

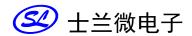
±2G/±4G/±8G/±16G三轴微机械数字加速度计

描述

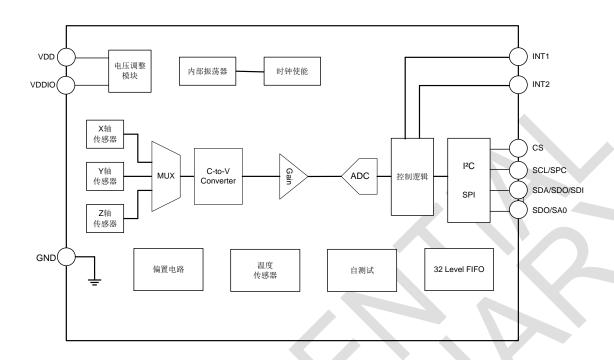
SC7A20E 是一款高精度数字三轴加速度传感器芯片,内置功能更丰富,功耗更低,体积更小,测量更精确。

芯片通过 I²C/SPI 接口与 MCU 通信,加速度测量数据以中断方式或查询方式获取。INT1 和 INT2 中断管脚提供多种内部自动检测的中断信号,适应多种运动检测场合,中断源包括数据就位中断信号、FIFO 数据 WTM 和OVERRUN 中断信号、6D 方向检测中断信号、自由落体检测中断信号、单击和多击检测中断信号。±2G、±4G、±8G 和±16G 四种可调整的全量程测量范围,灵活测量外部加速度,输出数据率 1.5HZ 到 400Hz 间可选。

主要特点


- ◆ 宽电压范围 1.71V-3.6V
- ◆ 1.8V 兼容数字 IO □
- ◆ Power Down 模式电流低至 100nA
- ◆ 支持±2G/±4G/±8G/±16G 量程
- ◆ I²C/SPI 数字输出接口
- ◆ 6D 方向及运动检测
- 自由落体检测
- 单击、多击检测及运动检测
- ◆ 可编程中断生成电路
- ◆ 内嵌 32 组 FIFO(支持单地址读取)
- ◆ 10000g 高 G 抗击能力

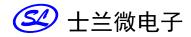
应用


- 手机平板设备
- ◆ 智能穿戴设备
- ◆ 活动检测设备
- ◆ 角度检测设备
- 图像旋转场景
- ◆ 敲击检测场景
- 运动激活用户接口
- ◆ 游戏

产品规格分类

产品名称	封装形式	打印名称	环保等级	包装方式
SC7A20ETR	LGA-12-2x2x1.0	6	无卤	编带

内部框图


极限参数

参数	符号	测试条件	最小值	最大值	单位
电源电压 1	Vcc	电路不损坏	-0.3	3.6	V
电源电压 2	V _P	电路不损坏	-0.3	3.6	V
任一控制管脚	V _{in}	电路不损坏 (CS/SDO/SCL/SDA/INT1/INT2)	-0.3	VDDIO+0.3	V
工作温度	T _{OPR}	电路不损坏	-40	+85	°C
贮存温度	T _{STG}	电路不损坏	-55	+150	°C

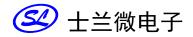
机械参数(V_{DD}=2.5V, T_A=25°C)

参数	符号	测试条件	最小值	典型值	最大值	单位
	F _{S0}	FS=0		±2.0		
人具和测量费用	F _{S1}	FS=1		±4.0		~
全量程测量范围	F _{S2}	FS=2		±8.0		g
	F _{S3}	FS=3		±16.0		
	So0	FS=0 (HR mode)		16		
灵敏度	So1	FS=1 (HR mode)		32		mg/digit
灭蚁及	So2	FS=2 (HR mode)		64		mg/uigit
	So3	FS=3 (HR mode)		128		
温变灵敏度	T _{CSO}	FS=0		±0.01		%/°C

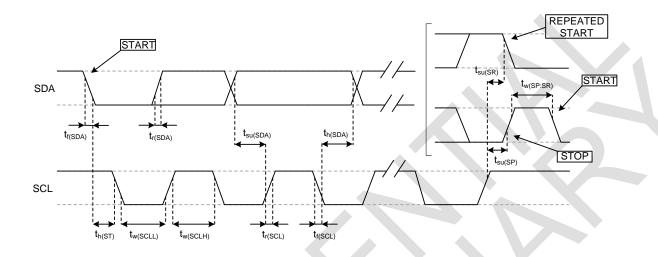
版本号: 0.3 共29页 第2页

参数	符号	测试条件	最小值	典型值	最大值	单位
零漂	Ty _{Off0}	FS=0		±80	±200	mg
温漂	TC _{Off}	与 25℃ 的最大偏差		±0.5		mg/°C
系统带宽	BW			ODR/2		HZ
工作温度	T _{OPR}		-40		+85	°C

注意: 电路 2.5V 出厂校准。电路实际工作电压 1.71V-3.6V


电气参数(V_{DD}=2.5V, T_A=25°C)

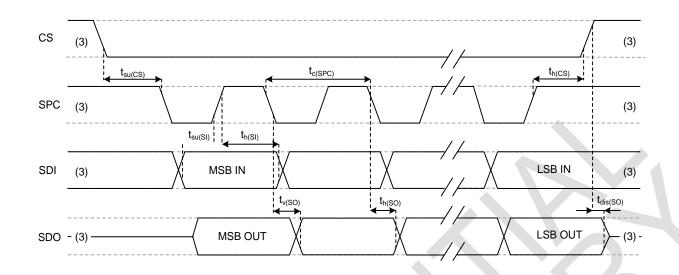
参数	符号	测试条件	最小值	典型值	最大值	单位
供电电压	V_{DD}		1.71	2.5	3.6	V
IO 供电电压	V_{DDIO}		1.71		V _{DD} +0.1	V
高性能电流	I _{DD}	T _A =25°C, ODR=100HZ		190		μA
低功耗电流	I _{DDLP}	T _A =25°C, ODR=100HZ		11.5		μA
掉电电流	I _{DDPdn}	T _A =25°C		0.1		μA
数字高电平输入电压	V_{IH}		0.8*V _{DDIO}			V
数字低电平输入电压	V _{IL}				0.2*V _{DDIO}	V
高电平输出电压	V _{OH}		0.9*V _{DDIO}			V
低电平输出电压	V _{OL}				0.1*V _{DDIO}	V
	ODR0	ODR=1.5HZ		1.5		
	ODR1	ODR=12.5HZ		12.5		
	ODR2	ODR=25HZ		25		
输出数据率	ODR3	ODR=50HZ		50		HZ
	ODR4	ODR=100HZ		100		
	ODR5	ODR=200HZ	-	200		
	ODR6	ODR=400HZ		400		_
开启时间	Ton	ODR=100HZ		1		ms
工作温度	Topr		-40		+85	°C


I²C 控制接口参数(V_{DD}=2.5V, T_A=25°C)

参数	符号	I ² C 标》	上 注模式	I²C 快道	束模式	单位
少 奴	10.2	MIN	MAX	MIN	MAX	4位
SCL 时钟频率	F _(SCL)	0	100	0	400	KHz
SCL 时钟低时间	t _{w(SCLL)}	4.7		1.3		
SCL 时钟高时间	tw(SCLH)	4.0		0.6		μs
SDA 建立时间	t _{su(SDA)}	250		100		ns
SDA 数据保持时间	t _{h(SDA)}	0.01	3.45	0.01	0.9	μs
SDA/SCL 上升沿时间	$t_{r(SDA)}/t_{r(SCL)}$		1000	20+0.1Cb	300	ns
SDA/SCL 下降沿时间	$t_{f(SDA)}/t_{f(SCL)}$	-	300	20+0.1Cb	300	ns
START 条件保持时间	t _{h(ST)}	4	1	0.6		
重复 START 条件建立时	$t_{su(SR)}$	4.7		0.6		μs

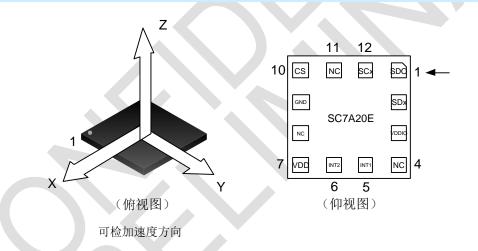
版本号: 0.3 共29页 第3页

参数	符号	I²C 标》		I²C 快道	束模式	单位
	10.2	MIN	MAX	MIN	MAX	+ 17
间						
STOP 条件建立时间	t _{su(SP)}	4		0.6		
总线空闲时间	t _{w(SP: SR)}	4.7		1.3		

