

CA-IS3062 5kV_{RMS} Isolated CAN Transceivers with

Integrated DC-DC Converter

1 Features

- Meets the ISO 11898-2 physical layer standards
- Integrated DC-DC converter for cable-side power
- Integrated protection increases robustness
 - 5kV_{RMS} withstand isolation voltage for 60s (galvanic isolation)
 - ±150kV/µs typical CMTI
 - ±58V fault-tolerant CANH and CANL
 - ±30V extended common-mode input range (CMR)
 - Transmitter dominant timeout prevents lockup, data rates down to 5.5 kbps
 - Thermal shutdown
 - Wide operating temperature range: -40°C to 125°C
- Date rate is up to 1Mbps
- Operating from a single 5V supply on the logic side,
 CA-IS3062VW provides individual logic supply input
- Low loop delay: 150ns (typical), 210ns (maximum)
- Ideal passive behavior when unpowered
- Wide-body SOIC16-WB(W) package
- Safety regulatory approvals
 - VDE 0884-17 reinforced isolation
 - UL according to UL1577
 - IEC 60950-1, IEC62368-1, IEC60601-1, IEC 61010-1, and GB4843.1-2011 reinforced insulation certifications

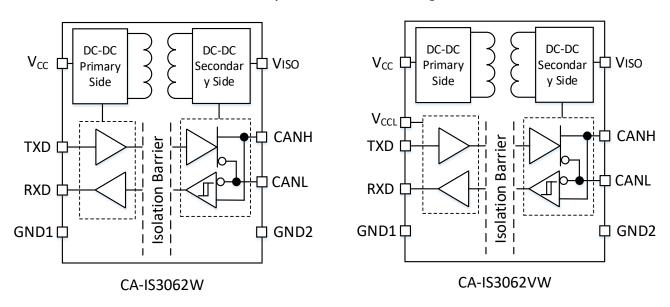
2 Applications

- Industrial Controls
- Building Automation
- Security and Protection System
- Transportation
- Medical
- Telecom

3 General Description

The CA-IS3062x are galvanically-isolated CAN transceivers with a built-in isolated DC-DC converter, that eliminates the need for a separate isolated power supply in space constrained isolation designs. The logic input and output buffers separated by a silicon oxide (SiO $_2$) insulation barrier provide up to 5kV $_{RMS}$ (60s) of galvanic isolation. Isolation improves communication by breaking ground loops and reduces noise where there are large differences in ground potential between ports.

The CA-IS3062W/CA-IS3062VW devices operate from a single 5V supply on the logic side. An integrated DC-DC converter generates the 5V operating voltage for the cableside. The individual logic supply input of the CA-IS3062VW allows fully compatible +2.7V to +5.5V logic for the logic input and output lines. These devices do not require any external components other than bypass capacitors to realize an isolated CAN port. The transceivers operate up to 1Mbps data rate and feature integrated protection for robust communication, including current limit, thermal shutdown, and the extended ±58V fault protection on the CAN bus for equipment where overvoltage protection is required. The dominant timeout detection prevents bus lockup caused by controller error or by a fault on the TXD input. These CAN receivers also incorporate an input common-mode range (CMR) of ±30V, exceeding the ISO 11898 specification of -2V to +7V.


The CA-IS3062W/CA-IS3062VW are available in wide-body 16 pin SOIC(W) package, operate over -40°C to +125°C temperature range.

Device information

Part Number	Package	Package size (nominal value)
CA-IS3062W CA-IS3062VW	SOIC16-WB(W)	10.30 mm × 7.50 mm

Simplified functional block diagram

4 Ordering Information

Table 4-1. Ordering Information

Part #	V _{cc} (V)	Data Rate (kbps)	Galvanic Isolation (V _{RMS})	Logic Supply Input (V _{CCL})	Package
CA-IS3062W	4.5~5.5	1000	5000	N/A	SOIC16-WB
CA-IS3062VW	4.5~5.5	1000	5000	Yes	SOIC16-WB

Contents

1	Featu	ures 1	9	De	tailed I	Description	16
2	Appli	ications 1		9.1	Ov	erview	16
3		eral Description 1		9.2	CA	N Bus Status	16
4		ring Information 2		9.3	Red	ceiver	16
5		sion History 3		9.4	Tra	nsmitter	16
6		Configuration and Functions4		9.5	Iso	lated Supply Output	17
-				9.6	Pro	tection Functions	17
/	•	ifications5			9.6.1	Signal Isolation and Power Isolation	17
	7.1	Absolute Maximum Ratings ¹ 5			9.6.2	Undervoltage Lockout	17
	7.2	ESD Ratings5			9.6.3	Thermal Shutdown	18
	7.3	Recommended Operating Conditions5			9.6.4	Current-Limit	18
	7.4	Thermal Information5			9.6.5	Transmitter-Dominant Timeout	18
	7.5	Insulation Specifications6	10		Appli	ication Information	18
	7.6	Safety-Related Certifications7	11		Packa	age Information	21
	7.7	Electrical Characteristics8	12		Solde	ering Temperature (reflow) Profile	22
	7.8	Switching Characteristics9	13			and Reel Information	
	7.9	Typical Characteristics10	14		•	ortant Statement	
8	Parai	meter Measurement Information13			pc		

