃至+125℃温度范围。

产品的结构及引脚图(Top View)如下;



WS3079 引脚图—14-pin SOP (Top View)

WS3079

3.3V/5V 16Mbps 全双工 RS422 通讯接口芯片

14-pin SOP 封装

产品特征

- 3.3V/5V 电源电压
- 可编程速率的无误码数据传输
- •通信端口提供±15kV 人体模式 ESD 保护
- Fail-safe 功能
- 可选择的全/半双工模式
- •可编程的相位控制,用于纠正通讯总 线反向
- 具有 1/8 单位负载, 多达 256 个收发 器可挂接在同一总线上
- 采用 14 脚 SO 封装

应用

- 照明系统
- 电表
- 工业控制
- 工业电机驱动
- · 自动 HVAC 系统

China·Nanjing City ·No.166 Middle Zhengfang Road Email: support@njgwdz.net Tel: +86-25-68005828

Fax: +86-25-68005835

RS422 通讯接口芯片

表 1: WS3079 电性能

(VCC = +5V ± 5%,除非另有说明。典型值为 VCC=5V, TA=+25℃)

参数	符号	条件		最小	典型	最大	单位
驱动器							<u>'</u>
差分驱动输出(无负载)	VOD1	图 1, 空载				VCC	伏
关八驱动检训	Vone	图 1, R=50 Ω (RS	422)	2.0		VCC	44
差分驱动输出	VOD2	图 1, R=27Ω(RS-485)		1.5		VCC	伏
差分输出幅值变化(注1)	ΔVOD	图 1, R =50 Ω orR=	=27Ω			0.2	伏
驱动器输出共模电平	Voc	图 1, R=50 Ω orR=	27 Ω		VCC/2	3	伏
驱动器输出共模电平变化	ΔVOC	图 1, R=50 Ω orR=	27Ω			0.2	伏
输入高电平	V _{IH1}	DE, DI, \overline{RE} , TXP,	RXP, H/F	2.0			伏
输入低电平	V _{IL1}	DE, DI, \overline{RE} , TXP,	RXP, H/F			0.8	伏
输入迟滞	VHYS	DE, DI, \overline{RE} , TXP,	RXP, H/F		100		毫伏
输入电流	I _{IN1}	DE, DI, RE (注	DE, DI, \overline{RE} (注 2)			±1	微安
输入电流(Y, Z, A, B)	IIN4	DE = GND,	V _{IN} =12V			125	微安
而/ 、 它加 (1, 2, 11, 1)	111/4	Vcc=GNDor3.6V	VIN=-7V	-100			灰叉
SRL 输入高电平	SRL_H			VCC-0. 4			伏
SRL 输入中间电平	SRL_M			VCC*0.4		VCC*0.6	伏
SRL 输入低电平	SRL_L					0.4	伏
		-7V≤V _{OUT} ≤V	CC	-100		25	毫安
驱动器输出短路电流	IOD1	0V≤V _{OUT} ≤12	?V	25		100	毫安
		0V≪V _{OUT} ≪V _C	CC	±25			毫安
接收器	1			1	1	1	I
接收器差分输入阈值电压	VTH	-7V≤VCM≤+1	2V	-200		-50	毫伏
接收器差分输入阈值电压迟滞	ΔVTH				40		毫伏
接收器输出高电平	VOH	IO=-4mA, VID=	1 V	VCC-0.6			伏

China·Nanjing City ·No.166 Middle Zhengfang Road Email: support@njgwdz.net

Tel: +86-25-68005828

Fax: +86-25-68005835

南京国微电子	有限公		RS4	22 通证	孔接口に	5片	
接收器输出低电平	VOL	IO=4mA, VID=	IO=4mA, VID=-1V			0.4	伏
接收器输出高阻态漏电流	IOZR	0. 4V≤V ₀ ≤2. 4V				±1	微安
接收器输入阻抗	RIN	-7V≪V _{CM} ≪+	12V	96			千欧 姆
接收器输出短路电流	IOSR	0V≪VR0≪V	0V≤VR0≤VCC			±95	毫安
供电电流							
静态供电电流	ICC	No load, $\overline{RE} = GND$	DE=VCC		0.8	1.5	毫安
即必供电电机	100	DI=GND or VCC	DE=GND		0.8	1.5	笔女
关断电流	ISHDN	$DE = GND, \overline{RE} =$	=Vcc		120	180	微安
静态保护特性							
		接触放电模	型	±12			
静电保护(A管脚,B管脚)		IEC 61000-4-2		12			千伏
		人体模型	人体模型				
静电保护(其他管脚)		人体模型		±4			千伏

