

GT216 Small Size, Low-Power, Unidirectional, Current Shunt Monitor

1 Features	2 Application
- Common-mode range: +1.8 V to +5.5 V	- Notebook computers
- Rail-to-rail output	- Cell phones
- Offset voltage: ±120 μV max	- Telecom equipment
- Gain error: ±0.4% max	- Power management
- Quiescent current: 24 μA	- Battery chargers

Circuit Diagram 3 Description The GT216 is a high-side voltage output current shunt monitor that can sense drops across shunts at common-mode voltages from +1.8V to +5.5V. Four Shunt fixed gains are available: 25V/V, 50V/V, 100V/V, and SupplyO-O Load 200V/V. The low offset of the Zerø-Drift architecture enables current sensing with maximum drops across the shunt as low as 10mV full-scale, or with wide dynamic ranges of over 1000:1. These devices operate from a single +1.8V to +5.5V power supply, drawing a maximum of 25pA of supply current. The GT216 series are specified over the temperature range of -40°C to +125°C, and offered in a chip-scale package. OUT

4 Revision History

Revision	Date	Note
Rev. A1. 0	2023. 09. 02	Original Version
Rev. A1. 1	2023. 12. 15	1.Updated Package Qty 2.Added Tape and Reel Information 3. Added Application Note
Rev. A1. 2	2024. 05. 24	 Added Marking Added MSL

The latest datasheet version should be checked on the GTIC official website, as the company does not actively inform customers about updates to the datasheet.

www.gtic.com 1/10

5 Device Summary, Pin and Packages

Table 5-1. Device Summary(1)

Serial Name	Part Name	Package	Body Size (Nom)	Marking ⁽²⁾	MSL ⁽³⁾	Package Qty
GT216	GT216A1QA	QFN1.4×1.8-10L	1.40mm×1.80mm×0.55mm	2161 XXXX	3	Tape and Reel,4000
GT216	GT216A2QA	QFN1.4×1.8-10L	1.40mm×1.80mm×0.55mm	2162 XXXX	3	Tape and Reel,4000
GT216	GT216A3QA	QFN1.4×1.8-10L	1.40mm×1.80mm×0.55mm	2163 XXXX	3	Tape and Reel,4000
GT216	GT216A4QA	QFN1.4×1.8-10L	1.40mm×1.80mm×0.55mm	2164 XXXX	3	Tape and Reel,4000

⁽¹⁾ For all available packages, please contact product sales.

FAE: 13148878879

www.gtic.com 2/10

⁽²⁾ There may be additional marking, which relates to the lot trace code information (data code and vendor code), the logo or the environmental category on the device.

⁽³⁾ MSL, The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications.

^{(4) &}quot;XXXXX" in Marking will be appeared as the batch code.

5 Device Summary, Pin and Packages(Continued)

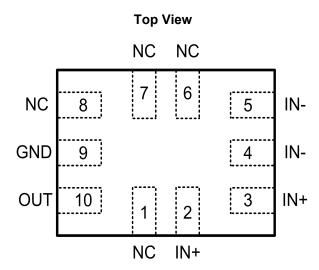


Fig.5-1. GT216: QA (10-Pin QFN1.4x1.8-10L) Package

Table 5-2 Pin definition

	Pin	I/O	Description
Name	QA	1/0	Description
IN+	2,3		Positive(noninverting) input
IN-	4,5	I	Negative (inverting) input
GND	9	-	Negative (lowest) supply
OUT	10	0	Output
NC	1,6,7,8	-	-

^{*} It is suggested to leave the unconnected pins floating.

www.gtic.com 3/10

6 Voltage, Temperature, ESD and Thermal Ratings

6.1 Absolute Maximum Ratings

Parameters	Min.	Max.	Unit
Supply Voltage		6.5	V
Select Input Voltage	V-0.5	V+0.5	V
Maximum Junction Temperature	-55	150	°C
Storage Temperature Range	-55	150	°C

⁽¹⁾ Stresses above these ratings may cause permanent damage. Exposure to absolute maximum conditions for extended periods may degrade device reliability. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those specified is not implied.

6.2 ESD Ratings

	E	SD	Value	Unit
\//ESD\	SD) Electrostatic Discharge	Human-Body Model (HBM)	5 K	V
V(ESD)		Charged-Device Model(CDM)	2 K	V

⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

Over operating free-air temperature range (unless otherwise noted)

Symbol	Parameter	Min	Max	Unit
V _{CC}	Single-Supply, V _S =(V+) - (V-)	1.8	5.5	V
TA	Operating Temperature	-40	125	°C

6.4 Thermal Information

Package Type θ _{JA}		0 JC	Unit
QFN1.4×1.8-10L	115	66	°C/W

www.gtic.com 4/10

⁽²⁾ Input terminals are diode-clamped to the power-supply rails. Input signals that can swing more than 0.3V beyond the supply rails should be current- limited to 10mA or less.

⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

7 Electrical Specifications

 $V_{CM}=V_{IN+}=4.2V$. FULL= -40° C to $+125^{\circ}$ C, Typical values are at TA= $+25^{\circ}$ C. (unless otherwise noted)

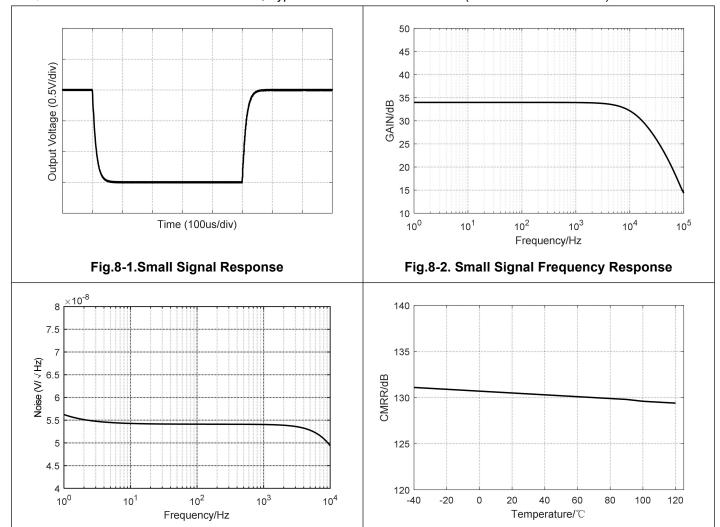
Parameter	Symbol	Test Conditions	Vcc	TA	Min	Тур	Max	Units
'		Power Supply	•					
Operating Voltage	Vs		1.8V to 5.5V	FULL	1.8		5.5	V
Quiescent Current	10	T _A =25°C, V _{IN+} =+4.2V	4.007	+25°C		24	30	μΑ
(per Amplifier)	IQ	T _A =-40°C to +125°C	4.2V	FULL			38	μΑ
Power-Supply Rejection Ratio	PSRR	V _{IN+} =+1.8V to +5.5V						
GT216A1			1.8V to 5.5V	+25°C	80	100		dB
GT216A2			1.8V to 5.5V	+25°C	85	108		dB
GT216A3			1.8V to 5.5V	+25°C	85	108		dB
GT216A4			1.8V to 5.5V	+25°C	85	108		dB
Turn-on Time		V _{IN+} =0 to +2.5V; V _{SENSE} =10mV; V _{OUT} ±0.5%	0 to 2.5V	+25°C		200		μs
'		Input			•		'	
Input Bias Current	I _{IN-}		4.2V	+25°C		4.5		μΑ
Offset Voltage	Vos							
GT216A1						±40	±120	μV
vs Temperature	dV _{OS} /dT					0.1	0.3	μV/°C
GT216A2						±40	±100	μV
vs Temperature	dVos/dT					0.1	0.3	μV/°C
GT216A3						±20	±75	μV
vs Temperature	dV _{OS} /dT					0.1	0.3	μV/°C
GT216A4						±20	±75	μV
vs Temperature	dV _{OS} /dT					0.1	0.3	μV/°C
Common-Mode Voltage	V_{CM}		1.8V to 5.5V	FULL	1.8		5.5	V
Common-Mode Rejection Ratio	CMRR	V _{IN+} =+1.8V to +5.5V						
GT216A1			1.8V to 5.5V	+25°C	80	100		dB
GT216A2			1.8V to 5.5V	+25°C	85	108		dB
GT216A3			1.8V to 5.5V	+25°C	85	108		dB
GT216A4			1.8V to 5.5V	+25°C	85	108		dB

www.gtic.com 5/10

7 Electrical Specifications (Continued)

 $V_{\text{CM}} = V_{\text{IN+}} = 4.2 \text{V}$. FULL= -40°C to $+125^{\circ}\text{C}$, Typical values are at TA= $+25^{\circ}\text{C}$. (unless otherwise noted)

Parameter	Symbol	Conditions	Vcc	TA	Min	Тур	Max	Units
		Frequency Response						
Bandwidth	BW	C _{LOAD} =10pF						
GT216A1			4.2V	+25°C		20		kHz
GT216A2			4.2V	+25°C		10		kHz
GT216A3			4.2V	+25°C		5		kHz
GT216A4			4.2V	+25°C		2.5		kHz
Slew Rate	SR		4.2V	+25°C		0.03		V/µs
Voltage Noise Density	en		1.8V to 5.5V	+25°C		60		nV/√Hz
		Output	1 2.2.					
Gain	G							
GT216A1			1.8V to 5.5V	+25°C		25		V/V
GT216A2			1.8V to 5.5V	+25°C		50		V/V
GT216A3			1.8V to 5.5V	+25°C		100		V/V
GT216A4			1.8V to 5.5V	+25°C		200		V/V
Gain Error	GE							
GT216A1		V _{OUT} =0.2V to 2.5V	4.2V	+25°C		±0.1	±0.4	%
vs Temperature		V _{OUT} =0.2V to 2.5V	4.2V	FULL		0.1	0.3	m%
GT216A2			4.2V	+25°C		±0.1	±0.4	%
vs Temperature			4.2V	FULL		0.1	0.3	m%
GT216A3			4.2V	+25°C		±0.1	±0.4	%
vs Temperature			4.2V	FULL		0.1	0.3	m%
GT216A4			4.2V	+25°C		±0.1	±0.4	%
vs Temperature			4.2V	FULL		0.1	0.3	m%
Nonlinearity			1.8V to 5.5V	FULL		±0.01		%
Maximum Capacitive Load	C _{LOAD}	No Sustained Oscillation	1.8V to 5.5V	FULL		750		pF
Swing to V+		R_L =10k Ω to GND	1.8V to 5.5V	FULL		(V+)- 0.1	(V+)- 0.3	V
Swing to GND		R _L =10kΩ to GND	1.8V to 5.5V	FULL		(V _{GND})		V


