

SPECIFICATION

Serial No.:	Spec2021030904					
Version No.:	$\mathbf{A0}$					
Customer:						
Series:	ZD					
Load life:	105°C 5000h					
Client No.	Spec					
	ZD 100V330μF M 13*25 C:(E=3.5±0.3)					
	Received					

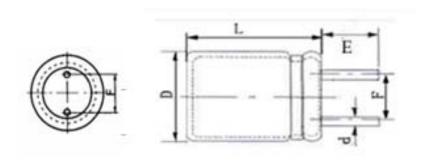
Supplier

	WRITTEN	CHECKED	APPROVED
	WEILINZHANG	ZIQIONGLU	LIXIAW
GHA	N CITY DONGVANGGHANG CA	APACITORS COLLTD	大学 技术科

Add: 2ND INDUSTRIAL AREA JINXIA HEDONG ROAD CHANGAN, DONGGUAN

TEL: (0769) 85315188 FAX: (0769) 853135188

SHAOGUAN CITY DONGYANGGUANG CAPACITORS CO.,LTD. Aluminum electrolytic capacitor Name Issue No. A0 Date Revision records Reviser No. 《SPECIFICATION》 has been written 2021.03.09 1 WEILINZHANG

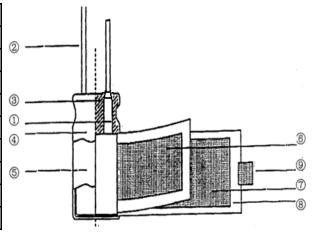

APPROVED SERIES

NO.	Client No.	SPECIFICATION	HEC No.
1		ZD100V330μF -20% ~ +20% 13*25	ZD100C4331M013BBEHT

1、SPECIFICATIONS

Item	Performance Characteristics				
Operating Temp. Range		-40 to +105°C			
Rated Voltage Range	$6.3\mathrm{V}\sim120\mathrm{V}$				
Capacitance Tolerance	-20% ~ +20% (120Hz/20°C)				
DC Leakage Current		μΑ Whichever is greater (After 5 minutes) capacitance in μF; V : Rated working voltage in V			
	R.V.(V)	100			
Stability at low Temp	Z $_{\text{-25}^{\circ}\text{C}}$ /Z $_{\text{+20}^{\circ}\text{C}}$	2			
	Z _{-40°C} /Z _{+20°C}	3			

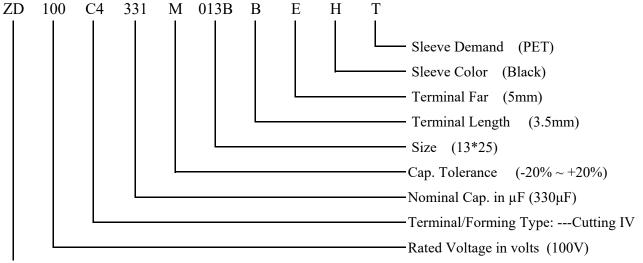
2、DIMENSION(mm)



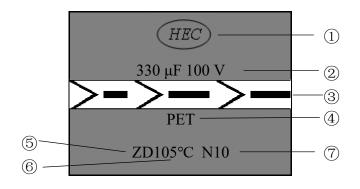
D	L	F	d	Е	
±1	+2Max	±0.5	±0.1	±0.3	
13	25	5	0.6	3.5	

I T E M	P/N	R.V. (Vcd)	Cap. (μF)	Size	Cap. Tol.	D.F. Max	L	.C.Max. 20°C	Ripple Current 100KHz 105°C	ESR 100kHz /Ω	Note
					120Hz((20°C)	min	(µA)	(mA)rms	25℃	
1		100	330	13*25	-20% ~ +20%	0.10	5	990	1300	/	С