注 1: ΔVOD 和 ΔVOC是当DI改变时 VOD 和VOC的各自变化量。

注 2: 所有流入器件的电流为正,流出器件的电流为负;如无特殊说明,所有电压以地为参考点。

南京国微电子有限公司

RS422 通讯接口芯片

WS3079 with SRL = VCC (500Kbps) 开关特性

(VCC = +5V ± 5%, 环境温度为 +25°C.)

参数	符号	条件	最小	典型	最大	单位
驱动器输入输出延时	tDPLH	图 3 和 5, RDIFF=54 欧姆,	250	720	1000	纳秒
验 奶	tDPHL	CL=54pF	250	720	1000	\$1317
驱动器输入输出延时之差	tDSKEW	图 3 和 5, RDIFF=54 欧姆, CL1=CL2=100pF		-3	±100	纳秒
驱动器上升、下降时间	tDR, tDF	图 3 和 5,RDIFF=54 欧姆, CL1=CL2=100pF	400	700	1200	纳秒
最大速率	fMAX			500		kbps
驱动器使能到输出为高电平	tDZH	图 4 和 6, CL=100pF, S2 关断			2500	纳秒
驱动器使能到输出为低电平	tDZL	图 4 和 6, CL=100pF, S1 关断			2500	纳秒
驱动器从输出低到关断时间	tDLZ	图 4 和 6, CL=15pF, S1 关断			500	纳秒
驱动器从输出高到关断时间	tDHZ	图 4 和 6, CL=15pF,S2 关断			500	纳秒
接收器输入输出延时	tRPLH	图7和9; VID ≥2.0V; VID上		125	0.50	纳秒
	tRPHL	PHL 升下降时间小于15纳秒			250	
tRPLH - tRPHL 接收器 输入输出延时之差	tRSKD	图7和9; VID ≥2.0V; VID上 升下降时间小于15纳秒		10	±50	纳秒
接收器使能到输出低	tRZL	图 2 和 8, CL= 100pF, S1 关断		20	120	纳秒
接收器使能到输出高	tRZH	图 2 和 8, CL=100pF, S2 关断		20	120	纳秒
接收器从输出高到关断	tRZL	图 2 和 8, CL=100pF, S1 关断		20	120	纳秒
接收器从输出低到关断	tRHZ	图 2 和 8, CL=100pF, S2 关断		20	120	纳秒
芯片关断时间	tSHDN	(注 3)	50	200	600	纳秒
从芯片关断到驱动器使能, 到输出为高电平	tDZH(SH DN)	图 4 和 6, CL=15pF, S2 关断			4500	纳秒
从芯片关断到驱动器使能, 到输出为低电平	tDZL(SH DN)	图 4 和 6, CL=15pF, S1 关断			4500	纳秒
从芯片关断到接收器使能, 到输出为高电平	tRZH(SH DN)	图 2 和 8, CL=100pF, S2 关断			3500	纳秒
从芯片关断到接收器使能, 到输出为低电平	tRZL(SH DN)	图 2 和 8, CL=100pF, S1 关断			3500	纳秒

注 3: 当 RE =1, DE=0 时, WS3085 进入关断状态。如果这个状态维持时间小于 50 纳秒,则芯片不会进入关断状态。如果这个状态维持时间超过 600 纳秒,芯片确保进入关断状态。

WS3079 with SRL = GND (16Mbps) 开关特性

(VCC = +5V ± 5%, 环境温度为 +25°C.)

