

快速关断同步整流控制器

描述

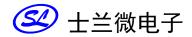

SD8525L 是一款內置 MOS 的高性能,快速关断的同步整流控制芯片。 在高性能隔离型电源拓扑应用中替代肖特基二极管,以提高系统效率。可配 合原边芯片工作在 CCM、DCM、QR 多种工作模式。

SD8525L 采用內置 VCC 供电技术,集成高压供电和输出供电两种供电方式。內置斜率检测功能,防止在谐振阶段的误导通。同时兼容高侧端应用和低侧端应用。

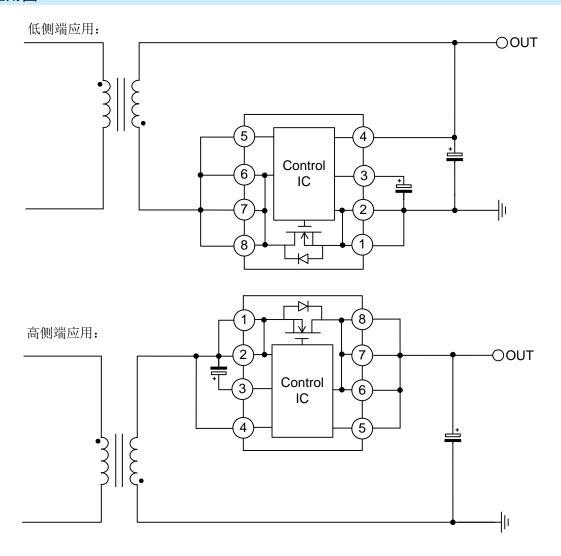
SD8525L 采用 SOP8 贴片封装。

主要特点

- ◆ 内置 60V, 10mΩ 高性能 MOS
- ◆ 兼容高侧端和低侧端同步整流应用
- ◆ 兼容 DCM, CCM, QR 多种应用模式
- ◆ 斜率检测功能,防止在谐振阶段的误导通
- ◆ 内置高压端 VCC 供电和输出端 VCC 供电技术
- ◆ 250µA 低待机电流
- ◆ SOP8 封装

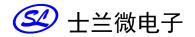


应用

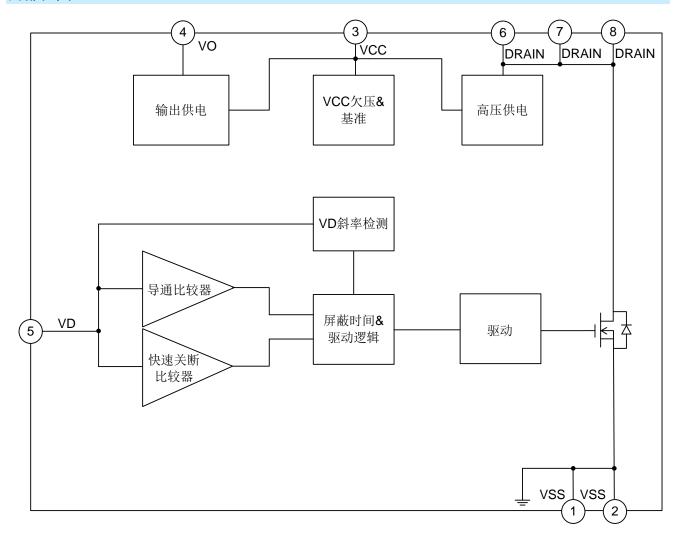

- ◆ 适配器
- ◆ 充电器

产品规格分类

产品名称	封装形式	打印名称	环保等级	包装方式
SD8525L	SOP-8-225-1.27	SD8525L	无卤	料管
SD8525LTR	SOP-8-225-1.27	SD8525L	无卤	编带



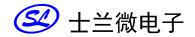
典型应用图



注: 以上线路及参数仅供参考,实际的应用电路请在充分的实测基础上设定参数。

版本号: 1.0

内部框图

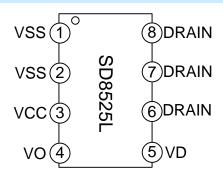


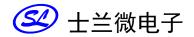
极限参数(除非特殊说明,T_{amb}=25°C)