5 Revision History

Revision Number	Description	Page Changed
Version 1.00	NA	N/A
Varsian 1 01	Revised logic-side supply current I _{CC}	8
version 1.01	Removed ordering information	20
	Updated Table 9-2 Transmitter Truth Table	16
Version 1.02	Updated description and style of the datasheet	all
	Updated recommendations of PCB layout and input/output cap selection	20
	Updated TXD Pin description	3
Version 1.03	Add PCB layout guideline and Figure 10-3.	20
Varsian 1 04	Added new parts of CA-IS3062VW,	2
version 1.04	rsion 1.00 Revised logic-side supply current I _{CC} Removed ordering information Updated Table 9-2 Transmitter Truth Table Updated description and style of the datasheet Updated recommendations of PCB layout and input/output cap selection Updated TXD Pin description rsion 1.03 Add PCB layout guideline and Figure 10-3. Added new parts of CA-IS3062VW, Updated PCB layout Guidelines. Updated POD information Updated UL certification information and Icc current data rsion 1.07 Updated typical application circuit and PCB layout information	20
Version 1.05	Updated POD information	21
Version 1.06	Updated UL certification information and Icc current data	6
Version 1.07	Updated typical application circuit and PCB layout information	19,20
Version 1.08	Update VDE,UL,TUV information	6,7

6 **Pin Configuration and Functions**

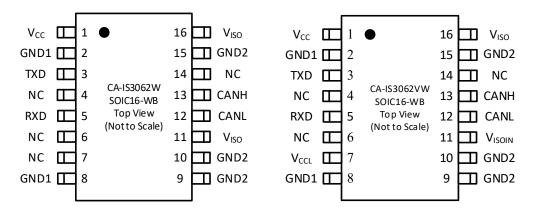


Figure 6-1. CA-IS3062W and CA-IS3062VW Pin Configuration

Table 6-1. CA-IS3062W/CA-IS3062VW Pin Configuration and Description

Pin name	Pin number		Tuno	Description		
Pin name	CA-IS3062W	CA-IS3062VW	Туре	Description		
V_{CC}	1	1	Power supply	Power supply input for the logic side. Bypass V_{CC} to GND1 with $0.1\mu F//10\mu F$ capacitor as close to the device as possible.		
GND1	2, 8	2, 8	Ground	Logic side ground.		
TXD	3	3	Digital I/O	Transmitter data input. CANH and CANL are in the dominant state when TXD is low. CANH and CANL are in the recessive state when TXD is high.		
NC	4, 6, 7, 14	4, 6, 14	-	No connection, do not connect these pins and leave them open.		
RXD	5	5	Digital I/O	Receiver output. RXD is high when the bus is in the recessive state. RXD is low when the bus is in the dominant state.		
V _{CCL} ¹		7	Power supply	Logic-supply input. V_{CCL} is the logic supply voltage for logic-side input/output. Bypass to GND1 with a $0.1\mu F$ capacitor.		
GND2	9, 10, 15	9, 10, 15	Ground	Bus side ground.		
CANL	12	12	Differential I/O	Low-level CAN differential line.		
CANH	13	13	Differential I/O	High-level CAN differential line.		
V _{ISOIN}	11	11	Power supply input Pin	The power input pin for internal CAN, place a 1µF ceramic and keep the distance within 2mm.Connect this Pin to Pin16.		
V _{ISO}	16	16	Power supply output Pin	Isolated power supply output, provide power for the cable-side. Bypass V_{ISO} to GND2 with $0.1\mu\text{F}//10\mu\text{F}$ capacitors as close to the device as possible.		
Note:						

Logic-Supply Input. V_{CCL} can be different voltage from V_{CC} supply, which allows fully compatible +2.7V to +5.5V logic for the logic lines.

Shanghai Chipanalog Microelectronics Co., Ltd. **7 Specifications**

7.1 Absolute Maximum Ratings¹

	Parameters	Minimum value	Maximum value	Unit
V _{CC} or V _{ISO}	Power supply voltage ²	-0.5	6.0	V
TXD or RXD to GND1	Logic side voltage (RXD, TXD)	-0.5	$V_{CC}/V_{CCL} + 0.5^3$	V
CANH or CANL to GND2	Bus side voltage (CANH and CANL)	-40	40	V
I _O	Receiver output current	-15	15	mA
T _J	Junction temperature		150	°C
T _{STG}	Storage temperature range	– 65	150	°C

Notes:

- 1. The stresses listed under "Absolute Maximum Ratings" are stress ratings only, not for functional operation condition. Exposure to absolute maximum rating conditions for extended periods may cause permanent damage to the device.
- 2. All voltage values except differential I/O bus voltages are with respect to the local ground (GND1 or GND2) and are peak voltage values.
- 3. Maximum voltage must not be exceed 6 V.