参数符号		条件	最小	典型	最大	单位	
驱动器输入输出延时		tDPLH	图 3 和 5, RDIFF=54 欧姆,		10	100	如手小
		tDPHL	CL=54pF		10	100	纳秒
驱动器输入输出致	延时之差	tDSKEW	图 3 和 5, RDIFF=54 欧姆, CL1=CL2=100pF		-3	±20	纳秒
驱动器上升、下	降时间	tDR, tDF	图 3 和 5, R _{DIFF} =54 欧姆,	·	20	50	纳秒

China·Nanjing City ·No.166 Middle Zhengfang Road Tel: +86-25-68005828 Fax: +86-25-68005835

4

Email: support@njgwdz.net

南京国徽电子有限公司 RS422 通证

		CL1=CL2=100pF				
最大速率	fMAX			10		Mbps
驱动器使能到输出为高电平	tDZH	图 4 和 6, CL=100pF, S2 关断		30	200	纳秒
驱动器使能到输出为低电平	tDZL	图 4 和 6, CL=100pF, S1 关断		30	200	纳秒
驱动器从输出低到关断时间	tDLZ	图 4 和 6, CL=15pF,S1 关断		30	200	纳秒
驱动器从输出高到关断时间	tDHZ	图 4 和 6, CL=15pF, S2 关断		30	200	纳秒
接收器输入输出延时	tRPLH	图7和9; VID ≥2.0V; VID上		120	200	纳秒
按収益制八制山延門	tRPHL	升下降时间小于15纳秒		120	200	41.0
tRPLH - tRPHL 接收器 输入输出延时之差	tRSKD	图7和9; VID ≥2.0V; VID上 升下降时间小于15纳秒		10	±30	纳秒
接收器使能到输出低	tRZL	图 2 和 8, CL= 100pF, S1 关断		20	50	纳秒
接收器使能到输出高	tRZH	图 2 和 8, CL=100pF, S2 关断		20	50	纳秒
接收器从输出高到关断	tRZL	图 2 和 8, CL=100pF,S1 关断		20	50	纳秒
接收器从输出低到关断	tRHZ	图 2 和 8, CL=100pF, S2 关断		20	50	纳秒
芯片关断时间	tSHDN	(注 4)		200	600	纳秒
从芯片关断到驱动器使能, 到输出为高电平	tDZH(SH DN)	图 4 和 6, CL=15pF, S2 关断			5500	纳秒
从芯片关断到驱动器使能, 到输出为低电平	tDZL(SH DN)	图 4 和 6, CL=15pF, S1 关断			5500	纳秒
从芯片关断到接收器使能, 到输出为高电平	tRZH(SH DN)	图 2 和 8, CL=100pF, S2 关断		3000	4000	纳秒
从芯片关断到接收器使能, 到输出为低电平	tRZL(SH DN)	图 2 和 8, CL=100pF, S1 关断		3000	4000	纳秒

注 4: 当 RE =1, DE=0 时, WS3079 进入关断状态。如果这个状态维持时间小于 50 纳秒,则芯片不会进入关断状态。如果这个状态维持时间超过 600 纳秒,芯片确保进入关断状态。