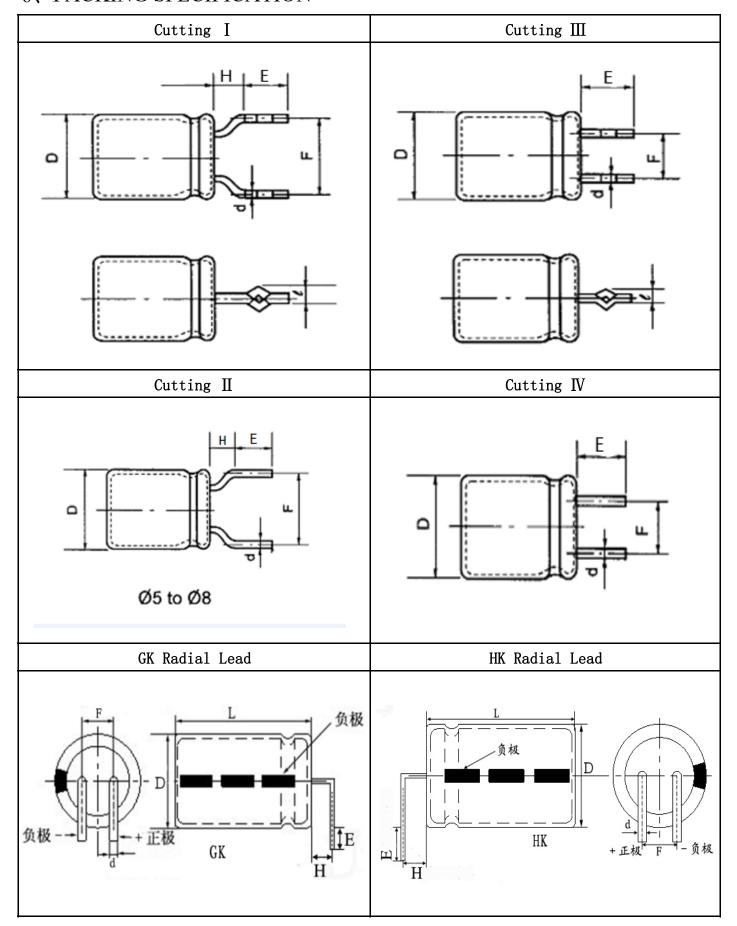
3, CONSTRUCTION

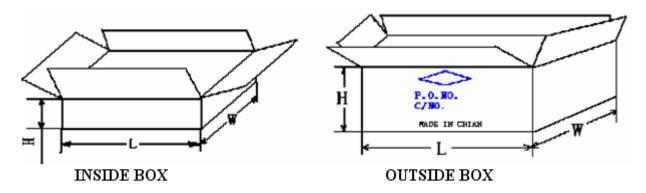

NO.	PART	MATERIALS				
1	Lead Line	Aluminum 99.85%				
2	Terminal	Tinned copper-ply wire				
3	Sealing Pad	Rubber				
4	Sleeve	P.E.T (polyethylene terephthalate)				
5	Case	Aluminum 99.5%				
6	Al-foil(+)	Formed aluminum 99.9%				
7	Al-foil(-)	Etched aluminum 99.7%				
8	Separator	Kraft or manila				
9	Sealing tape	Polypropylene				

4、PART NUMBERING SYSTEM


Voltage rating/V	6.3	10	16	25	35	50	63	100	160	200	215	220
Code	6r3	010	016	025	035	050	063	100	160	200	215	220
Voltage rating/V	250	300	330	350	360	400	420	450	500	550	600	
Code	250	300	330	350	360	400	420	450	500	550	600	

Nominal cap	0.1	1	10	100	1000	10000
Code	0R1	1R0	100	101	102	103


Series name


5、MARKING

No.	Item							
1	Manufacturer's identification mark							
2	Capacitance & voltage							
3	Negative marking							
4	PET Sleeve							
(5)	Products Series							
6	Maximum operating temperature							
7	Lot No.(N2021year 10 The 10 th weeks							

6, PACKING SPECIFICATION

Inside	Box Dim	ensions	Outside Box Dimensions			Case Size	Packing (Quantity
L	W	Н	L	W	Н	ΦD×L	Inside	Outside
546	272	125	560	290	270	13*25	1500	3000

NO.	TEST ITEM	SPECIFICATION	TEST METHOD		
1	Capacitance	Within specified value	(1) Measuring frequency: 120Hz±20%		
			(2) Measuring circuit: series equivalent circuit		
2	Dissipation factor(D.F.)	Within specified value	(3) Measuring voltage: 0.5Vrms max. or less 1.5 to2.0Vdc.		
			(4) Measuring temperature: 20°C		
3	DC leakage current	I≤0.03CV or 4μA Whichever is greater (After 5 minutes)	The DC leakage current shall be measured after the rated DC voltage has been applied across the capacitor in series with a protective resistor (1000 ohms) for rated times at 20°C		
			Where, C: nominal capacitance(μF) V: rated voltage(V) I: leakage current(μA)		
4	Surge voltage	(a) Capacitance	(1) Surge voltage application: 1000times charging for 30±5sec, witha period of 6±0.5minutes.		
		≥80% of the initial value	(2) Test temperature: 15-35°C		
		(b) Dissipation factor	(3) Series protective resistance: about 1000ohm.		
		≤200% of the initial specified value	(4) Surge voltage:		
		(c) Leakage current	R.V.(V) 100		
		≤the initial specified value	S.V(V) 125		

NO.	TEST ITEM	SPECIFICATION	TEST METHOD						
5	Temperature characteristic	 (a) Step 2: impedance ratio Ratio to the value at step 1 shall be not more than the specified value. (b) Step 4: Variation of capacitance within ±20% of the value as step 1 	Step1: to measure capacitance and impedance (120Hz±10%) Test time at step 2 and step 4: Time required until almost no variation in impedance or capacitance measured at 15 minutes intervals are recognized.						
			STEP TEMPERATURE(°C) TIME						
				1 20±2					
				2	-40	+0, -3	2HRS		
				3	20±2		15MIN		
				4	+105	+3, -0	2HRS		
6	Solder ability	Terminal to be covered with solder for 3/4 and over in the direction perpendicular to terminal axis and continuously up to the dipped end point in the direction parallel to terminal axis.	 (1) Temperature of solder 245±5°C, dipping time 2±0.5 sec. (2) Flux: methanol and solution of rosin to be used. (3) Observation: it shall take place after dipping. 						
7	Resistance to vibration	 (a) Capacitance: During test measured value to be stabilized (when measured several times within 30 minutes before completion of test). (b) Appearance: No remarkable abnormality. 	 (1) Direction and duration of vibration: 3 orthogonal directions mutually each for 2 hours total 6 hrs. (2) Frequency: 10 to 55 Hz reciprocation for 1 minute. (3) Total amplitude: 1.5mm. 						
8	Resistance to soldering heat	 (a) Capacitance change≤10% of the initial value (b) D.F.≤the initial specified value (c) L.C.≤the initial specified value (d) Appearance: No remarkable abnormality 	(1) Temperature: 270±10°C, time: 10±1sec. OR (2) Temperature:350±10°C, time: 3 +1,-0sec.						