参数	符号	参数范围	单位
VCC端电压	V_{VCC}	-0.3~6.5	V
VO端电压	V_{VO}	-0.3~25	V
VD端电压	V_{VD}	-1 ∼60	V
漏源(地)电压	V_{DS}	-1∼60	V
栅源 (地) 电压	V_{GS}	±20	V
漏极电流	I _D	14	Α
工作结温	TJ	150	°C
工作温度范围	T_{AMB}	-25~85	°C
贮存温度范围	T _{STG}	-55~150	°C

版本号: 1.0

http://www.silan.com.cn


电气参数(内置功率 MOSFET 部分,除非特殊说明,T_{amb}=25°C)


参数	符号	测试条件	最小值	典型值	最大值	单位
漏源击穿电压	B _{VDSS}	V_{GS} =0 V , I_D =250 μA	60			V
漏源漏电流	I _{DSS}	V _{DS} =60V, V _{GS} =0V			1.0	μΑ
导通电阻	R _{DS(ON)}			10		mΩ

电气参数(除非特殊说明, V_{cc}=6V, T_{amb}=25°C)

参数	符号	测试条件	最小值	典型值	最大值	单位
VCC供电						
高压充电电流	I _{HVC}	V _{VCC} =0V, V _{VD} =40V		80		mA
输出供电电流	Ivo	V _{VCC} =5V, V _{VO} =12V		15		mA
输出供电最小输出电压	V _{VOCHARGEMIN}	1		7		V
VCC供电电压	V _{CCMAX}	V _{DRAIN} =12V	5.4	5.8	6.2	V
开启关断						
VCC开启电压	V _{CC_ST}	1	4.4	4.7	5.0	V
VCC关断电压	V _{CC_UVL}		4.2	4.5	4.8	V
VCC静态电流	I _{VCC0}	V _{VCC} =6V, V _{VD} =6V		250		μΑ
VCC工作电流	Ivcc	V_{VCC} =6 V , f_{VD} =50 KHz		1.3		mA
控制部分						
导通阈值	V_{DTH_ON}	1	-160	-120	-80	mV
斜率检测窗口时间	T _{SLEW}			22		ns
关断阈值	V_{DTH_OFF}			0		mV
关断延时	T _{OFF_DELAY}			25		ns
导通屏蔽时间	T _{ONBLANKING}		0.8	1.2	1.6	μs
关断屏蔽阈值	Voffblanking			1.5		V
驱动部分						
GATE上拉电流	I _{PU_DRV}	1		1		Α
GATE下拉电流	I _{PD_DRV}			3.0		Α

管脚排列图

管脚说明

管脚号	管脚名称	I/O	功能描述	
1, 2	VSS	G	芯片地和功率MOS管源端	
3	VCC	Р	芯片电源	
4	VO	I	输出供电端	
5	VD	I	漏端电压检测端	
6, 7, 8	DRAIN	I	功率MOS管漏端	

功能描述

VCC 供电

SD8525L 具有高压供电功能和输出供电功能。控制芯片通过检测 VCC 管脚和 VO 管脚的电压来切换供电方式。在 VCC 电压未达到开启电压前,采用高压供电。在 VCC 电压达到开启电压后,控制芯片检测 VO 端口电压是否满足最小 供电电压,如果满足切换为输出供电,如果不满足则保持高压供电。

VCC 欠压和启动

SD8525L 具有 VCC 欠压保护功能,在 VCC 上升到 4.7V 后退出 VCC 欠压状态,在 VCC 降至 4.5V 以下进入 VCC 欠压状态,锁定同步整流 MOS 关断。

开通和关断

SD8525L 具有斜率检测功能。如图 1 所示,控制器内部检测 VD 电压从 V_{WH} 降至 V_{WL} 的时间 T_{W} 是否小于设定的检 测窗口时间(22ns)。若小于设置的窗口时间且 VD 电压低于导通阈值,经过导通延时后,同步整流 MOS 导通。当 T_W 大于设置的窗口时间时,这个周期不导通。

同步整流 MOS 导通后,随着副边电流的下降,VD 电压上升至关断阈值,经过关断延时后,功率 MOS 栅极电压 V_{GS}被拉至低电平,同步整流 MOS 关断。

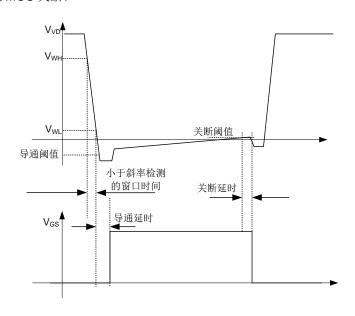
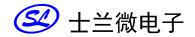