7.2 ESD Ratings

			Numerical value	Unit
		Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, CANH, CANL ¹	±6000	
V_{ESD}	Electrostatic discharge	Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, other pins ¹	±4000	V
		Charged device model (CDM), per JEDEC specification JESD22-C101, all pins ²	±2000	

Notes

- 1. Per JEDEC document JEP155, 500V HBM allows safe manufacturing of standard ESD control process.
- 2. Per JEDEC document JEP157, 250V CDM allows safe manufacturing of standard ESD control process.

Extended operation in thermal shutdown may affect device reliability.

7.3 Recommended Operating Conditions

	Parame	ters	MIN	TYP	MAX	Unit
V _{CC}	Logic side power voltage		4.5	5	5.5	V
V _{CCL}	Logic supply input		2.375		5.5	
V _I or V _{IC}	Voltage at bus pins (separately or	common mode)	-30		30	V
V _{IH}	Input high voltage	Driver (TXD)	2		$V_{CC}/V_{CCL} + 0.3$	V
V _{IL}	Input low voltage	Driver (TXD)	-0.3		0.8	V
	High lovel output ourrent	Driver	-70			A
I _{OH}	High-level output current	Receiver	-2		5.5 5.5 30 Vcc/VccL + 0.3	mA
	Low-level output current	Driver			70	A
I _{OL}	Low-level output current	Receiver			2.5	mA
T _A	Ambient temperature		-40	25	125	°C
Tj	Junction temperature		-40		150	°C
		$V_{CC} = 5.5V$, $T_A = 125^{\circ}C$, $R_L = 60\Omega$, TXD				
P_D	Total power dissipation	input is 500 kHz, 50% duty cycle square			900	mW
		wave				
T _{J(shutdown)}	Thermal shutdown temperature ¹			180		°C
Note:						

7.4 Thermal Information

	Heat meter	SOIC16-WB	Unit
$R_{\theta JA}$	Junction-to-ambient thermal resistance	68.5	°C/W

Shanghai Chipanalog Microelectronics Co., Ltd.

7.5 Insulation Specifications

	Parameters	Test conditions	Value	Unit
CLR	External clearance ¹	Shortest terminal-to-terminal distance through air	8	mm
CPG	External creepage ¹	Shortest terminal-to-terminal distance across the package surface	8	mm
DTI	Distance through the insulation	Minimum internal gap (internal clearance)	28	μm
CTI	Comparative tracking index	DIN EN 60112 (VDE 0303-11); IEC 60112	>600	V
	Material group	Per IEC 60664-1	I	
		Rated mains voltage ≤ 150 V _{RMS}	I-IV	
		Rated mains voltage ≤ 300 V _{RMS}	I-IV	
	Overvoltage category per IEC 60664-1	Rated mains voltage ≤ 600 V _{RMS}	I-IV	
	Rated in Point V VDE V 0884-17:2021-10 ² V _{IORM} Maximum repetitive peak isolation voltage AC voltage AC voltage	Rated mains voltage ≤ 1000 V _{RMS}	1-111	
DIN V V	/DE V 0884-17:2021-10 ²			
V _{IORM}	Maximum repetitive peak isolation voltage	AC voltage (bipolar)	1414	V_{PK}
.,	Nandania and antique to lating and to a	AC voltage; time-dependent dielectric breakdown (TDDB) test	1000	V_{RMS}
V _{IOWM}	Maximum operating isolation voltage	DC voltage	1414	V_{DC}
		$V_{TEST} = V_{IOTM}$,		
V -	Maximum transient isolation voltage	t=60 s (certified);	7070	
V_{IOTM}		$V_{TEST} = 1.2 \times V_{IOTM}$	7070	V_{PK}
		t=1 s (100% product test)		
		Test method in accordance with IEC 60065, 1.2/50 μs		
V_{IOSM}	Maximum surge isolation voltage ³	waveform,	800 0	V_{PK}
		$V_{TEST} = 1.6 \times V_{IOSM}$ (certified)		
		Method a, after input/output safety test of the subgroup 2/3,		
		$V_{ini} = V_{IOTM}$, $t_{ini} = 60 \text{ s}$;	≤5	
		$V_{pd(m)} = 1.2 \times V_{IORM}$, $t_m = 10 \text{ s}$		
		Method a, after environmental test of the subgroup 1,		
q_{pd}	Apparent charge	$V_{ini} = V_{IOTM}$, $t_{ini} = 60 \text{ s}$;	≤5	рС
Чри	Apparent charge	$V_{pd(m)} = 1.6 \times V_{IORM}, t_m = 10 \text{ s}$	8 8 28 >600 I I-IV I-IV I-III 1414 1000 1414 7070 8000	_
		Method b, at routine test (100% production test) and		
		preconditioning (type test)	<5	
		$V_{ini} = 1.2 \times V_{IOTM}, t_{ini} = 1 s;$		
		$V_{pd(m)} = 1.875 \times V_{IORM}, t_m = 1 s$		
C _{IO}	Barrier capacitance, input to output ⁴	$V_{10} = 0.4 \times \sin(2\pi ft)$, f = 1 MHz		pF
		V _{IO} = 500 V, T _A = 25°C		
R_{IO}	Isolation resistance	$V_{10} = 500 \text{ V}, 100^{\circ}\text{C} \le T_{A} \le 125^{\circ}\text{C}$		Ω
		$V_{10} = 500 \text{ V at T}_S = 150^{\circ}\text{C}$		
	Contaminant level		2	
UL ²			Ī	
V_{ISO}	Maximum withstanding isolation voltage	$V_{TEST} = V_{ISO}$, t = 60 s (qualification)	5000	V _{RMS}
• 150		$V_{TEST} = 1.2 \times V_{ISO}$, t = 1 s (100% production test)	3300	* KIVIS

