

GX709 采用小外形尺寸晶体管 (SOT) 封装的可编程电阻器温度开关

1 特性

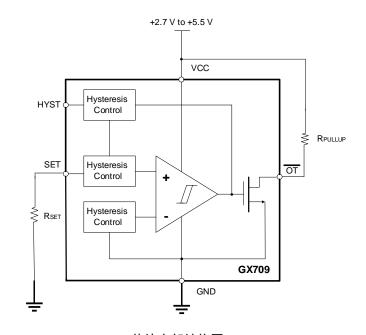
- 阈值精度:
 - 典型值±0.5℃
 - 最大值±3℃(+60℃至+100℃时)
- 由1%外部电阻器设定的温度阀值
- 低静态电流: 典型值为 33μA
- 开漏、低电平有效输出级
- 可通过引脚选择的2℃或者10℃温度滞后
- V_{CC}=0.8V上指定的复位操作
- 电源范围: 2.7V至5.5V
- 封装方式:5引脚SOT23、6引脚DFN封装

2 应用范围

- 计算机(笔记本和台式机)
- 服务器
- 工业用和医疗用设备
- 存储区域网络
- 汽车用

150Ω 2.7 V to 5.5V ₩ 0.1 μF \geq 470 k Ω VCC VCC $\overline{\mathsf{OT}}$ **GX709** Microprocessor SET **GND** HYST **GND** ≶Rset 典型应用

3 芯片概述


GX709是一款完全集成的、可编程电阻器温度开关,在其全工作范围内,只需一个外部电阻器即可设定温度 阀值。GX709 提供一个开漏、低电平有效输出和一个介于2.7V至5.5V的电源电压范围。

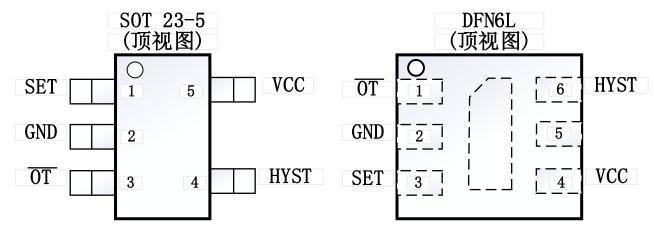
温度阀值精度的典型值为 ± 0.5 \mathbb{C} 而最大值为 ± 3 \mathbb{C} (± 60 \mathbb{C} $\Xi + 100$ \mathbb{C} 时)。静态流耗的典型值为 33μ A。可通过引脚选择来确定 2 \mathbb{C} 或者 10 \mathbb{C} 的温度滞后。

GX709采用5引脚SOT23和小尺寸DFN6L封装。

芯片封装信息

产品编号	封装信息	芯片封装面积(NOM)
GX709	裸片	0.919 mm × 0.579 mm
GX709S	SOT23-5	2.80 mm × 1.60 mm
GX709D	DFN6L	1.5 mm ×1.5 mm

芯片内部结构图



=
₹.

1	基本性能	1
2	应用范围	1
3	芯片概述	1
4	引脚配置和功能	2
5	技术指标	3
	5.1 极限工作指标	3
	5.2 静电保护	3
	5.3 建议使用范围	3
	5.4 电气特性	4
	5.5 热性能信息	4
	5.6 典型特性	5

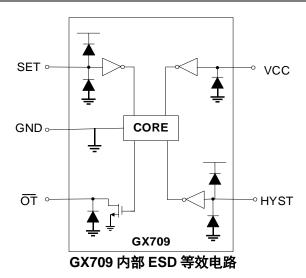
6	操作理论	
	6.1 器件说明	6
	6.2 滞后输入	6
7	应用信息	6
8	封装信息	7
9	订购信息	10
10) 版本更新信息	11

4 引脚配置和功能

引脚功能

PIN			DESCRIPTION		
SOT 23-5	DFN6L	NAME	BESSKII TION		
1	3	SET	温度点设定端。在SET和GND之间连接一个外部1%电阻。		
2	2	GND	接地端。		
3	1	от	开漏、低电平有效输出端。		
4	6	HYST	滞后选择端。 10℃ 时,HYST=VCC;2℃时,HYST=GND。		
5	4	VCC	电源电压引脚。电压范围为 2.7V-5.5V。		
	5	NC	无需连接。		