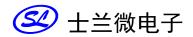


I²C 从设备时序图

SPI 串行外围接口参数(V_{DD}=2.5V, T_A=25°C)


参数	符号	测试条件	最小值	典型值	最大值	单位
SPI 时钟周期 ^注	T _{c(SPC)}		100			ns
SPI 时钟频率	F _{c(SPC)}		-		10	MHz
CS 建立时间	$T_{su(CS)}$		5			
CS 保持时间	T _{h(CS)}		8	-	-	
SDI 输入建立时间	$T_{su(SI)}$		5			
SDI 输入保持时间	T _{h(SI)}		15			ns
SDO 有效输出时间	T _{v(SO)}				50	
SDO 输出保持时间	T _{h(SO)}		6	-		
SDO 输出无效时间	T _{dis(SO)}				50	

注: 10MHZ 时钟速率


SPI 从设备时序图

管脚排列图

管脚描述

管脚	符号	I/O	描述		连接模式		
编号	10.2	1/0	畑火	I²C模式	SPI四线模式	SPI三线模式	
1	SDO	0	SPI模式下串行数据输出	I2C Slave Device	SDO	NC	
1	300		I ² C模式下地址选择	Address Select	300	INC	
			I ² C模式下作SDA				
2	SDx	I/O	SPI四线模式下作SDI	SDA	SDI	SDA	
		SPI三线模式下作SDA					
3	VDDIO	S	数字电源电压(I/O)	VDDIO	VDDIO	VDDIO	

管脚	符号	I/O	描述		连接模式	
编号	10.2	1/0	畑匹	I²C模式	SPI四线模式	SPI三线模式
4	NC			GND	GND	GND
5	INT1	0	用户编程中断脚1,推挽输出	INT1	INT1	INT1
6	INT2	0	用户编程中断脚2,推挽输出	INT2	INT2	INT2
7	VDD	S	模拟电源电压	VDD	VDD	VDD
8	NC	1		NC	NC	NC
9	GND	S	0V供电(Ground)	GND	GND	GND
10	CS	1	I ² C/SPI模式选择,高电平为I ² C模式,低电平为SPI模式	NC	CS	CS
11	NC			NC	NC	NC
12	SCx	I	I ² C模式下串行时钟SCL, SPI模式下串行时钟SPC	SCL	SPC	SPC

注: I=输入, O=输出, I/O=输入输出, S=电源供电, OC=集电极开路输出。

功能描述

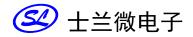
1 详细特点

SC7A20E 是一款极小体积、超低功耗、数字输出的 LGA 封装的 3 轴线性加速度计。完整的电路芯片包括一个机械传感单元和一个集成电路接口。集成电路接口,负责与机械传感单元接口,读取其传感器信息,并通过 I²C/SPI 接口提供到外部 MCU。

2 机械传感单元

机械传感单元,由悬吊的质量块和硅框架组成。框架是质量块的固定端,悬吊质量块通过锚点固定在框架上。悬吊质量块可在三维空间中自由移动。另外,在机械传感单元上做盖帽保护,防止封装注塑时对机械部分造成损伤。当传感器加速时,质量块会相对固定部分产生位移,从而引起差分电容不平衡变化。集成电路接口部分通过电荷积分电路对加在差分电容上的电压脉冲进行积分,以积分结果衡量差分电容大小,进而衡量位移量的大小,最终测量出对应的加速度值。

稳定状态下电容结构的电容值大概是 pF级,当有加速度时,电容的最大改变量是 fF级。


3 IC 接口

电路部分的完整测量链路由电容放大器和 ADC 组成。低噪声电容放大器将机械传感单元的不平衡电容转换成模拟电压,再通过 ADC 转换成数字信号。加速度值数据可通过 I²C/SPI 接口访问,特别适合与微处理器直接接口。电路本身还设计有 RDY 信号,用以表示新的测量数据已经就绪,简化数据系统中的数据同步。另外,电路还设计了"唤醒"和"自由落体"检测功能,根据用户对寄存器的配置编程加速度触发事件来生成中断信号。

4 工厂校准补偿

电路部分设计有灵敏度(So)和零漂(Ty_{Off})校准补偿功能。

校准补偿的修调值保存在电路内部的 EFUSE 中。当电路上电后,修调值被调入内部寄存器中以供正常操作补偿用。 该功能使用户无需更深层次的校准就可以使用电路。

5 6D 检测

当检测到传感器处在设定的姿态产生中断,或者进入设定的姿态产生中断。传感器在三维空间的 6 个状态均可独立 检测。详细设置见应用说明文档。

6 自由落体检测

当检测到传感器处在自由落体状态产生中断。自由落体时,传感器质量块处于失重状态,三轴理论输出为零,传感器内置检测模块检测大三轴输出小于设定阈值则驱动中断信号产生和相应状态寄存器置位。

7 睡眠和唤醒检测(静止/运动检测)

睡眠检测(低 ODR 低功耗工作模式),传感器内置模块对输出值进行检测,当传感器输出值在某段时间内均无变化 且输出值在设置阈值范围内,则判定传感器无动作,即置位相应状态信号和产生相应中断信号,通知 MCU 设置系统和 传感器进入更低功耗的工作状态(MCU 配置实现)。

唤醒检测(正常 ODR 正常工作模式),传感器内置模块对输出值进行检测,当传感器输出值超过设定阈值且达到设置时间范围,则判定传感器有动作,即置位相应状态信号和产生相应中断信号,通知 MCU 设置系统和传感器进入正常工作状态(MCU 配置实现)。

8 单击和多击检测

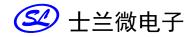
传感器根据指定特定轴进行敲击检测,可以设置敲击检测的最大次数,兼容普通的单击和双击功能;在敲击信号波 形各参数敲击条件时,会置位相应状态信号和产生相应中断信号。具体敲击条件参数设置见下文寄存器说明。

9 特定词汇说明

9.1 灵敏度

灵敏度是描述传感器增益的物理量,在此可用±1G 加速度输入时能准确解析的一半最大数字输出表示。实际测试中,通过重力加速度来测量。将电路需要测量的轴正对地心,记录电路的输出值 A1,再在这个轴线的任意平面上旋转 180°,将该轴的另一端对准地心,记录电路的输出值 A2。再计算 A2-A1 的绝对值,绝对值除以 2 的结果就是该轴的灵敏度,该值随温度和时间的变化量很小。另外一个参数"灵敏度容差",描述了大批量电路的灵敏度范围,是衡量电路一致性的参数。

9.2 零漂


零漂(Tyoff)描述的是,0 加速度输入时,实际输出与理想输出的偏移程度。电路在稳定状态下,放置到水平面上时,其 X 和 Y 轴的实际加速度是零,Z 轴是 1G。理想状态下,XY 轴输出应该处在输出量程的中心位置(以二进制补码表示的 0),但实际会有很小的偏移。这种实际输出与理想输出偏移就称为"零漂"。"零漂"在某一范围内是电路上机械部分应力的结果,因此当电路焊装到 PCB 板上或者处在某个外部压力环境下时,"零漂"会有少量的改变。"零漂"随着温度偏移称为"温漂"。

10 工作模式

SC7A20E电路有两种工作模式: 高性能模式、低功耗工作模式。

在对传感器噪声和灵敏度要求更高的场景,推荐使用高性能模式,该模式下数据有效位数可达8位(±2g); 在对传感器功耗要求更高的场景,推荐使用低功耗模式,可有效的降低传感器使用功耗;

在应用过程中,也可进行工作模式之间的切换,保证性能的同时也可以降低使用功耗;50Hz模式配置如下:

高性能模式	低功耗模式
0x1F=0x00 0x20=0x47	0x1F=0x08

11 数字接口

SC7A20E电路内部寄存器可通过I²C或者SPI接口访问。SPI接口还可以通过软件设置成3线或者4线模式下工作。SPI的3线模式可以先在4线写模式(写入仅需3线)下写入对应控制位配置成3线后,即可在3线下正常通信。这些接口通信管脚复用。如果需要使用I²C接口,则CS信号必须被拉高(内部已有上拉电阻连接到VDDIO)。

通信接口管脚描述

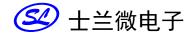
管脚名	管脚描述			
CS	SPI 使能			
CS	I ² C/SPI 模式选择(1: I ² C 模式; 0: SPI 使能)			
SCL/SPC	I ² C 串行时钟(SCL)SPI 串行时钟(SPC)			
SDA/SDI/SDO	I ² C 串行数据(SDA)SPI 串行数据输入(SDI)3 线接口串行数据输出(SDO)			
SDO	SPI 串行数据输出(SDO)			

