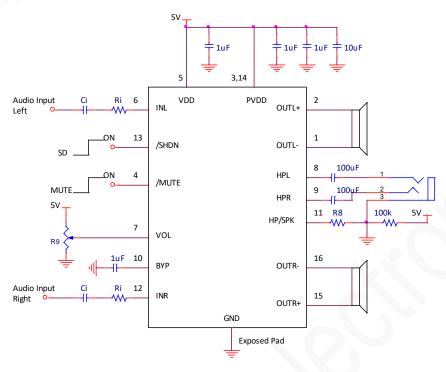
TMS8201E 4.5W Low EMI Stereo Class D Audio Amplifier with DC Volume Control and Headphone

Features

- Supply Voltage from 2.5V to 6.0V
- 4.5W@10% THD Output with a 4Ω Load at 6.0V Supply
- 3.2W@10% THD Output with a 4Ω Load at 5V Supply
- Filter Free and Low EMI Architecture
- 64 Step DC Volume Control with Hysteresis from -80dB to +24dB
- Independent Shutdown and Mute Control
- High Efficiency Up to 90% @1W with an 8Ω
 Speaker
- Class AB Headphone Amplifier Po=60mW at PVDD=5V, Load=32Ω;
- Shutdown Current <1µA
- Superior Low Noise without Input
- EMI Suppressing by Soft-Driving
- Short Circuit Protection
- Under Voltage Lock-out and Power Down Detection
- Thermal Shutdown
- Available in Space Saving ESOP-16L
 Packages Pb-Free Package

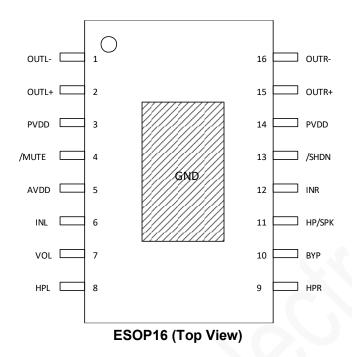
Description

The TMS8201E is a Stereo 4.5W Class D audio power amplifier for driving bridged-tied speakers and includes a Stereo Class AB amplifier for driving headphones. The advanced 64 steps DC volume control minimizes external components allowing simple and accurate volume control over the gain range of +24dB to -80dB.


Advanced EMI suppression technology with softdriving scheme enables the use of inexpensive ferrite bead filters at the outputs while meeting EMC/EMI requirements for system cost reduction The outputs are fully protected against shorts to ground, supply, and output-to-output. The shortcircuit protection and thermal protection includes an auto recovery feature.

The TMS8201E is available in the power efficient and space saving ESOP-16L package.

Application


- Flat Panel Display TVs
- LCD Monitors and TVs
- Projectors / All-In-One Computers
- Portable / Active Speakers
- Portable DVD Players / Game Machines

Typical Application

Typical Application Circuit

Package

Order Information

Part Number	Package	Top Marking	Quantity/ Reel	
TMS8201EGM-TR	ESOP16	T8201EGM	3000	
TIVISOZUTEGIVI-TR	E30F10	xxxxxx	3000	

TMS8201E devices are Pb-free and RoHS compliant.

Pin Functions

Pin	Name	Description	
1	OUTL-	Negative BTL Of Left Channel Power Amplifier	
2	OUTL+	Positive BTL Of Left Channel Power Amplifier	
3	PVDD	Power Supply	
4	/MUTE	Mute Control Signal Input (Active Low, Pull High Internally)	
5	AVDD	Analog Power Supply	
6	INL	Input of Left Channel Power Amplifier	
7	VOL	Gain Setting Input (Connect to VDD Set the Max. Gain = 24dB)	
8	HPL	Left Channel Output of Headphone	
9	HPR	Right Channel Output of Headphone	
10	BYP	Bypass pin, connect a capacitance form this pin to GND	
11	HP/SPK	Output Mode Control Input (High for Headphone and Low for Speaker, Plus Low Internally)	
12	INR	Input of Right Channel Power Amplifier	
13	/SHDN	Chip Shutdown Control Input (Active Low, Pull High Internally)	
14	PVDD	Power Supply	
15	OUTR-	Negative BTL Of Right Channel Power Amplifier	
16	OUTR+	Positive BTL Of Right Channel Power Amplifier	
Exposed Pad	GND	Chip Ground	

