

60V 高压同步整流二极管

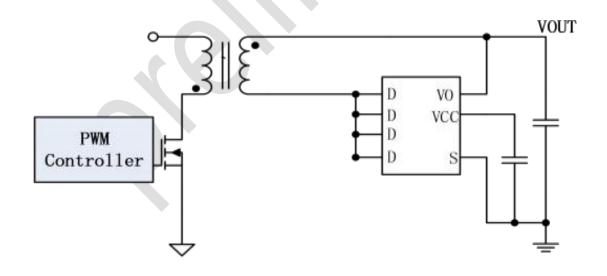
特点

- 兼容 DCM、CCM 和 QR 反激转换器
- 输出电压直接供给 VCC
- 150uA 低静态电流
- 4.5A 驱动电流保证 MOSFET 快速关断
- 最高耐压 60V
- 支持最大 200kHz 开关频率
- 支持低输出电压工作
- 采用 SOP-8 封装形式

应用

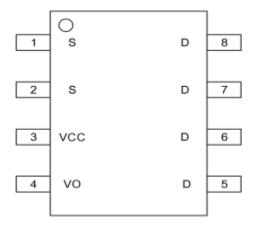
- 移动设备充电器
- 适配器
- 反激转换器

描述


MST1694KC-B 是一款用于反激变换器的快速关 断智能整流器,其内部集成 60V MOSFET。

它可以提供比二极管整流器更高的效率。可将内部 开关管的正向电压压降调节至 40mV,并在漏源电压反 向之前,将开关管关断。

适用于不连续传导模式(DCM)、准谐振模式(QR)和连续传导模式(CCM)等多种模式的应用。


MST1694KC-B 采用 SOP-8 封装。

典型应用电路

60V, 高压同步整流二极管

封装形式及引脚分布

引脚编号	引脚命名	引脚描述		
1, 2	S	MOSFET 源极		
3	VCC	芯片供电引脚		
4	VO	内部供电引脚		
5, 6, 7, 8	D	MOSFET 漏极		

www.mst-ic.com Page 2-11 Rev.1-0 Jul. 2023

绝对最大额定参数

符号	描述	范围	单位
VCC	VCC 耐压	-0.3 ~ 7	V
Vo	VOUT 耐压	-0.3 ~25	V
VD	VD D 耐压		V
FMAX	最大开关频率	200	KHz
PTR1	PTR1 热阻(SOP8)ΘJA		°C/W
T _{stg}	存储温度	-55 ~ 150	°C
Tsolder	焊接温度	260°C, 10s	

注:超过额定参数规定的范围,会造成芯片的损坏,不能保证超过额定参数范围的芯片的工作状

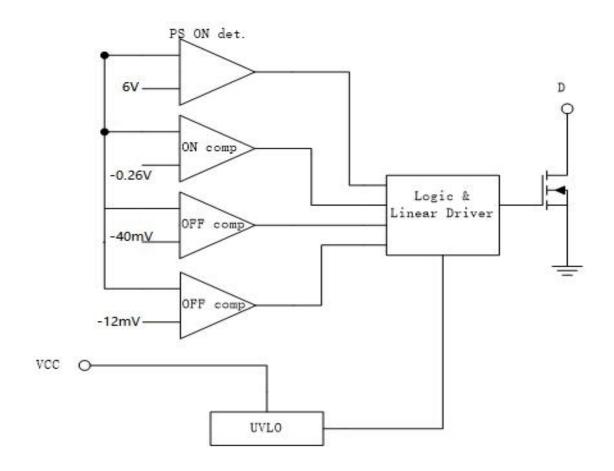
态。暴露在额定参数之外将影响芯片的可靠性。

ESD 参数

参数	描述	范围	单位
V_{ESD}	人体模式(HBM)	6	KV

注:超过额定参数规定的范围,会造成芯片的损坏,不能保证超过额定参数范围的芯片的工作状

态。暴露在额定参数之外将影响芯片的可靠性。


电气参数

(除特殊说明外,以下参数均在 $T_A=25^{\circ}$ C, VCC=6.0V 条件下测试)

参数	符号	条件	最小值	典型值	最大值	单位
输入部分						
VCC UVLO	$V_{ ext{UVLO1}}$			3		V
VCC UVLO 迟滞	$V_{\scriptscriptstyle UVLO2}$			0.4		V
VCC 设定电压			5	5.6	5.8	V
VOUT 充电电流	$I_{\text{VOUT_CHG}}$	VO=5V VCC=3.5V		65		mA
静态电流	I_Q	VO=12V		150		μΑ
控制部分						
开启阈值	V_{ON_TH}		-250	-260	-300	mV
开启延时		$C_{LOAD} = 5nF$		80		ns
7/ / / / / / / / / / / / / / / / / / /		$C_{LOAD} = 10nF$		90		ns
关断阈值	$V_{\mathrm{OFF_TH1}}$		-20	-12	-9	mV
关断延时		$C_{LOAD} = 5nF$		15		ns
大则延时		C _{LOAD} =10nF		25		ns
钳位电压	$V_{\text{REG}(\text{DRV})}$		-50	-40	-32	mV
最小开启时间	T_{ON_MIN}		550	650	800	ns
最小关断时间	T_{OFF_MIN}		0.9	1.2	1.5	us
关断迟滞(VDS)	$ m V_{B ext{-}OFF}$			3		V
高端检测电压	$V_{PS_ON_DET}$			6		V
高端检测时间	T _{PS_ON_DET}			0.3		us
驱动部分						
最大驱动电流				0.8		A
最大灌电流				4.5		A