www.gtic.com 6/10

8 Typical Characteristics

Fig.8-3. Noise Response

V_{CM}=V_{IN+}=4.2V. FULL=–40°C to +125°C, Typical values are at TA=+25°C. (unless otherwise noted)

www.gtic.com 7/10

Fig.8-4. CMRR/PSRR vs Temperature

9 Detailed Description

The GT216 is a high-side voltage output current shunt monitor that can sense drops across shunts at common-mode voltages from +1.8V to +5.5V. Four fixed gains are available: 25V/V, 50V/V, 100V/V, and 200V/V. The low offset of the Zerø-Drift architecture enables current sensing with maximum drops across the shunt as low as 10mV full-scale, or with wide dynamic ranges of over 1000:1.

10 Application Note

Fig.10-1 shows the basic connections of the GT216. The input pins, IN+ and IN-, should be connected as closely as possible to the shunt resistor to minimize any resistance in series with the shunt resistance.

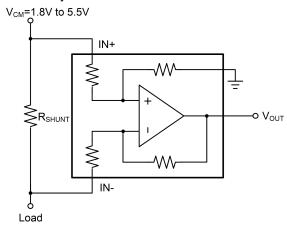
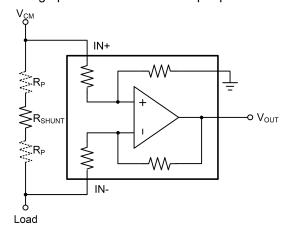
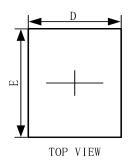
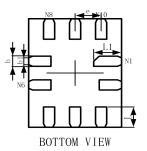


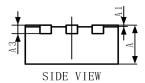
Fig.10-1. Typical Application

Fig.10-2 illustrates the GT216 connected to a shunt resistor with additional trace resistance in series with the shunt placed between where the current shunt monitors the input pins. With the typically low shunt resistor values commonly used in these applications, even small amounts of additional impedance in series with the shunt resistor can significantly affect the differential voltage present at the GT216 input pins.



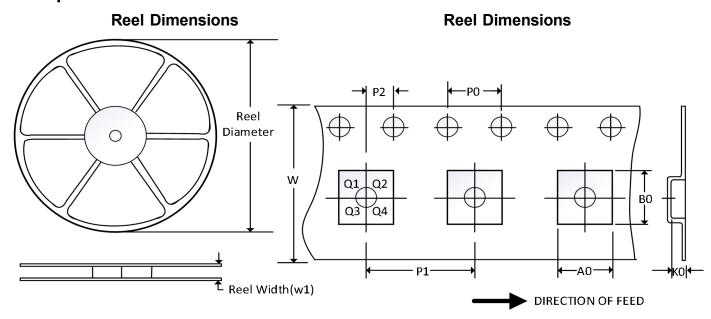

Fig. 10-2. Shunt Resistance Measurement Including Trace Resistance


www.gtic.com 8/10



11 Package Outline Dimension

QFN1.4x1.8-10L



Symbol	Dimensions i	in Millimeters	Dimensions in Inches			
Symbol	Min Max		Min	Max		
Α	0.500	0.600	0.020	0.024		
A1	0.000	0.050	0.000	0.002		
A3	0.152	2REF	0.006	6REF		
D	1.350	1.450	0.053	0.057		
E	1.750	1.850	0.069	0.073		
D1	_	_	_	_		
E1	_	_	_	_		
k	_	_	_	_		
b	0.150	0.250	0.006	0.010		
b1	0.100	0.200	0.004	0.008		
е	0.400TYP		0.016TYP			
L	0.350	0.450	0.014	0.018		
L1	0.450	0.550	0.018	0.022		

www.gtic.com 9/10

12 Tape and Reel Information

NOTE: The picture is only for reference. Please make the object as the standard.

Key Parameter List of Tape and Reel

Package Type	Reel Diameter	Reel Width (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant
QFN-1.4x1.8-10L	7"	9.0	1.60	2.00	0.85	4.0	4.0	2.0	8.0	Q1

NOTE:

All dimensions are nominal.
 Plastic or metal protrusions of 0.15mm maximum per side are not included.

10/10 www.gtic.com