图 1.开通和关断意图

版本号: 1.0

导通屏蔽时间

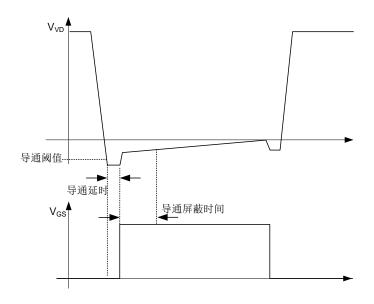


图 2.导通屏蔽时间示意图

如图 2 所示,同步整流 MOS 导通后,控制系统会产生一个导通屏蔽时间,在这个屏蔽时间内,将会维持同步整流 MOS 处于导通状态。

关断屏蔽时间

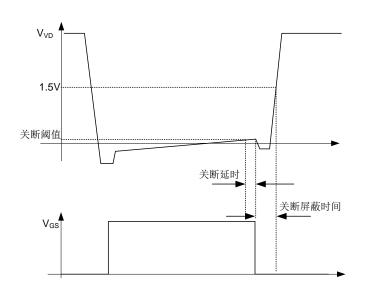
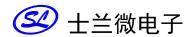
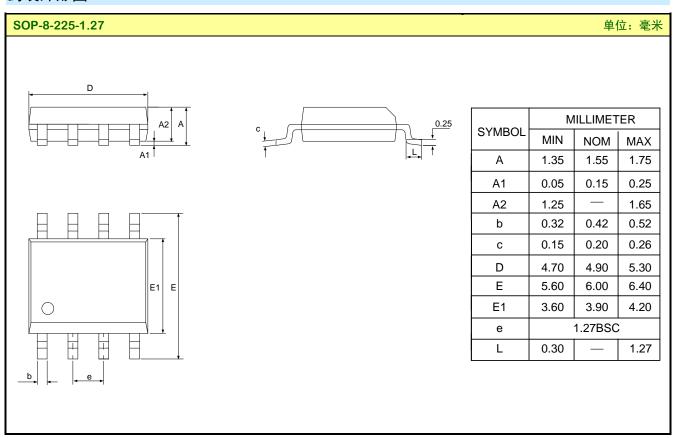
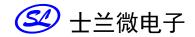




图 3.关断屏蔽时间示意图

如图 3 所示。在同步整流 MOS 关断后,系统会产生一段关断屏蔽时间,这个屏蔽时间在 VD 上升到 1.5V 后解除。 在屏蔽时间内控制器会维持同步整流 MOS 处于关断状态。

封装外形图



MOS电路操作注意事项:

静电在很多地方都会产生,采取下面的预防措施,可以有效防止 MOS 电路由于受静电放电影响而引起的损坏:

- 操作人员要通过防静电腕带接地。
- 设备外壳必须接地。
- 装配过程中使用的工具必须接地。
- 必须采用导体包装或抗静电材料包装或运输。

重要注意事项:

- 1. 士兰保留说明书的更改权, 恕不另行通知。
- 2. 客户在下单前应获取我司最新版本资料,并验证相关信息是否最新和完整。产品应用前请仔细阅读说明书,包括其中的电路操作注意事项。
- 3. 我司产品属于消费类电子产品或其他民用类电子产品。
- 4. 在应用我司产品时请不要超过产品的最大额定值,否则会影响整机的可靠性。任何半导体产品特定条件下都有一定的失效或发生故障的可能,买方有责任在使用我司产品进行系统设计、试样和整机制造时遵守安全标准并 采取安全措施,以避免潜在失败风险可能造成人身伤害或财产损失情况的发生。
- 5. 购买产品时请认清我司商标,如有疑问请与本公司联系。
- 6. 产品提升永无止境, 我公司将竭诚为客户提供更优秀的产品!
- 7. 我司网站 http://www.silan.com.cn

产品	名称:	SD8525L	文档类型:	说明书			
版	权:	杭州士兰微电子股份有限公司	公司主页:	http://www.silan.com.cn			
版	本:	1.0					
修改	修改记录:						
	1. 正式版本发布						

版本号: 1.0 共8页 第8页