5 技术指标


5.1 极限工作指标

	MIN	MAX	UNIT
电源电压VCC	-0.3	6	V
OT引脚电压	-0.3	6	V
HYST和SET引脚电压	-0.3	(Vcc+0.3)	V
工作范围	-40	125	$^{\circ}$
结温		150	$^{\circ}$
存放温度	-65	150	$^{\circ}$

除非另有说明,上述表格中均指在大气温度范围内的指标。超出上述表格所给范围可能会导致芯片永久损坏。

5.2 静电保护

		Value	UNIT
静电放电电压V _{ESD}	人体模型(HBM)	5000	V
	充电器件模型(CDM)	2000	V
	Latch up测试	100	mA
	机器模型(MM)	200	V

5.3 建议使用范围

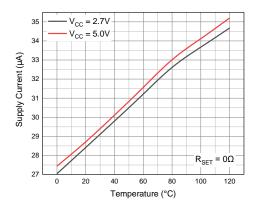
		MIN	NOM	MAX	UNIT
电源电压	VCC	2.7	3.3	5.5	V
工作温度范围	T _A	0		125	°

除非另有说明,上述表格中均指在大气温度范围内的指标。

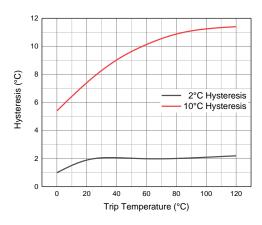
5.4 电气特性

若非特殊说明,以下数据均为芯片在 $T_A=0\,^{\circ}$ 至 +125 $^{\circ}$ 电源电压处于 2.7V~5.5V 区间内的特性。

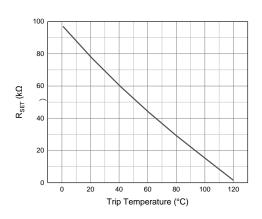
	参 数	测试条件	MIN	TYP	MAX	UNIT
电源						
VCC	电源电压范围		2.7		5.5	V
loo	电源电流	VCC=5V		33	55	μΑ
ICC	电源电流	V _{CC} =2.7V		33	55	μA
温 度						
TE	温度误差	T _A =+60℃ 至 +100℃		±0.5	±3	$^{\circ}$
数字输	入 (HYST)		·			
VIH	高电平输入电压		0.7×VCC			V
VIL	低电平输入电压				0.3×VCC	V
C _{IN}	输入电容			10		pF
模拟输	入 (SET)		·			
VIN	输入电压范围		0		VCC	V
Ilkg_in	输入漏电流			1		μΑ
数字开			·			
I(OT_S	SINK) 输出灌电流	V _{OT} =0.3 V	5	12		mA
llkg(O	Γ) 输出漏电流	VOT=VCC		1		μA

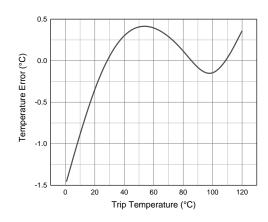

5.5 热性能信息

		GX709	
热度量		DBV(SOT23)	单位
		5 引脚	
θJA	结到环境热阻	217.9	
θJCtop	结至芯片外壳(顶部)热阻	86.3	
θJB	结至电路板热阻	44.6	°C/W
ΨJT	结至顶部的特征参数	4.4	C/VV
ΨЈВ	结至电路板的特征参数	43.8	
θJCbo	结至芯片外壳(底部)热阻	不可用	



5.6 典 型 特 性


在 TA=+25℃ 并且 VCC=2.7V 至 5.5V 时测得,除非额外注明。


工作电流和温度的关系

滞后与触发温度的关系

Rset 与触发温度的关系

温度误差与触发温度的关系

6 操作理论

6.1 器件说明

GX709 是一款完全集成的、电阻器可编辑温度开关,此开关组装有两个依温度而定的电压基准和一个比较器。一个电压基准显示一个正温度系数,而另外一个电压基准显示一个负温度系数。两个电压基准相等时的温度,确定温度触发点。