NO.	TEST ITEM	SPECIFICATION					TEST METHOD										
9	Resistance to damp heat	 (a) Capacitance change≤±15% of the initial value (b) D.F.≤the initial specified value (c) L.C.≤the initial specified value (d) Appearance: No remarkable abnormality 					 (1) Test temperature: 40±2°C. (2) Test time: 240±8 hours. (3) Relative humidity: 90-95% After completion of test, to expose for 1 to 2 hours in the atmospheric conditions. 										
10	Shelf life test	AC (1200/ 041 : 2: 1 1						The capacitor are then stored with no voltage applied at a temperature of +105°C for 1000 +48,-0 hours. Following this period the capacitor shall be removed from the test sharpher and be									
			F. ≤ 200% of the initial specified value						shall beremoved from the test chamber and be to stabilize at room temperature. Next they shall be connected to a series limiting resistor with DC rated voltage applied for 30 minutes. After which the capacitor shall be discharged.								
		L.C. ≤ the i															
11	Load life test	(a) Capacitar	ce change				(1)	Γest tei	nper	ature: 1	05 ±2℃.						
		≤±20% o	the initia	l valu	e		(2) Test time: +72,-0 hours.										
		(b) D.F.≤200% the initial specified value					Spc 100V3				330						
								ФДХ	ζL	13*2	5						
							Life 5000h										
		(c) L.C. ≤ the initial specified value							(3) Applied voltage								
		(d) Appearand								To applied rated voltage (maximum value of DC voltage overlapped by an allowable ripple current) through series protective resistance 1K ohm the capacitors shall then removed from the test chamber and stabilized at room temperature for 2 hours.							
12	Compensation coefficient for	Coefficient for frequency compensation.															
	ripple current	Rated Voltage (V	Cap. (µF)	q. (Hz)	50/60	100/120	300	1	K	10K~20K	50K~100K						
			≤15	5	0.40	0.50	0.60	-		0.90	1.00						
		6.3~100	22~15 ≥180		0.60	0.70	0.80	_		0.90	1.00						
		160~500	4.7~2		0.85	0.90	0. 95	+		1.00 0.94	1.00						
		Temperature Tempera	Multiplying \mathbb{C} ature \mathbb{C}	g Facto 45 2.7	or for R 55 2.2	ipple Cu 65 1.9	rrent 75 1.6	85 1.4	9:	5 105 8 1	d the ripple value is shown						

NO.	TEST ITEM		SPECIFICATION		T	MET]	THOD					
13	Safety vent		On opening safety vent it is permissible that gas generates or inner element comes out of aluminum case but emitting fire	(1) A.C Application test The capacitor shall be subjected to an A.C voltage (50 or 60 Hz) with r.m.s value equal to 0.7 times the rated D.C voltage through a series resistor as follows:								
			never happen.		CAPACIT	ANCE((μF)	R(o	hm)			
					C≤10 10 <c≤100< td=""><td colspan="2" rowspan="2">100 10</td><td></td></c≤100<>			100 10				
					100 <c< td=""><td colspan="3">100<c≤1000< td=""><td colspan="2">1</td></c≤1000<></td></c<>	100 <c≤1000< td=""><td colspan="2">1</td></c≤1000<>			1			
						1000 <c< td=""><td colspan="2">0.1</td></c<>			0.1			
				vo the *N	2) D.C Application. The capacitor slottage equal to the rough the capacity NOTES: The test actuated when the test conducted.	nall be see rated for shall is term 30 min.	voltage l be lim inated i . has el	the cunited to if the very apsed f	rrent flo 1A. ent dev	owing ice is		
14	Terminal strength		No abnormality such as cutting	T	ensile force hold	ing tim	e: 10 se	econds				
			-		off, looseness or the like of termination.		DIA OF WIRE(mm)	0.45	0.5	0.6	0.8	1
					TENSILE FORCE(kg)		0.5	1	1	2		
		Bending Strength of Termination		the op it	lang the specified rough 90°, return peration in about in opposite directly with the same assition count it as DIA OF WIRE(mm) TENSILE FORCE(kg)	to the of 5sec.and tion threspeed, a	original d coun ough again re	position to positi	on carry ones, n the ori	out this ext bent		