11.1 I2C 串行接口

本电路的 I²C 总线接口是从设备。可以通过 I²C 接口写入数据到寄存器,也可从寄存器读出数据。相关的 I²C 名词说明如下表。

串行接口管脚描述

名词	描述
发射端	发送数据到总线
接收端	从总线接收数据
主机	发起传输,生成时钟信号,终止传输
从设备	由主设备寻址访问


I²C 总线相关的两根信号线: 串行时钟线和串行数据线。串行数据线是双向通信管脚,可由主机发送数据到从设备,也可由从设备发送到主机。两根信号线都通过上拉电阻连接的 VDDIO 端。当总线空闲时,两根数据线都为高。I²C 接口 遵循快速模式(400KHZ)I²C 标准。

11.1.1 I²C 操作

总线的传输通过一个 START 信号开始。START 条件定义为: SCL 高期间,SDA 上有一个高到低的变化。之后,总线会被认为进入占用状态。接下来的一个字节数据的高 7 位表示主机需要通信的寻址位,第 8 位表示接下来的数据传输是主机到从设备,还是由从设备到主机。当地址被发送出去后,每个连接到该总线上的电路会比较这个地址是不是自己的地址。如果地址配对成功,则返回 ACK 到主机。ACK 是在第 9 个 CLK 上的一个低电平。

SC7A20E 的从设备地址是 001100xb (具体地址可根据用户需求配置)。数据传输需要 ACK 信号返回方可有效。发送端在第 9 个 CLK 上必须释放总线,接收端在第 9 个 CLK 上拉低总线,完成一个 ACK 返回。接收端必须在接收到每个字节后返回 ACK。SC7A20E 的 I²C 接口是从设备接口,而且遵循近似的标准 I²C 协议(稍有不同)。START 信号之后,主机的从设备地址发送出去。当从设备的 ACK 返回后,一个 8 位的子地址被发送出去,其低 7 位表示的是实际的寄存器地址,最高位表示的是是否地址自增。如果最高位为"1",则之后的寄存器地址自增,可允许多数据读写。

从地址加上读写控制位构成一个完整的从设备地址。如果读写控制位为"1(读)",从设备地址和子寄存器地址发送成功,则需要发送一个"重复 START"信号。如果读写控制位为"0(写)",则下一个字节的传输方向不变。

I²C 地址

SDO外围连接	7位I2C从机地址	8位I2C从机地址	备注
悬空/接逻辑高	0x19	0x32 (W)、0x33 (R)	推荐
接逻辑低	0x18	0x30 (W), 0x31 (R)	需关闭 SDO 内部上拉电阻

备注: SCL (PIN12) /SDA (PIN2) /SDO (PIN1),三个引脚默认内置有上拉电阻,上拉电阻阻值范围: 50k~60K。上拉电阻电压为 VDDIO。若 SDO 外接逻辑低电平,需要通过 I2C 总线通讯关闭 SDO 内部上拉电阻。若能确保 SC7A20E 外围有上拉电阻,也可通过 I2C 总线通讯方式关闭 SCL、SDA 的芯片内部上拉电阻。

主机写一个字节到从设备

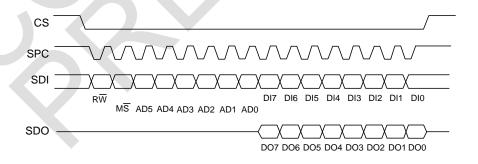
Master	ST	SAD+W		SUB		DATA		SP
Slave			SAK		SAK		SAK	

主机写多字节到从设备

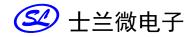
Master	ST	SAD+W		SUB		DATA		DATA		SP
Slave			SAK		SAK		SAK		SAK	

主机从从设备读取一个字节

Master	ST	SAD+W		SUB	1	SR	SAD+R		I	NMAK	SP
Slave			SAK		SAK			SAK	DATA		


主机从从设备读取多个字节

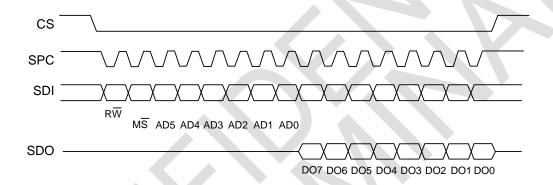
Master	ST	SAD+W	1	SUB	-	SR	SAD+R			MAK		MAK		NMAK	SP
Slave	-		SAK		SAK			SAK	DATA		DATA	į	DATA		


数据以字节的形式在总线上传输,每个数据传输包含 8 个位。每一次传输的次数不限制。数据传输时,最高位先发送。如果接收端正在处理其他事物,不能完整接收数据,则拉低 SCL 线迫使发送端进入等待状态。只有等到接收端不再繁忙,且释放 SCL 总线后,方可继续传输。如果从设备接收端因为实时事务不能应答从设备地址,SDA 线也不能被占用,主机会自行终止传输。SCL 为高状态时,SDA 总线上的一个低到高的跳变,定义为一个 STOP 条件。每个数据传输需要有 STOP 条件来终止。为了能更快传输数据,可使用批量读取或批量写入来加快,传感器默认读写地址自增。例如:读取三轴数据(寄存器地址 0x28~0x2D),连续读取寄存器数据的地址为 0x28。

11.2 SPI 总线接口

本电路的SPI总线接口是从设备。可以通过SPI接口写入数据到寄存器,也可从寄存器读出数据。相关的四个总线信号是: CS、SPC、SDI和SDO。

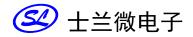
SPI读写时序

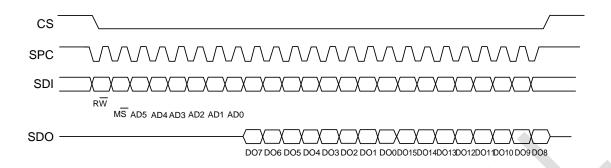


CS是SPI的使能信号,由SPI主机控制,在SPI传输开始前变低,在SPI传输结束后变高。SPC是SPI接口的串行时钟信号,由SPI主机控制。在CS为高期间为高(无传输)。SDI和SDO是串行数据输入和输出,在SPC的下降沿驱动,SPC的上升沿读取。单字节读写以16个时钟完成,如果是多字节读写,则是8的倍数个时钟完成。第一个位(bit0)在SPC的第一个下降沿上开始发送。SPC的第一个下降沿在CS的下降沿后开始。最后一个位(bit15或者bit23,…)在最后一个SPC的下降沿开始发送,但SPC的上升沿必须在CS的上升沿前完成。

- ▶ Bit0: RW位。0: DI (7: 0) 是写入到电路数据。1: DO (7: 0) 是从电路读出数据。如果是读,则电路会在bit8 开始驱动SDO。
- ▶ Bit1: MS位。为0, 地址将不会自增。为1, 地址会自动自增, 方便多字节访问。
- ▶ Bit2-7: 地址AD(5: 0)是寄存器地址。
- ▶ Bit8-15:数据DI(7:0)(写模式),写入到从设备的数据(MSB先发送)。
- ▶ Bit8-15:数据DO(7:0)(读模式),由从设备读取出来的数据(MSB先发送)。

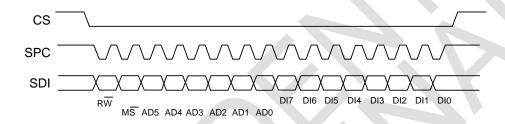
在多字节读写命令中,更多的8时钟周期被加上。如果MS位为0,每次访问的都是同一个地址。如果MS位为1,则地址自动在下一次访问增加1。SDI和SDO的功能和行为不变。


11.2.1 SPI 读

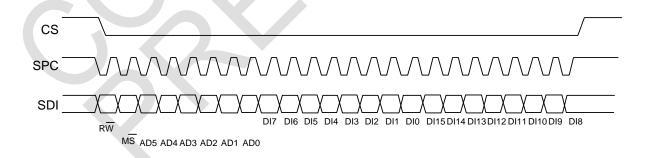


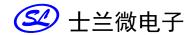
SPI读协议

SPI读命令以16个时钟完成。多字节的读会增加更多的8时钟模块。


- ▶ Bit0: 读写控制位,为1。
- ▶ Bit1: MS位。为0,地址将不会自增。为1,地址会自动自增,方便多字节访问。
- ▶ Bit2-7: 地址AD (5: 0) 是寄存器地址。
- ▶ Bit8-15:数据DO(7:0)(读模式),由从设备读取出来的数据(MSB先发送)。
- ▶ Bit16-...: 数据DO(...: 8) (读模式), 更多的数据(MSB先发送)。