GX709 的温度阀值可在 0℃至+125℃之间编辑并且由一个处于 SET 引脚和 GND 引脚间的外部 1%电阻设定。 GX709 有一个开漏、低电平有效输出结构,此结构能够轻易地与一个微控制器对接。

6.2 滞后输入

HYST引脚是一个数字输入,此输入可将输入滞后设定为 10℃(HYST=VCC)或者 2℃(HYST=GND)。 当温度接近阀值时,滞后功能阻止OT引脚振荡。 因此,HYST引脚应被一直连接至VCC 或者GND。这个引脚上的其它输入电压有可能导致电源或者电流等功能异常。

7 应用信息

设定点电阻器(RSET)

通过将 RSET 从 SET 引脚连接至 GND 来设定温度阀值。RSET 的值可使用或者从确定:

RSET $(k\Omega)=0.0012T^{2}-0.9308T+96.147$

在这里T为温度阀值。单位为℃。

(1) 散热考虑:

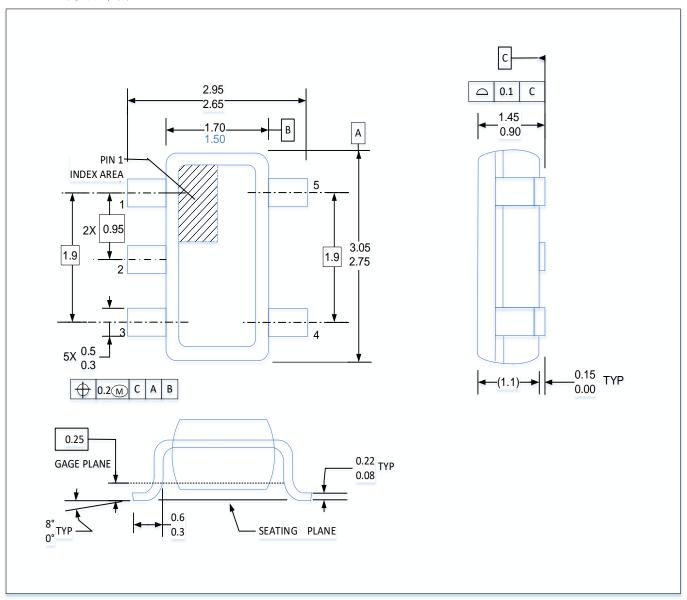
GX709 静态电流的典型值为 33µA。当输出驱动一个高阻抗负载时,器件的功率耗散可忽略。因此,芯片温度与封装温度一致。为了保持准确的温度监控,应该在 GX709 封装与被监控的器件之间提供一个好的散热接触。由于自身发热导致的芯片温度上升由下列方程式确定:

ΔTJ=PDISS×θJA

其中:

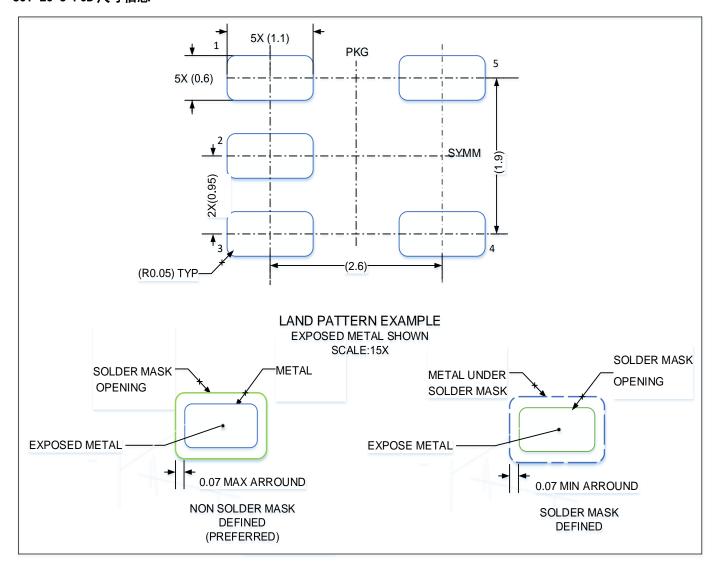
PDISS = 器件的功率耗散。

θJA = 器件热阻。SOT-23 封装的典型热阻为 217.9℃/W。

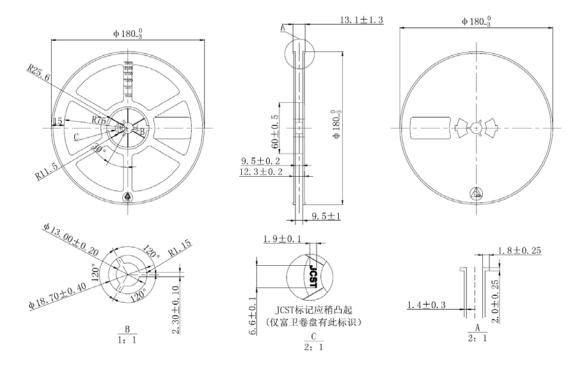

为了限制自我发热的影响,应将输出电流保持在最低水平上。

(2) 电源过滤:

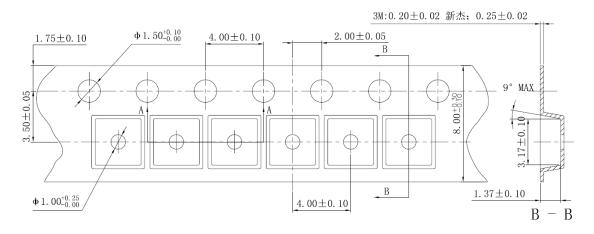
VCC 引脚上的任何明显的噪声有可能导致一个触发点错误。可以通过低通过滤一个使用 150 Ω 电阻器和一个 0.1μF 电容器的电源(V_{CC}) 来大大降低这个噪声。

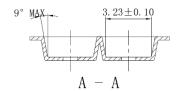


S0T23-5 芯片外形尺寸

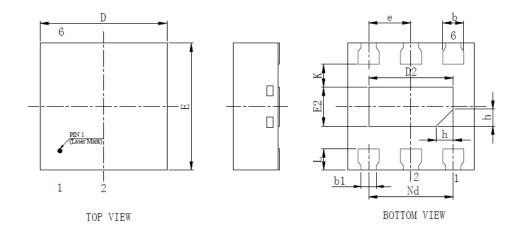


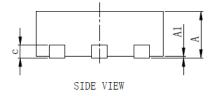
SOT 23-5 PCB 尺寸信息





SOT 23-5 卷盘信息


SOT 23-5 载带信息



DFN6L 芯片外形及 PCB 尺寸信息

SYMBOL	M	ILLIMETI	ER.	
STMBOL	MIN	NOM	MAX	
A	0. 50	0.55	0.60	
A1	0	0.02	0.05	
b	0. 20	0. 25	0.30	
b1	0. 18REF			
С	0. 152REF			
D	1. 45	1. 50	1. 55	
D2	0. 90	1.00	1. 10	
e		0. 50BSC	;	
Nd		1. 00BSC		
E	1. 45	1. 50	1. 55	
E2	0. 36	0.46	0. 56	
L	0. 20	0. 25	0. 30	
h	0.15	0. 20	0. 25	
K	0. 27REF			

9 订购信息

购买编码	器件	封装	标准包装数量	备注
GX709-T&R	GX709	Die	3000	裸片出货
GX709S-T&R	GX709	SOT23-5	3000	卷带包装
GX709D-T&R	GX709	DFN6L	4000	卷带包装

10 版本更新信息

版本	日期	描述	修改页
V1. 0	2021. 12. 12	初始版	所有
V1. 1	2022. 04. 26	芯片封装信息中增加裸片订购信息	P1
V1. 2	2022. 10. 21	增加 ESD 充电器件模型(CDM)信息,增加封装卷盘和载带信息	P3, P9
V1. 3	2022. 11. 14	增加 DFN6L 封装信息及订购信息	P1, P2, P10

NOTE

以上内容为中科银河芯推荐的 GX709 在实际应用中的注意事项。客户在参照以上内容使用 GX709 时,应根据自身的使用需求和应用场景,提前评估采用的相关组件是否合乎目标用途,测试并验证所搭建的测温系统功能的正确性,以避免造成损失。