功能框图

功能模块示意图

概述

MST1694KC-B 是一款用于反激变换器的快速关断智能整流器,其内部集成 60VMOSFET。它可以提供比二极管整流器更高的效率。可将内部 开关管的正向电压压降调节至 40mV,并在漏源电压反向之前,将开关管关断。适用于不连续传导模式(DCM)、准谐振模式(QR)和连续传导模式(CCM)等多种模式的应用。采用 SOP-8 封装

MST1694KC-B 能够支持 DCM、CCM 和 QR 反激转换器,能够提高系统的效率。次级边导通时,电流先 通过功率 MOSFET 的体二极管,电路检测到功率 MOSFET 的漏端电压比其源端电压低约 0.26V 时,立即打开功率 MOSFET,降低系统的导通损耗。

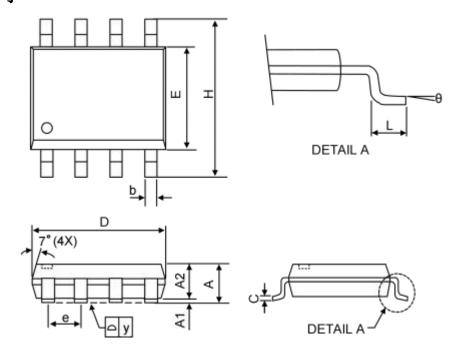
消隐功能

MST1694KC-B 在功率 MOSFET 开启和关闭后都有消隐功能,确保无论开/关都会持续一时间。其中开启消隐时间为 0.65uS.关闭消隐时间设定为 1.2uS。

欠压保护功能 (UVLO)

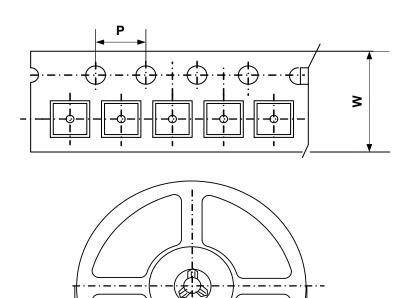
当VCC降低到VuvLo2以下时,电路处于睡眠模式,MOSFET不会被打开。在系统上电后的一段时间, 由于VCC电压未达到VuvLo1 ,功率MOSFET不会被打开,完全由功率MOSFET的体二极管进行续流,直到VCC电压超过VuvLo1 ,芯片开始正常开关。

Semiconductor


MST1694KC-B

订购标信息

产品编号	内阻 MOS 耐压	内置 MOS 内阻 (Vgs=5.5V)	表面丝印	封装形式
MST1694KC-B41	60V	13mR	无	SOP8
MST1694KC-B45	60V	15mR	无	SOP8


封装外形及尺寸

符号	毫米			英寸			
19 5	最小值	标准值	最大值	最小值	标准值	最大值	
A	-	-	1.75	-	-	0.069	
A1	0.1	-	0.25	0.04	-	0.1	
A2	1.25	-	-	0.049	-	-	
С	0.1	0.2	0.25	0.0075	0.008	0.01	
D	4.7	4.9	5.1	0.185	0.193	0.2	
Е	3.7	3.9	4.1	0.146	0.154	0.161	
Н	5.8	6	6.2	0.228	0.236	0.244	
L	0.4	1	1.27	0.015	-	0.05	
ь	0.31	0.41	0.51	0.012	0.016	0.02	
e	1.27 BSC		(0.050 BSC			
y	-	-	0.1	-	-	0.004	
θ	0°	-	8°	0°	-	8°	

卷盘编带规格

封装	封装 W(mm)		D(mm)	最小包装 (颗)	
SOP-8	12.0±0.1 mm	8.0±0.1 mm	330±1 mm	4000pcs	

D

Semiconductor

修订历史记录和检查表

版本	日期	修订项目	修改人	函数和 规范检查	包和 磁带检查
1-0	2023-7-11		邢晓林	邢晓林	邢晓林

MST1694KC-B

重要通知

MST 不对本文件作出任何类型的明示或默示保证,包括但不限于对适销性和特定用途适用性的默示保证(以及任何司法管辖区法律下的同等保证)

MST 保留修改、增强、改进、更正或其他变更的权利,无需另行通知本文件和本文所述的任何产品。 MST 不承担因应用或使用本文件或本文所述任何产品而产生的任何责任; MST 既不转让其专利权 或商标权下的任何许可,也不转让其他人的权利。本文件或本申请中所述产品的任何客户或用户应 承担使用本文件或产品的所有风险,并同意使 MST 和其产品在 MST 网站上的所有公司免受任何损 害。

MST 不对通过未经授权的销售渠道购买的任何产品承担任何责任。如果客户购买或使用 MST 产品用于任何意外或未经授权的应用,客户应赔偿并使 MST 及其代表免受直接或间接产生的所有索赔、损害赔偿、费用和律师费,与此类非故意或未经授权的应用相关的任何人身伤害或死亡索赔。

本文所述产品可能包含在一项或多项美国、国际或外国专利中。此处注明的产品名称和标记也可能包含在一个或多个美国、国际或外国商标中。