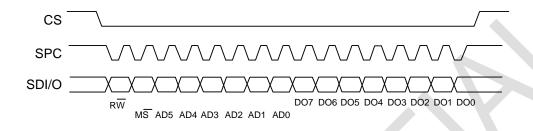
SPI多字节读协议(2字节为例)


11.2.2 SPI 写


SPI写协议

SPI单字节写命令以16个时钟完成。多字节的读会增加更多的8时钟模块。

- ▶ Bit0: 读写控制位,为0。
- ▶ Bit1: MS位。为0,地址将不会自增。为1,地址会自动自增,方便多字节访问。
- ▶ Bit2-7: 地址AD(5: 0) 是寄存器地址。
- ▶ Bit8-15:数据DI(7:0)(写模式),向从设备写数据(MSB先发送)。
- ▶ Bit16-...: 数据DI (...: 8) (写模式),写入更多的数据(MSB先发送)。



SPI多字节写协议(2字节为例)

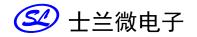
11.2.3 SPI 3 线模式读

3线通过想SIM位写入1来完成设置。4线模式写与3线模式写都只用到3个信号线,且逻辑与时序相同,所以通过4线写模式将从设备配置成3线模式,再以3线模式访问。

SPI 3线模式读协议

SPI读命令以16个时钟完成。

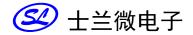
- ▶ Bit0: 读写控制位,为1。
- ▶ Bit1: MS位。为0,地址将不会自增。为1,地址会自动自增,方便多字节访问。
- ▶ Bit2-7: 地址AD(5: 0)是寄存器地址。
- ▶ Bit8-15:数据DO(7:0)(读模式),由从设备读取出来的数据(MSB先发送)。


SPI通讯可访问的地址范围为: 0x00-0x7F。其中地址最高位为读写控制位,最高位为1,表示读取该地址寄存器的数据;最高位为0,表示需要向该地址寄存器写入数据。SPI连续多字节读取和SPI单字节读取操作时序相同。

在多SPI设备复用SPC、MOSI、MISO时,请关闭I2C通讯功能,0x0E寄存器写入0x04。

12 寄存器列表

下表列出了SC7A20E所有的寄存器及地址和初值。


Name	Tuno	寄存器	居地址	Default	Comment
Name	Туре	Hex	Binary	Delauit	Comment
Reserved (do not modify)		00-0D	-		Reserved
I2C_CONFIG	rw	0E	0001110	00000000	
WHO_AM_I	r	0F	0001111	00010001	
Reserved (do not modify)		10-1E			Reserved
WORK_MODE_CONFIG	rw	1F	0011111	00001000	
CTRL_REG1	rw	20	0100000	00000111	
CTRL_REG2	rw	21	0100001	00000000	
CTRL_REG3	rw	22	0100010	00000000	
CTRL_REG4	rw	23	0100011	00000000	
CTRL_REG5	rw	24	0100100	00000000	
CTRL_REG6	rw	25	0100101	00000000	
Reserved (do not modify)		26	-		Reserved

	-	寄存器	告地址	5.6.11	
Name	Туре	Hex	Binary	Default	Comment
STATUS_REG	r	27	0100111	00000000	
OUT_X (BLE=1)	r	28	0101000	output	
OUT_X (BLE=0)	r	29	0101001	output	
OUT_Y (BLE=1)	r	2A	0101010	output	
OUT_Y (BLE=0)	r	2B	0101011	output	
OUT_Z (BLE=1)	r	2C	0101100	output	
OUT_Z (BLE=0)	r	2D	0101101	output	^
FIFO_CTRL_REG	rw	2E	0101110	00000000	
FIFO_SRC_REG	r	2F	0101111	00000000	
AOI1_CTRL_REG	rw	30	0110000	00000000	4
AOI1_SRC	r	31	0110001	00000000	-
AOI1_THS	rw	32	011 0010	00000000	
AOI1_DURATION	rw	33	011 0011	00000000	
AOI2_CTRL_REG	rw	34	011 0100	00000000	
AOI2_SRC	r	35	011 0101	00000000	
AOI2_THS	rw	36	0110110	00000000	
AOI2_DURATION	rw	37	0110111	00000000	
CLICK_CFG	rw	38	0111000	00000000	
CLICK_SRC	r	39	0111001	00000000	
CLICK_COEFF1	rw	3A	0111010	00000000	
CLICK_COEFF2	rw	3B	0111011	00000000	
CLICK_COEFF3	rw	3C	0111100	00000000	
CLICK_COEFF4	rw	3D	0111101	00000000	
Reserved (do not modify)	-	3F-60			Reserved
PULLUP_CTRL_REG	rw	57	1010111	00000000	
OUT_X_New	r	61	1100001	output	
OUT_Y_New	r	62	1100010	output	
OUT_Z_New	r	63	1100011	output	
Reserved (do not modify)		64-67			Reserved
SOFT_RESET	rw	68	110 1000	00000000	
FIFO_DATA(单地址读取)	rw	69	110 1001	00000000	
Reserved (do not modify)		6A-6F			Reserved
IC_Version	r	70	1110000	00100110	
IC_Modification	r	71	1110001	xxxxxxx	
RAM_BIST	rw	72	1110010	00000000	

注:标识为"保留"的,在使用中不要更改,可能会引起永久性破坏。

在"引导启动"时加载到寄存器中的内容不要改变。这些内容包含了工厂校准补偿的信息,能掉电保存和自动加载。

13 寄存器描述

13.1 I2C 使能寄存器 (0Eh)

B7	В6	B5	B4	В3	B2	B1	В0
			Addr_Auto		I2C_UN		

	IIC 通讯地址自增控制位。默认值: 1
Addr_Auto	0: 地址不自增(通过 FIFO_DATA 连续读取数据时需要配置为地址不自增);
	1: 地址自增,连续读写时地址自增;
	I2C 通讯功能禁止位。默认值: 0
I2C_UN	0: I2C 通讯功能使能;
	1: I2C 通讯功能禁止;

13.2 WHO_AM_I (0Fh)

B7	В6	B5	B4	В3	B2	B1	В0
0	0	0	1	0	0	0	1

备注: 等同 CHIP_ID 值为 0x11, 需要配合 0x70、0x70 寄存器值判断传感器版本;

13.3 模式控制寄存器 (1Fh)

В7	B6	B5	B4	B3	B2	B1	В0
				LP	DLPF[0]	-	

LP	数据就位控制位。默认值: 1 0: 高性能模式使能; 1: 低功耗模式使能;
DLPF[0]	数字低通滤波器控制位低位。默认值: 0 请参考 23h 寄存器说明;

13.4 CTRL_REG1 (20h)

B7	B6	B5	B4	В3	B2	B1	B0
	ODR2	ODR1	ODR0		Zen	Yen	Xen

ODR[2: 0]	数据率选择。默认值: 000
Zon	Z 轴使能位。默认值: 1
Zen	0: Z 轴禁止; 1: Z 轴使能;
Yen	Y轴使能位。默认值: 1
Ten	0: Y 轴禁止; 1: Y 轴使能;
Xen	X 轴使能位。默认值: 1
\empty en	0: X 轴禁止; 1: X 轴使能;

ODR<2: 0>用来设置数据输出速率。下表通过设置 ODR<2: 0>的值来设置频率。

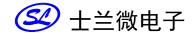
http://www.silan.com.cn

数据输出率的配置

ODR2	ODR1	ODR0	电源模式选择
0	0	0	电源关断模式(Power Down)
0	0	1	高性能模式/低功耗模式(1.5Hz)
0	1	0	高性能模式/低功耗模式(12.5Hz)
0	1	1	高性能模式/低功耗模式(25Hz)
1	0	0	高性能模式/低功耗模式(50Hz)
1	0	1	高性能模式/低功耗模式(100Hz)
1	1	0	高性能模式/低功耗模式(200Hz)
1	1	1	高性能模式/低功耗模式(400Hz)

备注: 在传感器正常工作时,关于 ODR 需要注意以下两点:

- 1) DLPF 配置打开情况下,传感器开始工作后需要 1/4/8/16 个 ODR 时钟后才能将第一个数据输出到寄存器中。
- 2) 在 ODR 较小时,设置不同的 DLPF 值会一定程度影响运动物体的加速度幅值。