- 1. This coupler is suitable for "safe electrical insulation" only within the safety ratings. Compliance with the safety ratings shall be ensured by means of suitable protective circuits.
- 2. Devices are immersed in oil during surge characterization.
- 3. The characterization charge is discharging charge (pd) caused by partial discharge.
- 4. Capacitance and resistance are measured with all pins on field-side and logic-side tied together.

Shanghai Chipanalog Microelectronics Co., Ltd.

7.6 Safety-Related Certifications

VDE	UL	TUV
Certified according to DIN VDE V 0884-17:2021-10	Certified according to UL 1577	Certified according to EN/IEC
	Component Recognition	61010-1:2010 (3rd Ed) and EN 60950-
	Program	1:2006/A2:2013
Maximum transient isolation voltage: 7070V _{pk}	5000 V _{RMS}	5000 V _{RMS}
Maximum repetitive peak isolation voltage: 1414V _{pk}		
Maximum surge isolation voltage: 8000V _{pk}		
Certificate number:	Certificate number: E511334-	Certificate number:
40057278 (reinforced isolation)	20210507	CN23RC4J 001

7.7 Electrical Characteristics

over recommended operating conditions (unless otherwise noted). All typical values are at 25°C with V_{CC} = 5 V, V_{CCL} = V_{CC}.