Absolute Maximum Ratings

Symbol	Parameter	Value	Unit
PV_{DD} , AV_{DD} , V_{DC}	Power Supply Voltage -0.3 to +7		V
INL, INR, /SHDN,	Innut Voltage	0.2 to 1/ 10.2	\/
/MUTE, HP/SPK	Input Voltage	-0.3 to V _{DD} +0.3	V
T _J Junction Temperature		-55 to +150	°C
T _{STG}	T _{STG} Storage Temperature –65 to +165		°C

Recommended Operating Conditions

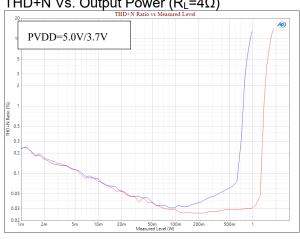
Symbol	Parameter	Value	Unit
PV_{DD}	Power Supply Voltage	+2.5 to +6.0	V
T _A	Operating free-air temperature	-40 to +85	°C
TJ	Junction Temperature	-40 to +125	°C

ESD Rating

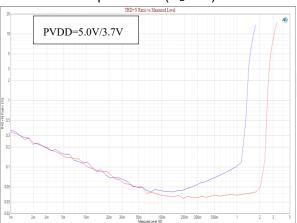
Items	Description Value		Unit	
V _{ESD_HBM}	Human Body Model	±4000	V	
V _{ESD_CDM}	Charge Device Model	±750	V	

Electrical Characteristics

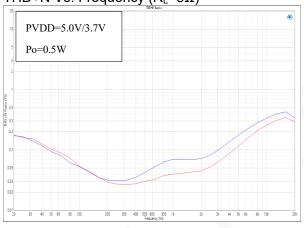
 T_A =25°C, PV_{DD} =5V, C_{IN} =0.22 μ F, R_L =L(33 μ H) + R+L(33 μ H), unless otherwise noted.

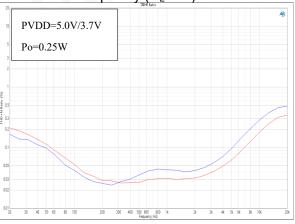

Symbol	Parameter	Test Condition	MIN	TYP	MAX	UNIT		
Class D I	Mode							
		THD+N=10%, f=1kHz, RL=4Ω	PVDD=6.0V		4.5			
		THD+N=1%, f=1kHz, RL=4Ω	PVDD=6.0V		3.6		†	
		THD+N=10%, f=1kHz, RL=8Ω	PVDD=6.0V		2.75			
		THD+N=1%, f=1kHz, RL=8Ω	PVDD=6.0V		2.15		W	
Po	Output Power	THD+N=10%, f=1kHz, RL=4Ω	PVDD=5.0V		3.2			
		THD+N=1%, f=1kHz, RL=4Ω	PVDD=5.0V		2.45			
		THD+N=10%, f=1kHz, RL=8Ω	PVDD=5.0V		1.8			
		THD+N=1%, f=1kHz, RL=8Ω	PVDD=5.0V		1.25			
TUDIN	Total Harmonic	Po=0.8W, RL=8Ω	f=1kHz		0.03		%	
THD+N	Distortion Plus Noise	Po=1.6W, RL=4Ω	f=1kHz		0.04		%	
Dyn	Dynamic Range	THD=1%, RL=8Ω	f=1kHz		93		dB	
CS	Channel Separation	THD=1%, RL=8Ω	f=1kHz		-92		dB	
Vn	Output Noise		No A-weighting		115		\/	
		Inputs ac-grounded	A-weighting		95		μV	
Ddaan	Drain-to Source On-	High Side PMOS, I=500mA	PVDD=5.0V		220		mΩ	
Rdson	state Resistor	Low Side NMOS, I=500mA	PVDD=5.0V		185		mΩ	
fsw	Switching Frequency	PVDD=5V			350		kHz	
Ton	Turn On Time				400		mS	
Vos	Offset Voltage	Input ac-ground, PVDD=5V			5		mV	
Headpho	ne Output							
THD+N	Total Harmonic Distortion Plus Noise	Po=30mW, RL=32Ω	f=1kHz		0.02		%	
Dyn	Dynamic Range	THD+N=1%, RL=32Ω	f=1kHz		95			
CS	Channel Separation	THD+N=1%, RL=32Ω	f=1kHz		-80			
\/n	0.4.44	Inputs ac-grounded	No A-weighting		50			
Vn	Output Noise	inputs ac-grounded	A-weighting		45			
DC Parar	neters							
lq	Quiescent Current	PVDD=5V	No Load		7.5		mA	
I _{SD}	Shutdown Current	PVDD=2.5V to 6.0V	/SHDN=0V			2	μA	
Імите	Mute Current	PVDD=2.5V to 6.0V	/MUTE=0V		3		mA	
VIH		PVDD=5V		1.2			V	
VIL		PVDD=5V				0.6	V	
OTD	Thermal Protection				150		°C	
OTP	Hysteresis				40		°C	