测试电路图

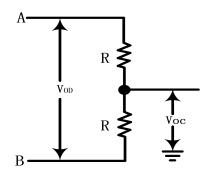


图 1 驱动器直流特性测试负载

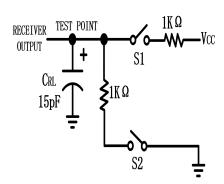


图 2 接收器使能/关断 开关特性测试负载

南京国微电子有限公司

RS422 通讯接口芯片

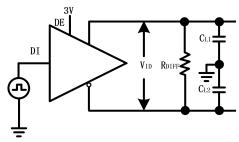


图 3 驱动器开关特性测试电路

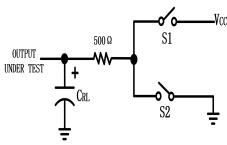


图 4 驱动器使能/关断 开关特性测试负载

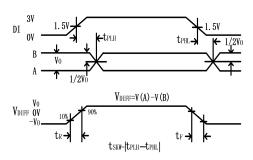


图 5 驱动器传输延时

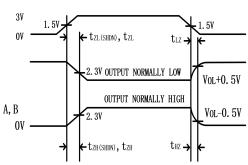


图 6 驱动器使能/关断时序

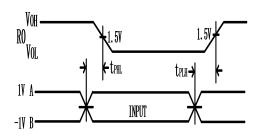


图 7 接收器传输延时

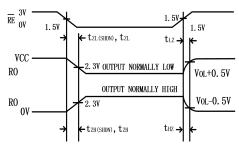
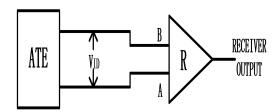
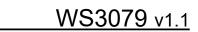
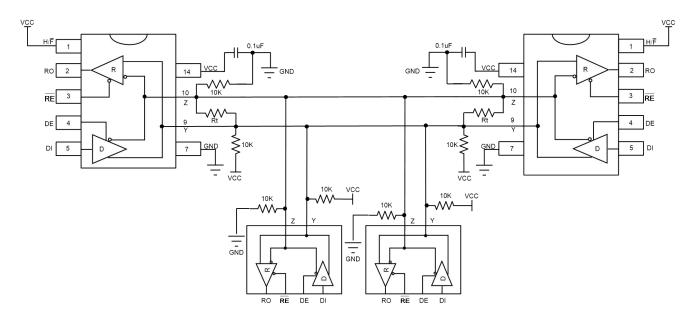
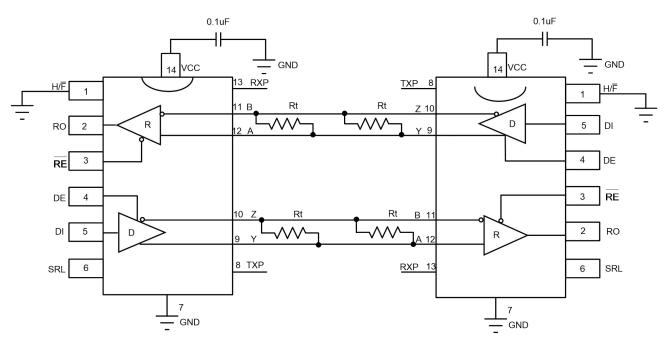


图 8 接收器使能/关断时序


图 9 接收器传输延时测试电路


RS422 通讯接口芯片

WS3079 外围参考电路:

Rt 为特征匹配阻抗,典型值为 120Ω

图 10 WS3079 半双工典型工作电路

Rt 为特征匹配阻抗,典型值为 120Ω

图 11 WS3079 全双工典型工作电路

表 3: WS3079 引脚定义

工作	模式		
FULL	HALF	名称	功能
1	1	H/F	半双工/全双工选择引脚。将 $H\overline{F}$ 接到 VCC 为半双工模式,将 $H\overline{F}$ 接 GND 或不接为全双工模式
2	2	RO	接收器输出,接收器使能时,极性判断完成后,若 V(A)-V(B)>-50mV, RO 输出高电平; 若 V(A)-V(B)<-200mV, RO 输出低电平。其中 A 与 B 为极性判断完成后芯片的同相和 反相端。
3	3	\overline{RE}	接收器输出使能, \overline{RE} 接低电平时 RO 输出有效; \overline{RE} 接高电平时,接收器关断。 \overline{RE} 为高电平,DE 为低电平,整个芯片处于关断状态。
4	4	DE	驱动器输出使能, DE 置为高电平时,驱动器使能; DE 置为低电平时,驱动器关断,驱动器输出为高阻态。 \overline{RE} 为高电平, DE 为低电平,整个芯片处于关断状态。
5	5	DI	驱动器输入, DI 为低电平时强制同相输出为低电平, 反相输出为高电平; DI 为高电平时强制同相输出为高电平, 反相输出为低电平。
6	6	SRL	压摆率限制选择引脚。SRL接 GND 通讯速率为 16Mbps, SRL接 VCC 通讯速率为 500Kbps, SRL 悬空通讯速率为 250Kbps
7	7	GND	地
8	8	TXP	驱动器相位控制脚。TXP接GND或者不接时驱动器输出为正常的相位极性;TXP接VCC时驱动器输出相位反向;
9	_	Y	驱动器同向输出端
-	9	Y	驱动器同向输出端以及接收器同向输入端*
10	-	Z	驱动器反向输出端
-	10	Z	驱动器反向输出端以及接收器反向输入端*
11	-	В	接收器反向输入端。
-	11	В	接收器输入阻抗*
12	-	A	接收器同向输入端。
-	12	A	接收器输入阻抗*
13	13	RXP	接收器相位控制脚。RXP接GND或者不接时接收器输入端为正常的相位极性;RXP接VCC时接收器输入端相位反向;
14	14	V_{cc}	正电源,采用一只 0.1 µF 电容旁路 V _{CC} 至 GND