13.5 CTRL_REG2 (21h)

B7	B6	B5	B4	В3	B2	B1	B0
	HDS	HPCF2	HPCF1	FDS		HPIS2	HPIS1

HDS	高通滤波模式使能位。默认值: 0
про	0: 高通滤波禁止; 1: 高通滤波使能
HPCF2-HPCF1	高通截止频率选择。默认值: 00
TIFGF2-TIFGFT	参考"高通截止频率配置表"
FDS	数据滤波选择。默认值: 0
FD3	0: 跳过内部滤波; 1: 内部滤波以后的数据输出到数据寄存器或 FIFO
HPCLICK	CLICK 功能高通滤波使能。默认值: 0
THOLICK	0: 滤波禁止; 1: 滤波使能
HPIS2	AOI2 数据高通滤波使能。默认值: 0
111 132	0: 滤波禁止; 1: 滤波使能
HPIS1	AOI1 数据高通滤波使能。默认值: 0
111/131	0: 滤波禁止; 1: 滤波使能

高通截止频率配置表:

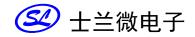
HPCF	Ft[Hz]@12.5Hz	Ft[Hz]@25Hz	Ft[Hz]@50Hz	Ft[Hz]@100Hz	Ft[Hz]@200Hz	Ft[Hz]@400Hz
00	0.8	2	4	8	16	32
01	0.32	0.8	2	4	8	16
10	0.04	0.1	0.2	0.5	1	2
11	0.02	0.05	0.1	0.2	0.5	1

13.6 CTRL_REG3 (22h)

	В7	В6	B5	B4	В3	B2	B1	В0
Ī	I1_CLICK	I1_AOI1	I1_AOI2	I1_DRDY		I1_WTM	I1_OVERRUN	

I1_CLICK	CLICK 中断在 INT1 脚上。默认值: 0
II_CLICK	0: 禁止; 1: 使能
I1_AOI1	AOI1 中断在 INT1 脚上。默认值: 0
II_AOII	0: 禁止; 1: 使能
I1_AOI2	AOI2 中断在 INT1 脚上。默认值: 0
II_AOI2	0: 禁止; 1: 使能
I1_DRDY	DRDY 中断在 INT1 脚上。默认值: 0
ו שאש וו	0: 禁止; 1: 使能
I1 WTM	FIFO WTM 中断在 INT1 脚上。默认值: 0
11_001101	0: 禁止; 1: 使能
I1_OVERRUN	FIFO 溢出中断在 INT1 脚上。默认值: 0
TI_OVERROIN	0: 禁止; 1: 使能

13.7 CTRL_REG4 (23h)


B7	B6	B5	B4	В3	B2	B1	В0
BDU	BLE	FS1	FS0	DLPF[1]			SIM

BDU	块数据更新。默认值: 0				
ВИ	0:连续更新; 1:输出数据寄存器不更新直到 MSB 和 LSB 被读取				
BLE	大端/小端数据选择。默认值: 0				
DLC	0: XYZ 数据在高地址(29h、2Bh、2Dh); 1: XYZ 数据在低地址(28h、2Ah、2Ch)				
FS1-FS0	全量程选择。默认值: 00				
F31-F30	00: +/-2G; 01: +/-4G; 10: +/-8G; 11: +/-16G				
DI DE[4]	数字低通滤波器控制位高位。默认值: 0				
DLPF[1]	DLPF[1: 0]的四种取值对应的滤波阶数: 00: 1 阶				
SIM	SPI 串行接口模式配置。默认值: 0				
SIIVI	0: 4线接口; 1: 3线接口				

13.8 控制寄存器 5 (24h)

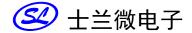
B7	B6	B5	B4	B3	B2	B1	B0
BOOT		AOI_EN		AOI1_LIR		AOI2_LIR	

воот	重载修调值。默认值: 0 0: 正常模式: 1: 重载修调值
AOI_EN	AOI 使能控制位。默认值: 0
	0: 使能 AOI; 1: 复位 AOI 功能,不影响 AOI 阈值配置,需手动置 0

	锁存 AOI1 配置寄存器上指定中断功能的中断响应信号(PIN 脚的高低电平)。
AOI1_LIR	通过读 AOI1 中断状态寄存器可以清除相应锁存的中断响应信号。默认值: 0
	0: 不锁存中断信号; 1: 锁存中断信号
	锁存 AOI2 配置寄存器上指定中断功能的中断响应信号(PIN 脚的高低电平)。
AOI2_LIR	通过读 AOI2 中断状态寄存器可以清除相应锁存的中断响应信号。默认值: 0
	(0: 不锁存中断信号; 1: 锁存中断信号)

13.9 控制寄存器 6 (25h)

В7	B6	B5	B4	В3	B2	B1	B0
I2_CLICK	I2_AOI1	I2_AOI2	I2_BOOT	I2_DRDY	CS_PU_EN	H_LACTIVE	INT_PP_OD


I2_CLICK	CLICK 中断在 INT2 脚上。默认值: 0
IZ_CLICK	0: 禁止; 1: 使能
I2_AOI1	AOI1 中断在 INT2 脚上。默认值: 0
IZ_AOH	0: 禁止; 1: 使能
I2_AOI2	AOI2 中断在 INT2 脚上。默认值: 0
IZ_AOIZ	0: 禁止; 1: 使能
I2_BOOT	BOOT 状态在 INT2 脚上。默认值: 0
12_6001	0: 禁止; 1: 使能
I2 DRDY	DRDY 中断在 INT2 脚上。默认值: 0
12_DRD1	0: 禁止; 1: 使能
CS PU EN	CS 引脚上拉电阻使能位。默认值: 0
CS_FU_EN	0: 使能; 1: 禁止;
	中断引脚默认电平控制位。默认值: 0
H_LACTIVE	0: 中断触发时输出高电平(默认低电平)
	1: 中断触发时输出低电平(默认高电平)
INT DD OD	INT1 和 INT2 推挽输出或开漏输出选择位。默认值: 0
INT_PP_OD	0: 推挽输出使能; 1: 开漏输出使能

13.10 状态寄存器 (27h)

B7	B6	B5	B4	В3	B2	B1	B0
DRDY							

DDDV	X, Y和 Z 三个轴新的数据全都转换完成。默认值: 0
DRDY	(0: 三轴中至少某一轴的数据尚未转换完成; 1: 三个轴新的数据全都转换完成)

备注: 查询新数据是否就位可采用如下条件进行判断: **If**((Read(0x27)&0xFF)==0xFF){break;}

13.11 OUT_X

X 轴加速度计值。这个值以 2 的补码的形式输出。

BLE	OUT_X
BLE=1	(28h)
BLE=0	(29h)

13.12 OUT_Y

Y 轴加速度计值。这个值以 2 的补码的形式输出。

BLE	OUT_Y
BLE=1	(2Ah)
BLE=0	(2Bh)

13.13 OUT_Z

Z轴加速度计值。这个值以 2 的补码的形式输出。

BLE	OUT_Z
BLE=1	(2Ch)
BLE=0	(2Dh)

以X轴数据拼接及单位转换为例

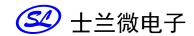
OUT_X (Hex)	8bits (Dec)	FS[1: 0]=00	FS[1: 0]=01	FS[1: 0]=10	FS[1: 0]=11
0x40	64	1.0g	2.0g	4.0g	8.0g
0x20	32	0.5g	1.0g	2.0g	4.0g
0xE0	-32	-0.5g	-1.0g	-2.0g	-4.0g
0xC0	-64	-1.0g	-2.0g	-4.0g	-8.0g

unsigned charX, Y, Z; //三轴数据(无符号)

signed charSL_X, SL_Y, SL_Z; //三轴数据(有符号)

SL_X= (signed char) X; //强制数据类型转换

SL_Y=(signed char) Y; //强制数据类型转换


SL_Z= (signed char) Z; //强制数据类型转换

13.14 FIFO_CFG (2Eh)

B7	B6	B5	B4	B3	B2	B1	B0
FM1	FM0	TR	FTH4	FTH3	FTH2	FTH1	FTH0

	FIFO 模式选择。默认值:00
	00: By-Pass 模式 (旁路模式,即不使用 FIFO 功能)
FM[1: 0]	01: FIFO 模式(缓存满未及时读取,新数据丢弃)
	10: Stream 模式(缓存满后,最早数据丢弃,添加新数据)
	11: 触发模式(AOI1 或者 AOI2 中断事件有效,从 stream 模式进入 FIFO 模式)
TD	FIFO 触发模式选择。默认值: 0
TR	0: AOI1 中断作为 FIFO 触发模式中断事件输入