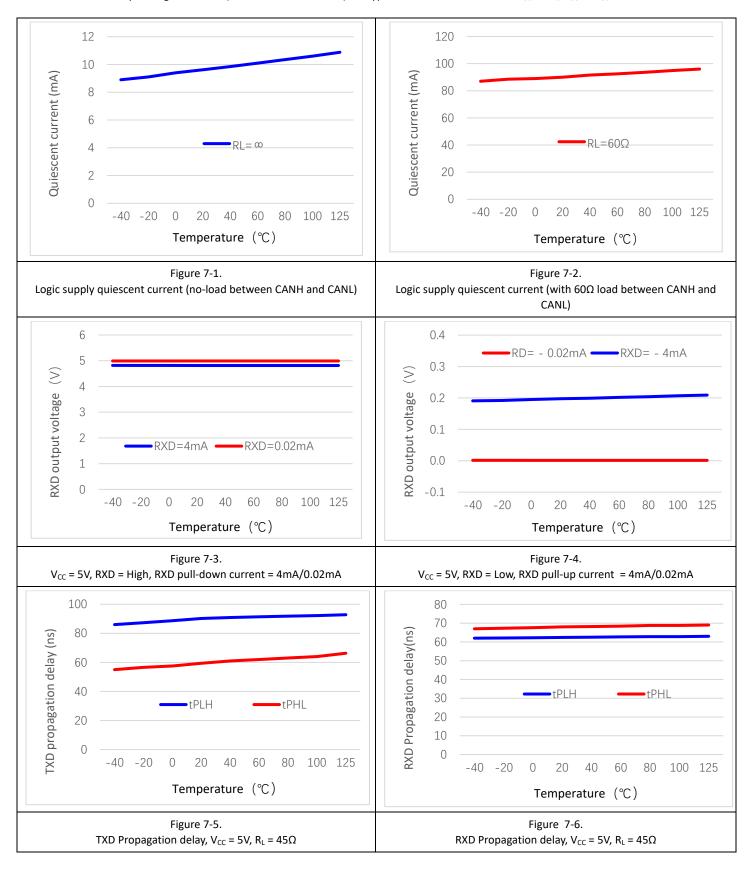
R_ = NC 2		Parameters	,	Test conditions	MIN.	TYP.	MAX.	Unit
Coulog Differential output voltage (dominant) Coulog Differential output voltage (dominant) Vi = 2V Vi = 3V, R = 600; see Figure 8-1, Figure 8-2 Vi = 3V, See Figure 8-10 Vi = 3V, Vi = 3V, CANH open; see Figure 8-10 Vi = 2V Vi = 2V, Coulog Vi = 2V Vi = 2V, CANH open; see Figure 8-10 Vi = 2V Vi = 2V, Canh open; see Figure 8-10 Vi = 2V Vi = 2V, Canh open; see Figure 8-10 Vi = 2V Vi = 2V, Canh open; see Figure 8-10 Vi = 2V Vi = 2V, Canh open; see Figure 8-10 Vi = 2V Vi = 2V, Canh open; see Figure 8-10 Vi = 2V Vi = 2V, Canh open; see Figure 8-10 Vi = 2V Vi = 2V, Canh open; see Figure 8-10 Vi = 2V Vi = 2V, Canh open; see Figure 8-10 Vi = 2V Vi = 2V, Canh open; see Figure 8-10 Vi = 2V Vi = 2V, Canh open; see Figure 8-10 Vi = 2V Vi = 2V, Canh open; see Figure 8-10 Vi = 2V Vi = 2V, Canh open; see Figure 8-10 Vi = 2V Vi = 2V Vi = 2V, Canh open; see Figure 8-10 Vi = 2V Vi	Supply	Current						
Society Composition Comp	1	Logic-side supply current	dominant	$V_I = 0V$, $R_L = 60\Omega$	65	95	125	mΛ
Social Solated output voltage Social Solated output Soc						10	20	ША
R _c = NC R _c = 60Ω 90	Isolate	d Power Supply (no-load on bu	s, unless oth	erwise)				
Maximum load current R_c = 600	V_{ISO}	Isolated output voltage			4.75	5	5.25	V
R_ = 45\(\Omega\$ R_ = 45\(\O				$R_L = NC^2$		130		
	$I_{\rm ISO}$	Maximum load current ¹		$R_L = 60\Omega$		90		mA
Secretarian				$R_L = 45\Omega$		80		
FF Efficiency @ maximum load current I _{ISO} = 130mA, C _{LOND} = 0.1µF 10µF 53%	V _{ISO(LINE}	<u>, </u>		$I_{ISO} = 50 \text{mA}$, $V_{CC} = 4.5 \text{V}$ to 5.5 V		2		mV/V
CANH CANL CANH CANL CANH CANL CANH CANL	$V_{ISO(LOA}$					1%		
CANH	EFF	Efficiency @ maximum loa	d current	$I_{ISO} = 130$ mA, $C_{LOAD} = 0.1$ μ F 10 μ F		53%		
V - OV, R = 600; see Figure 8-1, Figure 8-2 0.5 2 0.5 3 0	Driver							
CANL Copy Bus output voltage (recessive) V ₁ = 2V, R ₁ = 600; see Figure 8-1, Figure 8-2 2 2.5 3 V	V D	Pus output voltago (dominant)	CANH	V. = 0V P. = 600; soo Figuro 9 1 Figuro 9 2	2.9	3.4	4.5	W
V ₁ = 0, V ₂	V O(D) D	sus output voitage (doiliniant)	CANL	V = 0V, NL = 0012, See Figure 8-1, Figure 8-2	0.5		2	v
See Figure 8-1, Figure 8-2, Figure 8-3 1.5 3 V	$V_{O(R)}$	Bus output voltage (recess	ive)	$V_I = 2V$, $R_L = 60\Omega$; see Figure 8-1, Figure 8-2	2	2.5	3	V
See Figure 8-1, Figure 8-2, Figure 8-3 1.3 3 V				$V_1 = 0V, R_L = 60\Omega;$	1 5		2	\ <u> </u>
V = 0V, K = 45L0; see Figure 8-1, Figure 8-2 -80	V	Differential output voltage (den	ninant)	see Figure 8-1, Figure 8-2, Figure 8-3	1.5		3	V
See Figure 8-1, Figure 8-2, Figure 8-3 No. See Figure 8-1, Figure 8-2 No. See Figure 8-3 No. See Figure 8-1, Figure 8-2 No. See Figure 8-1, Figure 8-2, Figure 8-2, Figure 8-1, Figure 8-2, Figure 8-2, Figure 8-3, F	V OD(D)	Differential output voltage (don	illiantj	$V_1 = 0V$, $R_L = 45\Omega$;	1 2		2	V
Second				see Figure 8-1, Figure 8-2, Figure 8-3	1.5		3	v
S-2 V 3 V				$V_1 = 3V$, $R_L = 60\Omega$; see Figure 8-1, Figure	_80		80	m\/
Cocton	V _{OD(R)} I	Differential output voltage (rece	essive)		00		00	1111
See Figure 8-7 See Figure 8-8 See Figure 8-10 S				V _I = 3V, no-load	-0.05		0.05	V
High-level input current, TXD input V ₁ = 2V V ₂ V ₂	$V_{OC(D)}$	Common mode output voltage	(dominant)		2	2.5	3	V