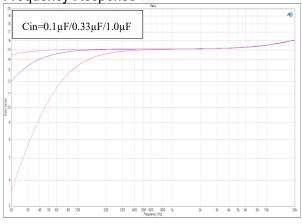
Performance Characteristics

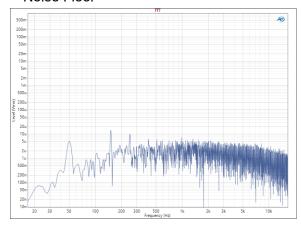

 T_A =25°C, PV_{DD} =5V, C_{IN} =0.22 μ F, R_L =L(33 μ H) + R+L(33 μ H), unless otherwise noted.

Speaker Mode


THD+N Vs. Output Power ($R_L=4\Omega$)

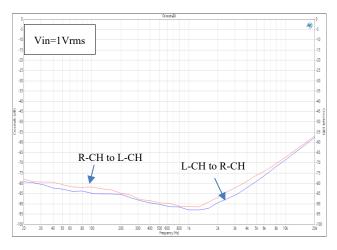

THD+N Vs. Output Power ($R_L=8\Omega$)


THD+N Vs. Frequency ($R_L=8\Omega$)

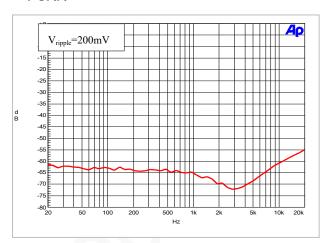

THD+N Vs. Frequency (R_L = 4Ω)

Frequency Response

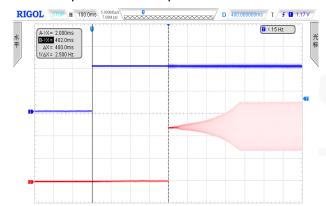
Noise Floor

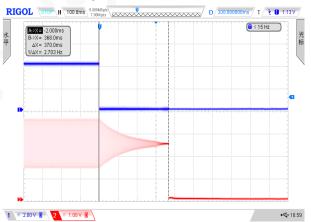

Performance Characteristics

 T_A =25°C, PV_{DD} =5V, C_{IN} =0.22 μ F, R_L =L(33 μ H) + R+L(33 μ H), unless otherwise noted.