*WS3079 只有在半双工模式下,驱动器的输出可以当做接收器的输入,在全双工模式下接收器的输入(A和B)仍然 有 1/8 单位负载, 但是不会与接收器相连接。

Tel: +86-25-68005828 Fax: +86-25-68005835 Email: support@njgwdz.net

表4: WS3079真值表

X4. 1155077 5X			驱动器			
		输入			输出	
TXP	RE	DE		DI	Z	Y
0	Х	1		1	0	1
0	Х	1		0	1	0
1	Х	1		1	1	0
1	Х	1		0	0	1
Х	0	0		Х	High-Z	High-Z
Х	1	0		Х	关断	
			接收器			
		输	·入			输出
H/F	RXP	RE	DE	A, B	Y, Z	RO
0	0	0	Х	> -50mV	X	1
0	0	0	Х	< -200mV	X	0
0	1	0	Х	> -50mV	Х	0
0	1	0	Х	< -200mV	Х	1
1	0	0	0	X	> -50mV	1
1	0	0	0	X	< -200mV	0
1	1	0	0	X	> -50mV	0
1	1	0	0	Х	< -200mV	1
0	0	0	Х	Open/shorted	Х	1
1	0	0	0	Х	Open/shorted	1
0	1	0	Х	Open/shorted	Х	0
1	1	0	0	X	Open/shorted	0
Х	Х	1	1	X	Х	High-Z
Х	Х	1	0	Х	Х	关断

X=无所谓; 关机模式、驱动器和接收器输出均为高阻抗。

Tel: +86-25-68005828 Fax: +86-25-68005835 9 Email: support@njgwdz.net

RS422 通讯接口芯片

表 5: WS3079 最大工作条件范围(注 1)

特性	符号	最小限定值	典型值	最大限定值	单位
最大工作电压	V_{CC}			7	V
逻辑脚电压	DE, RE, DI, RO	-0.3		7	V
	SRL, TXP, RXP, H/\overline{F}				
总线脚电压	A, B, Y, Z	-8		13	$^{\circ}\mathbb{C}$
存储温度	T_{STG}	-65		+150	$^{\circ}\!\mathbb{C}$
最高结温	T _J			+150	$^{\circ}\mathbb{C}$
ESD-HBM	ESD-HBM	2000			V

注1: 工作条件超过以上任何一个限制都可能导致器件的永久性损坏。

表 6: WS3079 推荐工作条件范围 (注 2)

特性	符号	最小限定值	典型值	最大限定值	单位
推荐工作电压	$V_{ m DD}$	3	3.3/5	5.25	V
工作温度	T _A	-40		+125	$^{\circ}\mathbb{C}$

注 2: 超出推荐工作温度范围下工作可能会导致器件的性能恶化。

警告:该产品为静电敏感器件,在贮存、运输、使用过程中需全程采取防静电措施。

ESD sensitive 注意: WS3079 产 品在拿取、装架以 及测试过程中必 须防静电!

RS422 通讯接口芯片

总线负载 256 个收发器

标准 RS-485 接收器的输入阻抗为 12KΩ(1 个单位负载),标准驱动器可最多驱动 32 个单位负载。WS3079 具有 1/8 单位负载的输入阻抗(96KΩ),允许最多 256 个收发器挂接在同一总线上。这些器件可任意组合,或者与其他 RS485 收发器组合使用,只要总负载不超过 32 个单位负载即可挂接在同一总线。

低功耗关断模式

雇 为高电平, DE 为低电平, 芯片进入低功耗关断模式。关断电流典型值为 120 微安。 雇 和 DE 可以同时驱动;如果 雇 为高电平, DE 为低电平保持时间小于 50 纳秒,芯片不会进入关断模式;如果保持时间超过 600 纳秒,芯片会确保进入关断模式。

接收器输入滤波

当工作在 250Kbps 或 500Kbps 条件下时, WS3079 接收器的输入滤波不仅仅是体现在输入迟滞量上,滤波器通过非常慢的上升下降时间增强了差分信号的抗噪性,由于滤波器的原因接收器的传输延时增加了 25%。