High-level input current, TXD input V ₁ = 2V 20 μA	$V_{OC(pp)}$	Peak to peak common mode or	utput	see Figure 8-7		60		m\/
Low-level input current, TXD input $V_1 = 0.8V$ -20 μA $V_{CANH} = -30 \text{ V, CANL open }; see Figure 8-10 -105 -36 V_{CANH} = -30 \text{ V, CANL open }; see Figure 8-10 -105 -36 V_{CANH} = -30 \text{ V, CANL open }; see Figure 8-10 -2 -0.6 V_{CANH} = -30 \text{ V, CANH open }; see Figure 8-10 -2 -0.6 V_{CANH} = -30 \text{ V, CANH open }; see Figure 8-10 -2 -0.6 V_{CANH} = -30 \text{ V, CANH open }; see Figure 8-10 -2 -0.6 V_{CANH} = -30 \text{ V, CANH open }; see Figure 8-10 -2 -0.6 V_{CANH} = -30 \text{ V, CANH open }; see Figure 8-10 -2 -0.6 V_{CANH} = -30 \text{ V, CANH open }; see Figure 8-10 -2 -0.6 V_{CANH} = -30 \text{ V, CANH open }; see Figure 8-10 -2 -0.6 V_{CANH} = -30 \text{ V, CANH open }; see Figure 8-10 -2 -3.6 V_{CANH} = -30 \text{ V, CANH open }; see Figure 8-10 -2 -3.6 V_{CANH} = -30 \text{ V, CANH open }; see Figure 8-10 -2 -3.6 V_{CANH} = -30 \text{ V, CANH open }; see Figure 8-10 -2 -3.6 V_{CANH} = -30 \text{ V, CANH open }; see Figure 8-10 -2 -3.6 V_{CANH open } = -3.0 \text{ V, CANH open }; see Figure 8-10 -2 -3.6 V_{CANH open } = -3.0 \text{ V, CANH open }; see Figure 8-10 -2 -3.6 V_{CANH open } = -3.0 \text{ V, CANH open }; see Figure 8-10 -2 -3.6 V_{CANH open } = -3.0 \text{ V, CANH open }; see Figure 8-10 -2 -3.6 V_{CANH open } = -3.0 \text{ V, CANH open }; see Figure 8-10 -2 -3.6 V_{CANH open } = -3.0 \text{ V, CANH open }; see Figure 8-10 -2 -3.6 V_{CANH open } = -3.0 \text{ V, CANH open }; see Figure 8-10 -2 -3.0 V_{CANH open } = -3.0 \text{ V, CANH open }; see Figure 8-10 -2 -3.0 V_{CANH open } = -3.0 \text{ V, CANH open }; see Figure 8-10 -2 V_{CANH open } = -3.0 \text{ V, CaNH open }; see Figure 8-10 -2 V_{CANH open } = -3.0 \text{ V, CaNH open }; see Figure 8-10 -2 V_{CANH open } = -3.0 \text{ V, CaNH open }; see Figure 8-10 -2 V_{CANH open } = -3.0 \text{ V, CaNH open }; see Figure 8-10 -2 V_{CANH open } = -3.0 \text{ V, CaNH open }; see Figure 8-10 -2 V_{CANH open } = -3.0 \text{ V, CaNH open }; see Figure 8-10 -2 V_{CANH open } = -3.0 V, CaNH ope$	voltage	2				00		1110
	I _{IH}	High-level input current, TXD in	put	$V_I = 2V$			20	μΑ
$ \begin{array}{c} V_{\text{CANH}} = 30 \text{ V, CANL open ; see Figure 8-10} & 0.6 & 2 \\ \hline V_{\text{CANL}} = -30 \text{ V, CANH open ; see Figure 8-10} & -2 & -0.6 \\ \hline V_{\text{CANL}} = 30 \text{ V, CANH open ; see Figure 8-10} & 42 & 105 \\ \hline \end{array} $	I _{IL}	Low-level input current, TXD inp	out	$V_1 = 0.8V$	-20			μΑ
Short-circuit steady-state output current $V_{CANL} = -30 \text{ V}$, CANH open; see Figure 8-10 -2 -0.6 $V_{CANL} = 30 \text{ V}$, CANH open; see Figure 8-10 42 105 $V_{CANL} = 30 \text{ V}$, CANH open; see Figure 8-10 42 105 $V_{CANL} = 30 \text{ V}$, CANH open; see Figure 8-10 42 105 $V_{CANL} = 30 \text{ V}$, CANH open; see Figure 8-10 42 105 $V_{CANL} = 30 \text{ V}$, CANH open; see Figure 8-10 42 105 $V_{CANL} = 30 \text{ V}$, CANH open; see Figure 8-10 42 105 $V_{CANL} = 30 \text{ V}$, CANH open; see Figure 8-10 42 105 $V_{CANL} = 30 \text{ V}$, CANH open; see Figure 8-10 42 105 $V_{CANL} = 30 \text{ V}$, CANH open; see Figure 8-10 42 105 $V_{CANL} = 30 \text{ V}$, CANH open; see Figure 8-10 42 105 $V_{CANL} = 30 \text{ V}$, CANH open; see Figure 8-11 42 43 44 45 45 45 45 45 45 45				$V_{CANH} = -30 \text{ V, CANL open}$; see Figure 8-10	-105	-36		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 C	Short circuit stoady state output	current	V _{CANH} = 30 V, CANL open; see Figure 8-10		0.6	2	mΛ