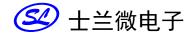
	1: AOI2 中断作为 FIFO 触发模式中断事件输入		
FT. II 4 . 01	FIFO 功能 WTM 阈值设置		
FTH[4: 0]	当 FIFO 中的数据个数超过设定阈值时,FIFO 状态寄存器相应状态位会置"1"		

备注:使用 FIFO 模式工作时,FIFO 数据读取完成后,需要先将 FIFO 模式切换到 BY-PASS 模式,然后切回到 FIFO 模式,即可继续工作。

13.15 FIFO_SRC (**2Fh**)

В7	В6	B5	B4	B3	B2	B1	B0
WTN	OVER	EMPTY	FSS4	FSS3	FSS2	FSS1	FSS0

WTM	当 FIFO 中的数据个数超过设定阈值时,WTM 位置"1"。
OVER	当 FIFO 中的数据溢出时,OVER 位置"1"。
EMPTY	当 FIFO 中无数据时,EMPTY 位置"1"。
E00[4 0]	在 FIFO 中未读取数据的组数。
FSS[4: 0]	当 FIFO 中的一组数据被读取时,该 FIFO 数据组数寄存器置会自动减一。


备注: 当 B6 (OVER) ==1 时,可以读取 32 组 FIFO 数据。

13.16 AOI1_CRTL_REG (30h)

B7	B6	B5	B4	B3	B2	B1	В0
AOI	eD.	ZHIE/	ZLIE/	YHIE/	YLIE/	XHIE/	XLIE/
AOI	6D	ZUPE	ZDOWNE	YUPE	YDOWNE	XUPE	XDOWNE

AOI	与/或中断事件。默认值: 0。参考"中断模式"
6D	6 个方向检测功能使能。默认值: 0。参考"中断模式"
ZHIE/	Z 轴高事件检测或者 Z 轴方向检测使能。默认值: 0
ZUPE	0: 禁止检测; 1: 使能检测;
ZLIE/	Z 轴低事件检测或者 Z 轴方向检测使能。默认值: 0
ZDOWNE	0: 禁止检测; 1: 使能检测;
YHIE/	Y 轴高事件检测或者 Y 轴方向检测使能。默认值: 0
YUPE	0: 禁止检测; 1: 使能检测;
YLIE/	Y 轴低事件检测或者 Y 轴方向检测使能。默认值: 0
YDOWNE	0: 禁止检测; 1: 使能检测;
XHIE/	X 轴高事件检测或者 X 轴方向检测使能。默认值: 0
XUPE	0: 禁止检测; 1: 使能检测;
XLIE/	X 轴低事件检测或者 X 轴方向检测使能。默认值: 0
XDOWNE	0: 禁止检测; 1: 使能检测;

AOI	6D	中断模式
0	0	或中断事件(配置轴数据任意一轴大于或小于阈值);
0	1	6个方向运动识别(三轴6个方向数据是否大于运动阈值);
1	0	与中断事件(配置轴数据同时大于阈值或同时小于阈值);
1	1	6个方向位置检测(三轴6个方向位置检测);

13.17 AOI1_SRC (31h)

B7	B6	B5	B4	В3	B2	B1	B0
	IA	ZH	ZL	YH	YL	XH	XL

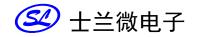
	配置事件已触发。默认值: 0
1.0	0: 中断事件没有触发过; 1: 一个或多个中断事件已经触发过;
IA	中断事件触发是引脚中断电平输出前提;
	需电平输出还需将该中断事件的中断源映射到中断引脚;
ZH	Z 轴高事件状态位。默认值: 0
ΔΠ	0: 当前不处于高事件状态; 1: 当前处于高事件状态;
ZL	Z 轴低事件状态位。默认值: 0
ZL	0: 当前不处于低事件状态; 1: 当前处于低事件状态;
YH	Y 轴高事件状态位。默认值: 0
in in	0: 当前不处于高事件状态; 1: 当前处于高事件状态;
YL	Y 轴低事件状态位。默认值: 0
ī L	0: 当前不处于低事件状态; 1: 当前处于低事件状态;
ХН	X 轴高事件状态位。默认值: 0
	0: 当前不处于高事件状态; 1: 当前处于高事件状态;
XL	X 轴低事件状态位。默认值: 0
\^L	0: 当前不处于低事件状态; 1: 当前处于低事件状态;

13.18 AOI1_THS (32h)

B7	B6	B5	B4	B3	B2	B1	B0
	THS6	THS5	THS4	THS3	THS2	THS1	THS0

THS6-THS0	AOI1 阈值。默认值: 0000000
11100-11100	1LSB=16mg@FS=2g 1LSB=32mg@FS=4g 1LSB=64mg@FS=8g 1LSB=128mg@FS=16g

13.19 AOI1_DURATION (33h)


B7	B6	B5	B4	В3	B2	B1	В0
	D6	D5	D4	D3	D2	D1	D0

	持续时间计数阈值,1LSB=1/ODR。默认值:0000000
D6-D0	D[6: 0]位设置需要识别到 AOI1 事件的最小持续时间。持续时间的时间步进是由 ODR 决定;
	例如:设置 D[6:0]=0001000,那么对应配置轴的数据需要连续大于设置阈值 8 次才会触发事件

AOI1 中断数据源说明:

按照中断事件的组合逻辑分为与事件和或事件。顾名思义,与事件是指指定的多个事件同时发生则触发中断,或事件是指指定的多个事件发生一个即可触发中断;例如 X 轴数据大于设定阈值或 Y 轴数据大于设定阈值,就需要使用或事件中断功能;该功能可用于活动检测,一般情况下需要配置高通后的数据作为该功能的数据源。

按照中断事件的功能分为方向运动识别事件和方向位置识别事件。方向运动识别事件是指设备从一个方向(已知或

6D/4D/3D 识别功能说明:

未知)到另一个已知的方向会产生一次中断,中断响应时间为 1/ODR。方向位置识别事件是指设备处于一个稳定的已知方向时会触发中断,如果一直在这个预设的已知方向位置,那么会触发中断后的电平会保持不变。该功能可用于姿态检测,一般情况下,不能配置高通后的数据作为该功能的数据源,且需要设置的阈值较大,设置状态保持的持续时间较大。

当 6D 功能位(30.6h)没有置 1 时,实现的是 3D 功能;

当 6D 功能位(30.6h) 置 1 时, 4D 功能位(24.0h 或 24.2h) 没有置 1 时,实现的是 6D 功能;

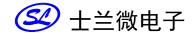
当 6D 功能位(30.6h) 置 1 时, 4D 功能位(24.0h 或 24.2h) 置 1 时,实现的是 4D 功能;

3D 识别功能: 若配置 X 轴高事件触发时,需要 X 数据的绝对值大于阈值才触发,相当于正向或负向数据都能触发中断,触发前 XL=1,触发后 XH=1;

6D 识别功能: 若配置 X 轴高事件触发时,需要 X 数据的值大于阈值才触发,相当于只有正向数据才能触发中断,触发前 XH=0,触发后 XH=1。为了实现双方向数据绝对值较大时都能触发中断,需要同时配置 X 轴高事件触发和 X 轴低事件触发。触发前 XH=0,XL=0,触发后,XH=1 或 XL=1;

4D 识别功能:在该配置时, Z 轴位置检测功能被禁用, 因此减少了位置识别的情况。

AOI2 功能与 AOI1 功能的配置方法相同。


备注:与或中断和运动位置中断在判断大于阈值次数时,该计数值是每个成立情况下自增一,在不成立情况下自减一;若设置 AOI_DURATION 最高位为 1(D7),则可以减小阈值次数判断时的中断误触法情况。

13.20 AOI2_CRTL_REG (34h)

B7	В6	B5	B4	В3	B2	B1	В0
AOI	6D	ZHIE/	ZLIE/	YHIE/	YLIE/	XHIE/	XLIE/
		ZUPE	ZDOWNE	YUPE	YDOWNE	XUPE	XDOWNE

AOI	与/或中断事件。默认值: 0。参考"中断模式"
6D	6个方向检测功能使能。默认值: 0。参考"中断模式"
ZHIE/ZUPE	Z 轴高事件检测或者 Z 轴方向检测使能。默认值: 0
ZHIE/ZUPE	0: 禁止检测; 1: 使能检测;
ZLIE/ZDOWNE	Z 轴低事件检测或者 Z 轴方向检测使能。默认值: 0
ZLIE/ZDOWNE	0: 禁止检测; 1: 使能检测;
YHIE/YUPE	Y 轴高事件检测或者 Y 轴方向检测使能。默认值: 0
THE/TOPE	0: 禁止检测; 1: 使能检测;
YLIE/YDOWNE	Y轴低事件检测或者 Y轴方向检测使能。默认值: 0
TEIE/TDOWNE	0: 禁止检测; 1: 使能检测;
XHIE/XUPE	X 轴高事件检测或者 X 轴方向检测使能。默认值: 0
AI IIL/AOFE	0: 禁止检测; 1: 使能检测;
XLIE/XDOWNE	X 轴低事件检测或者 X 轴方向检测使能。默认值: 0
ALIE/ADOWNE	0: 禁止检测; 1: 使能检测;