可编程性

WS3079 有以下几种编程模式。驱动器的上升下降时间可以编程,可以有下面三种最大传输速率 250Kbps,500Kbps,16Mbps;通过将 SRL 管脚接到三种不同的电平下 (VCC,GND,NC)来获取想要的通讯速率。将 SRL 引脚接成高阻状态或者不接时可以进入 250Kbps 工作模式;将 SRL 接 VCC 可以进入 500Kbps 工作模式;将 SRL 接 GND 可以进入 16Mbps 工作模式;

有时,在正常工作模式下双绞线会接反,WS3079有两个引脚可以用来反转驱动器和接收器的相位,能够方便纠正此问题。对于正常工作模式下将TXP和RXP接GND或不接;为了使相位反向需要将TXP和RXP接高或者VCC。

WS3079 可以工作在全/半双工模式下,将 H/F 管脚设置为低或者不接可以使能全双工模式,将 H/F 管脚设置为高或者接 VCC 可以使能半双工模式

驱动器输出保护

两种机理实现过大电流和功耗过大保护。一个是过流保护电路,当正常驱动总线时,由于总线异常导致芯片电流过大时,芯片内部的过流保护电路起作用,来保证驱动电流不会超过一定条件下的设定值。另一个是过温保护,当芯片功耗太大,温度上升时,过温保护电路保证芯片不会损坏。如果芯片进入过温保护状态,驱动器输出为高阻态。

典型应用

WS3079 应用于双向数据通信的多点网络。图 10 给出了典型的应用网络。为了降低反射,应当在传输线的两端以其特性阻抗进行终端匹配,主干线以外的分支线路的长度应尽可能短。

静电保护

WS3079 的所有管脚均具有静电泄放保护电路来防止人手触摸或者装配时的 ESD 事件 对芯片造成损坏。驱动器的输出和接收器的输入管脚采用增强的 ESD 保护电路,这些管脚

China·Nanjing City ·No.166 Middle Zhengfang Road Tel: +86-25-68005828 Fax: +86-25-68005835 Email: support@njgwdz.net

RS422 通讯接口芯片

可以抵抗±15kV 的人体模式 ESD 冲击而不会损坏。所有 ESD 保护电路在正常工作时均处于 关断状态,并不消耗电流。ESD 事件后,WS3079 可以保证正常工作,而不会出现闩锁或损坏情况。

ESD 保护性能测试方法有很多种。驱动器的输出和接收器的输入采用如下 ESD 测试方法来衡量 ESD 性能: 1) ±15kV 人体模型 2) ±12kV IEC61000-4-2 接触放电。

封装尺寸

SOP14 Package Dimension

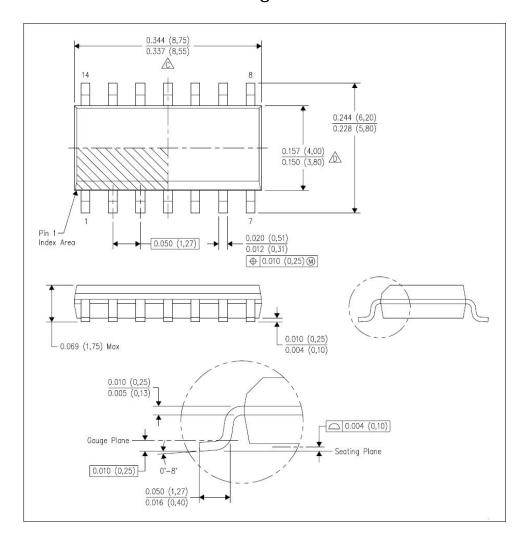


图 12 器件封装信息

包装信息

器件型号	封装形式	卷带 数量	卷带尺寸	MSL	是否贴湿 敏标签	烘烤时 间/小时	烘烤温度
WS3079EESA	SOP14	4000	13 英寸	3	贴	6	125

南京国微电子有限公司

RS422 通讯接口芯片

版本信息

版本	日期	信息描述	拟制	审核	会签	批准
v1. 0	2020. 03	最初版本	黄德文	郭玮	徐慧/许悦	朱波
V1. 1	2021. 11	修改模板	黄德文	郭玮	徐慧/许悦	朱波