Receive Formula (Fig. 1) Positive-going bus input threshold voltage (Fig. 1) Regative-going bus input threshold voltage (Fig. 1) Regative-going bus input threshold voltage (Fig. 2) Regative-going bus input threshold voltage (ios(ss)	onort-circuit steady-state output	Current	$V_{CANL} = -30 \text{ V, CANH open}$; see Figure 8-10	-2	-0.6		ША
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				V _{CANL} = 30V, CANH open; see Figure 8-10		42	105	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Receiv	er						
$\frac{V_{\text{HYS}}}{V_{\text{OH}}} \text{Hysteresis voltage} \qquad \qquad$	V _{IT+} F	Positive-going bus input thresho	old voltage			0.8	0.9	V
$\begin{array}{c} I_{OH} = -4 \text{mA}; \text{ see Figure 8-6} & V_{CC}/V_{CCL} = 0.8 & 4.8 \\ I_{OH} = -20 \mu \text{A}; \text{ see Figure 8-6} & V_{CC}/V_{CCL} = 0.1 & 5 \\ I_{OL} = 4 \text{mA}; \text{ see Figure 8-6} & 0.2 & 0.4 \\ I_{OL} = 4 \text{mA}; \text{ see Figure 8-6} & 0.2 & 0.4 \\ I_{OL} = 20 \mu \text{A}; \text{ see Figure 8-6} & 0.2 & 0.4 \\ I_{OL} = 20 \mu \text{A}; \text{ see Figure 8-6} & 0 & 0.1 \\ \hline V \\ CANH \text{ or CANL input capacitance to ground} & TXD = 3V, V_1 = 0.4 \times \sin(2\pi \text{ft}) + 2.5, \\ f = 1 \text{MHz} & 12 & pF \\ \hline CANH \text{ and CANL input capacitance} & TXD = 3V, V_1 = 0.4 \times \sin(2\pi \text{ft}), \text{ f= 1MHz} & 12 & pF \\ \hline CANH \text{ and CANL input capacitance} & TXD = 3V & 15 & 40 & k\Omega \\ \hline CAND \text{ Differential input resistance} & TXD = 3V & 30 & 80 & k\Omega \\ \hline CAND \text{ Input resistance matching} & V_{CANH} = V_{CANL} & -2\% & 0\% & 2\% \\ \hline CANH \text{ Input capacitance} & TXD = 3V & 0.2\% & 0.2\% & 0.2\% \\ \hline CANH \text{ Input resistance matching} & V_{CANH} = V_{CANL} & -2\% & 0\% & 2\% \\ \hline CANH \text{ Input capacitance} & TXD = 3V & 0.2\% & 0.2\% & 0.2\% \\ \hline CANH \text{ Input resistance matching} & V_{CANH} = V_{CANL} & -2\% & 0\% & 2\% \\ \hline CANH \text{ Input capacitance} & TXD = 3V & 0.2\% & 0.2\% & 0.2\% \\ \hline CANH \text{ Input resistance matching} & V_{CANH} = V_{CANL} & 0.2\% & 0.2\% & 0.2\% \\ \hline CANH \text{ Input capacitance} & TXD = 3V & 0.2\% & 0.2\% & 0.2\% & 0.2\% \\ \hline CANH \text{ Input resistance matching} & V_{CANH} = V_{CANL} & 0.2\% & 0.2\% & 0.2\% & 0.2\% \\ \hline CANH \text{ Common mode transient immunity} & V_1 = 0.0\% \text{ or } V_{CC}; \text{ see Figure 8-11} & 100 & 150 & \text{kV}/\mu\text{s}. \end{array}$	V _{IT-} 1	Negative-going bus input thresh	old voltage		0.5	0.65		V
$\begin{array}{c} & & & & & & & & & & $	V _{HYS} F	Hysteresis voltage			50	125		mV
$I_{OL} = 20\mu A; \text{ see Figure 8-6} \qquad V_{CC}/V_{CCL} - 0.1 \qquad 5$ $I_{OL} = 4\text{mA}; \text{ see Figure 8-6} \qquad 0.2 \qquad 0.4$ $I_{OL} = 20\mu A; \text{ see Figure 8-6} \qquad 0 \qquad 0.1$ V $I_{OL} = 20\mu A; \text{ see Figure 8-6} \qquad 0 \qquad 0.1$ $I_{OL} = 20\mu A; \text{ see Figure 8-6} \qquad 0 \qquad 0.1$ $I_{OL} = 20\mu A; \text{ see Figure 8-6} \qquad 0 \qquad 0.1$ $I_{OL} = 20\mu A; \text{ see Figure 8-6} \qquad 0 \qquad 0.1$ $I_{OL} = 20\mu A; \text{ see Figure 8-6} \qquad 0 \qquad 0.1$ $I_{OL} = 20\mu A; \text{ see Figure 8-6} \qquad 0 \qquad 0.2$ $I_{OL} = 20\mu A; \text{ see Figure 8-6} \qquad 0.2$ $I_{OL} = 20\mu A; \text{ see Figure 8-6} \qquad 0.2$ $I_{OL} = 20\mu A; \text{ see Figure 8-6} \qquad 0.2$ $I_{OL} = 3V, V_{I} = 0.4 \times \sin(2\pi ft) + 2.5, f_{I} = 1MHz$ $I_{OL} = 10 \text{ MHz}$ $I_$	Va I	High-level output voltage		$I_{OH} = -4mA$; see Figure 8-6		4.8		V