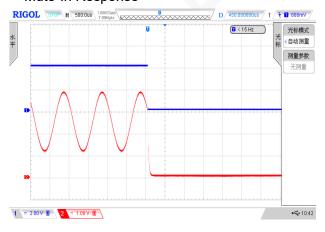

•← 16:57

Speaker Mode

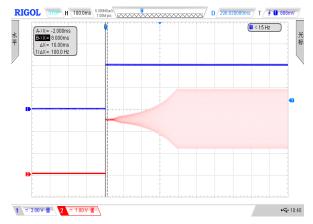

Crosstalk


PSRR

Start-up From EN Response



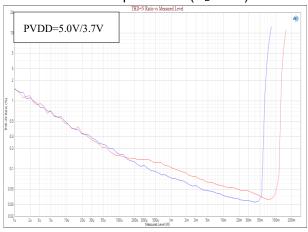
Shutdown Response



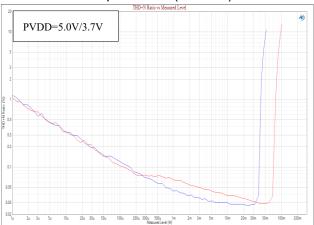
Mute-In Response

1 = 2.00 V **2** = 1.00 V **3**

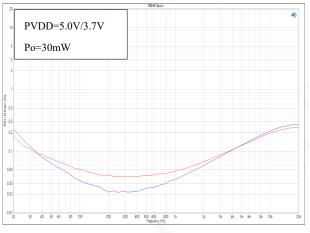
Mute-Out Response

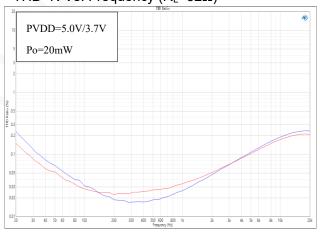

www.toll-semi.com

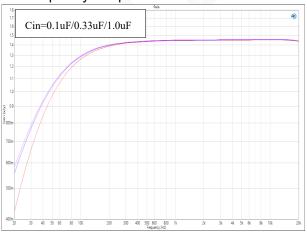
Performance Characteristics

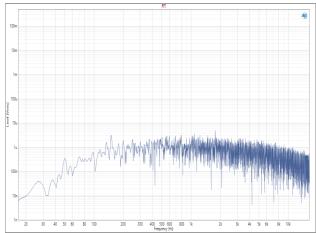

 T_A =25°C, PV_{DD} =5V, C_{IN} =0.22 μ F, R_L =L(33 μ H) + R+L(33 μ H), unless otherwise noted.

Headphone Mode


THD+N Vs. Output Power (R_L =16 Ω)


THD+N Vs. Output Power (R_L =32 Ω)


THD+N Vs. Frequency (R_L =16 Ω)


THD+N Vs. Frequency (R_L=32Ω)

Frequency Response

Noise Floor

Application Information

Input Capacitors (Ci)

In the typical application, an input capacitor, Ci, is required to allow the amplifier to bias the input signal to the proper DC level for optimum operation. In this case, Ci and the minimum input impedance Ri form is a high-pass filter with the corner frequency determined in the follow equation:

$$fc = \frac{1}{(2\pi RiCi)}$$

It is important to consider the value of Ci as it directly affects the low frequency performance of the circuit. For example, when Ri is $10k\Omega$ and the specification calls for a flat bass response are down to 150Hz. Equation is reconfigured as followed:

$$Ci = \frac{1}{\left(2\pi R_i f_c\right)}$$

When input resistance variation is considered, the Ci is 112nF, so one would likely choose a value of 150nF. A further consideration for this capacitor is the leakage path from the input source through the input network (Ci, Ri + Rf) to the load. This leakage current creates a DC offset voltage at the input to the amplifier that reduces useful headroom, especially in high gain applications. For this reason, a low-leakage tantalum or ceramic capacitor is the best choice. When polarized capacitors are used, the positive side of the capacitor should face the amplifier input in most applications as the DC level is held at VDD/2, which is likely higher than the source DC level. Please note that it is important to confirm the capacitor polarity in the application.

Decoupling Capacitor (CS)

The TMS8201E is a high-performance CMOS audio amplifier that requires adequate power supply decoupling to ensure the output total harmonic distortion (THD) as low as possible. Power supply decoupling also prevents the oscillations causing by long lead length between the amplifier and the speaker.

The optimum decoupling is achieved by using two different types of capacitors that target on different types of noise on the power supply leads. For higher frequency transients, spikes, or digital hash on the line, a good low Equivalent-Series-Resistance (ESR) ceramic capacitor, typically $1\mu F$, is placed as close as possible to the device PVDD pin for the best operation. For filtering lower frequency noise signals, a large ceramic capacitor of $10\mu F$ or greater placed near the audio power amplifier is recommended.

How to Reduce EMI

Most applications require a ferrite bead filter for EMI elimination shown at Figure 1. The ferrite filter reduces EMI around 1MHz and higher. When selecting a ferrite bead, choose one with high impedance at high frequencies, but low impedance at low frequencies.

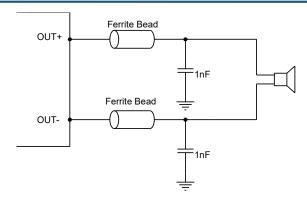


Figure 1: Ferrite Bead Filter to Reduce EMI

Under Voltage Lock-out (UVLO)

The TMS8201E incorporates circuitry designed to detect low supply voltage. When the supply voltage drops to 2.3V or below, the TMS8201E goes into a state of shutdown, and the device comes out of its shutdown state and restore to normal function only when VDD higher than 2.5V.

Short Circuit Protection (SCP)

The TMS8201E has short circuit protection circuitry on the outputs to prevent the device from damage when output-to-output shorts, output-to-VDD shorts or output-to-GND shorts occur. When a short circuit occurs, the device immediately goes into shutdown state. Once the short is removed, the device will be reactivated.