AOI	6D	中断模式				
0	0	或中断事件(配置轴数据任意一轴大于或小于阈值);				
0	1	6个方向运动识别(三轴6个方向数据是否大于运动阈值);				
1	0	与中断事件(配置轴数据同时大于阈值或同时小于阈值);				
1	1	6个方向位置检测(三轴6个方向位置检测);				

13.21 AOI2_SRC (35h)

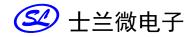
B7	В6	B5	B4	В3	B2	B1	B0
	IA	ZH	ZL	ΥH	YL	XH	XL

	配置事件已触发。默认值: 0
1.0	0: 中断事件没有触发过; 1: 一个或多个中断事件已经触发过;
IA	中断事件触发是引脚中断电平输出前提;
	需电平输出还需将该中断事件的中断源映射到中断引脚;
ZH	Z 轴高事件状态位。默认值: 0
ΔΠ	0: 当前不处于高事件状态; 1: 当前处于高事件状态;
ZL	Z 轴低事件状态位。默认值: 0
ZL	0: 当前不处于低事件状态; 1: 当前处于低事件状态;
YH	Y 轴高事件状态位。默认值: 0
i n	0: 当前不处于高事件状态; 1: 当前处于高事件状态;
YL	Y 轴低事件状态位。默认值: 0
1 L	0: 当前不处于低事件状态; 1: 当前处于低事件状态;
XH	X 轴高事件状态位。默认值: 0
ΛП	0: 当前不处于高事件状态; 1: 当前处于高事件状态;
XL	X 轴低事件状态位。默认值: 0
XL	0: 当前不处于低事件状态; 1: 当前处于低事件状态;

13.22 AOI2_THS (36h)

В7	В6	B5	B4	B3	B2	B1	В0
	THS6	THS5	THS4	THS3	THS2	THS1	THS0

THS6-THS0	AOI2 阈值。默认值: 00	000000		
11130-11130	1LSB=16mg@FS=2g	1LSB=32mg@FS=4g	1LSB=64mg@FS=8g	1LSB=128mg@FS=16g


13.23 AOI2_DURATION (37h)

В7	B6	B5	B4	В3	B2	B1	В0
	D6	D5	D4	D3	D2	D1	D0

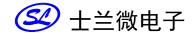
	持续时间计数阈值,1LSB=1/ODR。默认值:0000000
D6-D0	D[6: 0]位设置需要识别到 AOI1 事件的最小持续时间。持续时间的时间步进是由 ODR 决定;
	例如:设置 D[6:0]=0001000,那么对应配置轴的数据需要连续大于设置阈值 8 次才会触发事件;

13.24 CLICK_CRTL_REG (38h)

В7	B6	B5	B4	B3	B2	B1	B0
		1	1	LIR_CLICK	CLICK_X_EN	CLICK_Y_EN	CLICK_Z_EN

	CLICK 中断状态锁存控制位。默认值: 0
	0: 不锁存中断信号; 1: 锁存中断信号;
LIR_CLICK	当三轴数据满足敲击条件且触发引脚中断信号时,通过预置位 LIR_CLICK,可以锁存引脚中断电平,直
	到读取 CLICK_SRC 后,中断状态以及中断电平才会自动复位为 0;
OLIOK V EN	X 轴敲击功能使能位。默认值: 0
CLICK_X_EN	0: 禁止 X 轴数据参与敲击检测; 1: 使能 X 轴数据参与敲击检测;
CLICK V EN	Y 轴敲击功能使能位。默认值: 0
CLICK_Y_EN	0: 禁止 Y 轴数据参与敲击检测; 1: 使能 Y 轴数据参与敲击检测;
CLICK 7 EN	Z 轴敲击功能使能位。默认值: 0
CLICK_Z_EN	0: 禁止 Z 轴数据参与敲击检测; 1: 使能 Z 轴数据参与敲击检测;

13.25 CLICK_SRC (39h)


B7	B6	B5	B4	В3	B2	B1	В0
				CLICK_SRC3	CLICK_SRC2	CLICK_SRC1	CLICK_SRC0

	敲击检测中断状态值。默认值: 0000
CLICK_SRC[3: 0]	0000: 无敲击事件触发; 0001: 单击事件触发; 0010: 双击事件触发;
	0011: 三击事件触发; 1111: 十五击事件触发;

13.26 CLICK_COEFF1 (3Ah)

В7	B6	B5	B4	B3	B2	B1	В0
PRE_QT1	PRE_QT0	PRE_NTH2	PRE_NTH1	PRE_NTH0	SCTH1_2	SCTH1_1	SCTH1_0

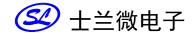
	敲击前数据稳定时长设置。默认值: 01
	对应的时长为: 0ms、20ms、40ms、80ms
	00: ODR 计数阈值为 4、8、16 (推荐 200Hz 配置);
PRE_QT[1: 0]	01: ODR 计数阈值为 8、16、32(推荐 400Hz 配置);
	10: ODR 计数阈值为 16、32、64(推荐 400Hz 配置);
	11: ODR 计数阈值为 32、64、128(推荐 400Hz 配置);
	详见 3Bh 寄存器 B7B6 配置。
	敲击前数据稳定阈值设置。默认值: 010
DDE NTHE O	000: 2LSB; 001: 4LSB; 010: 6LSB; 011: 8LSB;
PRE_NTH[2: 0]	100: 10LSB; 101: 14LSB; 110: 18LSB; 111: 24LSB;
	该数据相比较的等效条件: ±4g 量程、8bits 数据、相当于 1lsb=32mg
	敲击时识别有效时的数据阈值 1 设置。默认值: 010
SCTU4[3 0]	000: 2LSB; 001: 4 LSB; 010: 8 LSB; 011: 12LSB;
SCTH1[2: 0]	100: 16 LSB; 101: 20 LSB; 110: 24LSB; 111: 30 LSB;
	该数据相比较的等效条件: ±4g 量程、8bits 数据、相当于 1lsb=32mg;

13.27 CLICK_COEFF2 (3Bh)

B7	B6	B5	B4	В3	B2	B1	В0
QT_MT1	QT_MT0	SCTH2_2	SCTH2_1	SCTH2_0	SCTH1T_2	SCTH1T_1	SCTH1T_0

	敲击前必须保证数据平稳的最小时间设置,需要大于该阈值。默认值: 10					
OT MT[4 O]	00: ODR 计数阈值设置为 0 (ODR=任意值); 01: ODR 计数阈值设置为 4 (ODR=200Hz);					
QT_MT[1: 0]	10: ODR 计数阈值设置为 8 (ODR=200Hz); 11: ODR 计数阈值设置为 16 (ODR=200Hz);					
	若 ODR=400Hz,对应的计数值*2,这样才可以保证计数对应时长不变,以此类推;					
	敲击时识别有效时的数据阈值 2 设置。默认值: 011					
	000: 4LSB; 001: 8LSB; 010: 16LSB; 011: 24LSB;					
SCTH2[2: 0]	100: 32LSB; 101: 40 LSB; 110: 48LSB; 111: 56LSB;					
	该数据相比较的等效条件: ±4g 量程、8bits 数据、相当于 1lsb=32mg;					
	敲击过程中,需要数据超过该阈值至少 1 次;					
	敲击过程中数据大于 SCTH1 阈值的时间上限设置。默认值: 010					
COTUATIO O	000: 2; 001: 4; 010: 8; 011: 12;					
SCTH1T[2: 0]	100: 16; 101: 20; 110: 24; 111: 28;					
	1LSB=1/ODR,此阈值保证敲击过程数据脉冲的宽度上限;					

13.28 CLICK_COEFF3 (3Ch)


В7	B6	B5	B4	B3	B2	B1	В0
			SCNTT1	SCNTT0	SCST2	SCST1	SCST0

	满足敲击事件前数据平静条件后,允许数据大于数据噪声阈值的最大时长。默认值:00
SCNTT[1: 0]	00: 5; 01: 10; 10: 15; 11: 20;
	1LSB=1/ODR。
	敲击事件后所允许的最大恢复平静时长设置。默认值: 100
SCST[2: 0]	000: 5; 001: 10; 010: 20; 011: 40;
	100: 80; 101: 120; 110: 160; 111: 200; 1LSB=1/ODR。