DC Volume Control

The TMS8201E integrated 64-step DC volume control—apply DC voltage on the VOL pin to set the amplifier's gain. Below table shows the gain versus voltage of VOL pin.

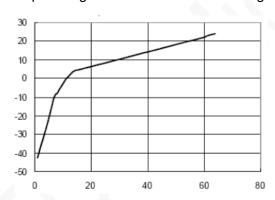


Figure 2: Class D Gain vs. VOL Voltage

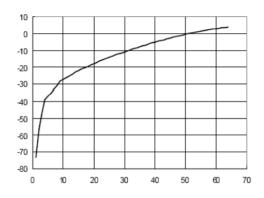


Figure 3: Class AB Gain vs. VOL Voltage

HP/SPK Operation

In order to control the speaker and headphone switch, the TMS8201E contains detection circuitry: When HP/SPK is logic low, speaker (Class D) actives; when logic high, headphone (Class AB) actives. This pin is pulled low internally.

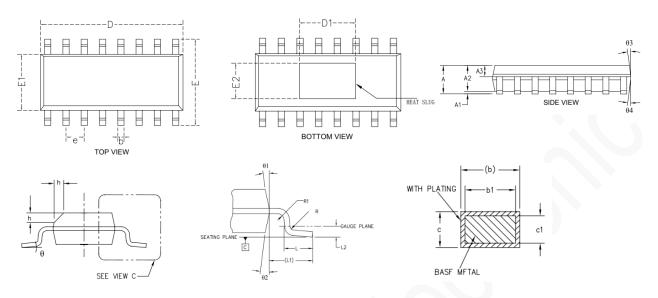
Over Temperature Protection (OTP)

Thermal protection on the TMS8201E prevents the device from damage when the internal die temperature exceeds 150°C. There is a 15°C tolerance on this trip point from device to device. Once the die temperature exceeds the set point, the device will enter the shutdown state and the outputs

www.toll-semi.com

TMS8201E

拓尔微电子 TOLL Microelectronic


are disabled. This is not a latched fault. The thermal fault is cleared once the temperature of the die decreased by 40°C. This large hysteresis will prevent motor boating sound well and the device begins normal operation at this point with no external system interaction.

POP and Click Circuitry

The TMS8201E contains circuitry to minimize turn-on and turn-off transients or "click and pops", where turn-on refers to either power supply turn-on or device recover from shutdown mode. When the device is turned on, the amplifiers are internally muted. An internal current source ramps up the internal reference voltage. The device will remain in mute mode until the reference voltage reach half supply voltage, 1/2 VDD. As soon as the reference voltage is stable, the device will begin full operation. For the best power-off pop performance, the amplifier should be set in shutdown mode prior to removing the power supply voltage.

Package Information

Package: ESOP16

Symbol	Dimensions In Millimeters		Symbol	Dimensions In Millimeters			
	Min	Тур.	Max	Symbol	Min	Тур.	Max
Α	1.45		1.8	E1	3.80	3.90	4.00
A1	0.1	0.15	0.25	E2	2.31	2.41	2.51
A2	1.35	1.45	1.55	h	0.30	0.40	0.50
A3	0.55	0.65	0.75	L	0.45	0.60	0.80
b	0.36		0.51	R	0.07		
b1	0.35	0.40	0.45	R1	0.07		
С	0.18		0.25	θ	0		8°
c1	0.17	0.2	0.23	Θ1	6°	8°	10°
D	9.80	9.90	10.00	Θ2	5°	7°	9°
D1	3.71	3.81	3.91	Θ3	6°	8°	10°
E	5.80	6.00	6.20	Θ4	5°	7°	9°
е	1.27 BSC			L2		0.25 REF	
L1	1.04 REF						

Note:

- 1. Follow from JEDEC MS-0137E.
- 2. Dimension "D" and "E1"does not include mold flash.
- 3. Flash or protrusion shall not exceed 0.25mm per side.

Important Notification

This document only provides product information. TOLL Microelectronic Inc. TOLL reserves the right to make corrections, modifications, enhancements, improvements, and other changes to its products and to discontinue any product without notice at any time.

TOLL Microelectronic Inc. cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a TOLL product. No circuit patent licenses are implied.

All rights are reserved by TOLL Microelectronic Inc. http://www.toll-semi.com