13.29 CLICK_COEFF4 (3Dh)

В7	В6	B5	B4	В3	B2	B1	В0
SCMT3	SCMT2	SCMT1	SCMT0	MCNTH3	MCNTH1	MCNTH1	MCNTH0

	单击检测的最大允许时长。默认值: 0101
SCMT[3: 0]	实际时长=(设置值*64+20)/ODR;
	例如: ODR=200,设置为: 0101,相当于是单击检测最大允许时长为 1.7s;
MCNITHIO O	多击检测最大检测次数设置。默认值: 0111
MCNTH[3: 0]	例如:设置最大检测次数为3次,此时检测到三击后会立即输出三击状态以及中断;

13.30 DIG_CTRL (57h)

В7	В6	B5	B4	В3	B2	B1	В0
				SDO_PU	I2C_PU		

	SDO 内部上拉电阻控制位。默认值: 0
SDO_PU	0: 上拉电阻使能; 1: 禁止上拉电阻
	禁止上拉电阻后,该引脚为浮空输入模式,请保证引脚外围电平确定,否者 I2C 通讯会异常。
	SDA 和 SCL 内部上拉电阻控制位。默认值: 0
I2C_PU	0: 上拉电阻使能; 1: 禁止上拉电阻
	禁止上拉电阻后,该引脚为开漏模式,请保证引脚外围有上拉电阻。

备注:关闭内部上拉电阻方法(I2C或SPI):

单独关闭 SDO 内部上拉电阻方法:

Read (0x57, sl_val); //读取 0x57 寄存器当前配置

sl_val=sl_val|0x08; //SDO_PU 置 1

Write (0x57, sl_val); //操作 SDO_PU 位, 0x57 寄存器写入配置

单独关闭 I2C 内部上拉电阻方法:

Read (0x57, sl_val); //读取 0x57 寄存器当前配置

sl_val=sl_val|0x04; //I2C_PU 置 1

Write (0x57, sl_val); //操作 I2C_PU 位, 0x57 寄存器写入配置

13.31 OUT_X_New (60h)

实时的 X 轴加速度计值。FIFO 功能使能时,读取该数据不会使 FIFO 数据丢失。

13.32 OUT_Y_New (61h)

实时的Y轴加速度计值。FIFO 功能使能时,读取该数据不会使 FIFO 数据丢失。

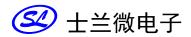
13.33 OUT_Z_New (62h)

实时的 Z 轴加速度计值。FIFO 功能使能时,读取该数据不会使 FIFO 数据丢失。

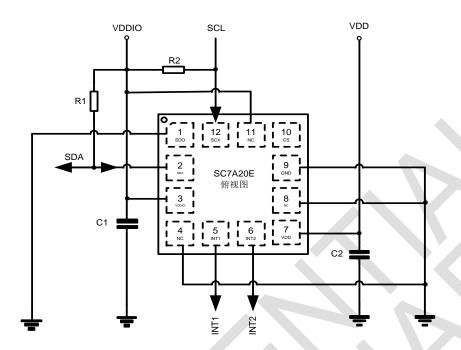
13.34 SOFT RESET (68h)

В7	B6	B5	B4	В3	B2	B1	В0
SR7	SR6	SR5	SR4	SR3	SR2	SR1	SR0

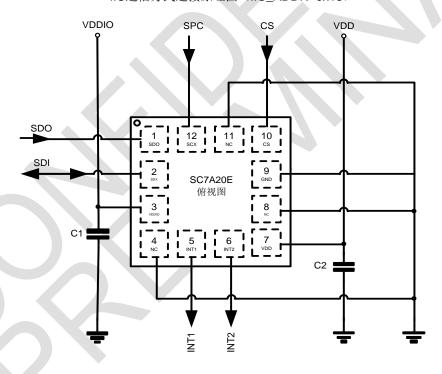
备注:寄存器写入 0xA5,复位整个电路,数据清零。

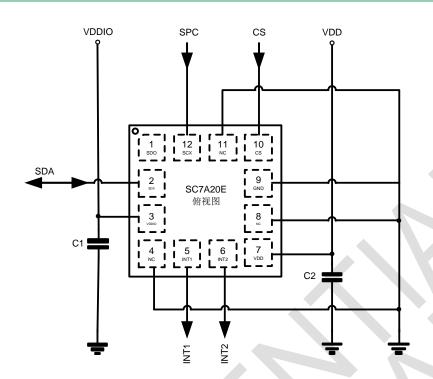

13.35 FIFO_DATA (69h)

В7	B6	B5	B4	B3	B2	B1	В0
D7	D6	D5	D4	D3	D2	D1	D0


 FIFO_DATA[7: 0]
 单地址读取 FIFO 数据时,需要设置 0x0E 寄存器的 Addr_auto 设置为 0(地址不自增)

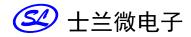
 读取 0x69 寄存器相当于是读取 FIFO 数据,读取数据顺序是 X 轴、Y 轴、Z 轴;


 可以根据 0x2F 寄存器值计算 FIFO 组数,然后组数*3 作为读取 0x69 的次数;

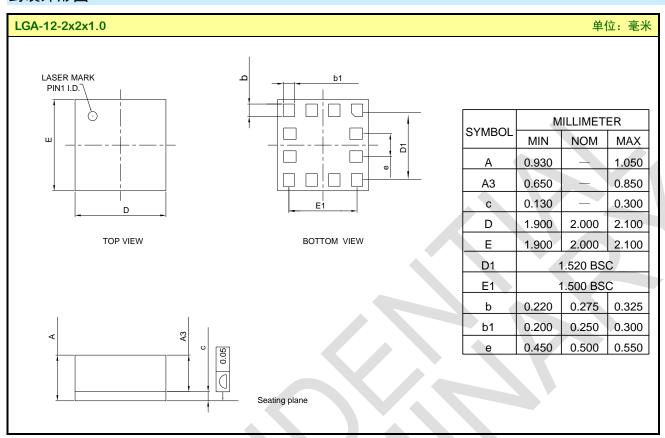

典型应用电路图

IIC通信方式连接原理图(IIC_ADDR=0x18)

4线SPI通信方式连接原理图



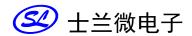
3线SPI通信方式连接原理图


注意: C1, C2 的推荐值为 100nF, R1, R2 的推荐值为 4.7KΩ。

采用使用 SPI 通讯时,禁止多设备共用 SPI 总线(SDA/SDI/SDO/SPC)。

电路的核心部分以VDD供电,而IO接口部分以VDDIO供电。为了保证正常功能,所有的电源上电时间相同。CS/SDO/SCL/SDA/INT1/INT2管脚的最大电压不超过VDDIO+0.3V。

封装外形图



MOS电路操作注意事项:

静电在很多地方都会产生,采取下面的预防措施,可以有效防止 MOS 电路由于受静电放电影响而引起的损坏:

- ◆ 操作人员要通过防静电腕带接地。
- 设备外壳必须接地。
- 装配过程中使用的工具必须接地。
- 必须采用导体包装或抗静电材料包装或运输。

重要注意事项:

- 1. 士兰保留说明书的更改权, 恕不另行通知。
- 2. 客户在下单前应获取我司最新版本资料,并验证相关信息是否最新和完整。产品应用前请仔细阅读说明书,包括其中的电路操作注意事项。
- 3. 我司产品属于消费类电子产品或其他民用类电子产品。
- 4. 在应用我司产品时请不要超过产品的最大额定值,否则会影响整机的可靠性。任何半导体产品特定条件下都有一定的失效或发生故障的可能,买方有责任在使用我司产品进行系统设计、试样和整机制造时遵守安全标准并 采取安全措施,以避免潜在失败风险可能造成人身伤害或财产损失情况的发生。
- 5. 购买产品时请认清我司商标,如有疑问请与本公司联系。
- 6. 产品提升永无止境, 我公司将竭诚为客户提供更优秀的产品!
- 7. 我司网站 http://www.silan.com.cn

产品	名称:	SC7A20E	文档类型:	说明书
版	权:	杭州士兰微电子股份有限公司		http://www.silan.com.cn
版	本:	0.2		
修改	记录:			
	1. 修改	[内部框图		
版	本:	0.1		
修改	记录:			
	1. 初稿			