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	VOH I	riigii ievei output voitage		$I_{OH} = -20\mu A$; see Figure 8-6	$V_{CC}/V_{CCL}-0.1$	5		•
$\begin{array}{c} I_{OL} = 20\mu\text{A}; \text{ see Figure 8-6} \\ C_{II} \\ CANH \text{ or CANL input capacitance to ground} \\ C_{II} \\ CANH \text{ or CANL input capacitance} \\ C_{II} \\ CANH \text{ or CANL input capacitance} \\ CANL \text{ or CANL input capacitance} \\ CA$	V ₀ . L	High-level output voltage		I _{OL} = 4mA; see Figure 8-6		0.2	0.4	\/
$ \begin{array}{c} \text{CANH or CANL input capacitance to ground} \\ \text{f} = \text{IMHz} \\ \text{CI_{ID}} \text{Differential input capacitance} \\ \text{SI_{IN}} \text{CANH and CANL input capacitance} \\ \text{SI_{IN}} \text{CANH and CANL input capacitance} \\ \text{SI_{ID}} \text{Differential input resistance} \\ \text{SI_{ID}} \text{Differential input resistance} \\ \text{SI_{IO}} \text{Differential input resistance} \\ \text{SI_{IO}} \text{Input resistance matching} \\ \text{SI_{IO}} \text{Input resistance matching} \\ \text{SI_{IO}} \text{Input resistance matching} \\ \text{SI_{IO}} \text{Input common mode transient immunity} \\ \text{V}_{I} = \text{OV or V}_{CC}; \text{ see Figure 8-11} \\ \text{DV}_{IO} = \text{DV}_{IO} \\ \text{DV}_{IO} = $	VUL I	iigii icvci output voitage				0	0.1	v
T = 1MHz TXD = 3V, V_1 = 0.4 x sin(2 π ft), f= 1MHz 12 pF TXD = 3V V ₁ = 0.4 x sin(2 π ft), f= 1MHz 15 40 k Ω RIND Differential input capacitance TXD = 3V	C _I (CANH or CANL input canacitance	e to ground	TXD = 3V, $V_1 = 0.4 \times \sin(2\pi ft) + 2.5$,		2/1		nF
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			to ground	f = 1MHz		24		ρı
Differential input resistance $TXD = 3V$ T	C _{ID} [Differential input capacitance		TXD = 3V, $V_1 = 0.4 \text{ x sin}(2\pi\text{ft})$, f= 1MHz		12		pF
Input resistance matching $V_{CANH} = V_{CANL}$ —2% 0% 2% $(1 - [R_{IN(CANH)} / R_{IN(CANL)}]) \times 100\%$ $V_{I} = 0 \text{V or } V_{CC}$; see Figure 8-11 100 150 kV/ μ s			ce	TXD = 3V	15		40	kΩ
$ (1 - [R_{\text{IN(CANH)}} / R_{\text{IN(CANL)}}]) \times 100\% $ CMTI Common mode transient immunity $V_{\text{I}} = 0 \text{V or } V_{\text{CC}}; \text{ see Figure 8-11}$ 100 150 kV/ μ s				TXD = 3V	30		80	kΩ
$ (1 - [R_{\text{IN(CANH)}} / R_{\text{IN(CANL)}}]) \times 100\% $ $ \text{CMTI Common mode transient immunity} \qquad V_{\text{I}} = 0 \text{V or V}_{\text{CC}}; \text{ see Figure 8-11} \qquad 100 \qquad 150 \qquad \text{kV/}\mu\text{s} $	R _{I(m)} I	Input resistance matching		$V_{CANH} = V_{CANL}$	-2%	0%	2%	
		(1 – [R _{IN(CANH)} / R _{IN(CANL)}]) x 100%	6					
lotes:	CMTI (Common mode transient immu	nity	V _I = 0V or V _{CC} ; see Figure 8-11	100	150		kV/μs
	Notes:				-		<u></u>	

- 1. The available output current from V_{ISO} will be reduced when $T_A > 85$ °C, see Figure 7-12.the maximum output current of V_{ISO} vs. temperature.
- 2. R_L = NC means no-load connection between CANH and CANL.

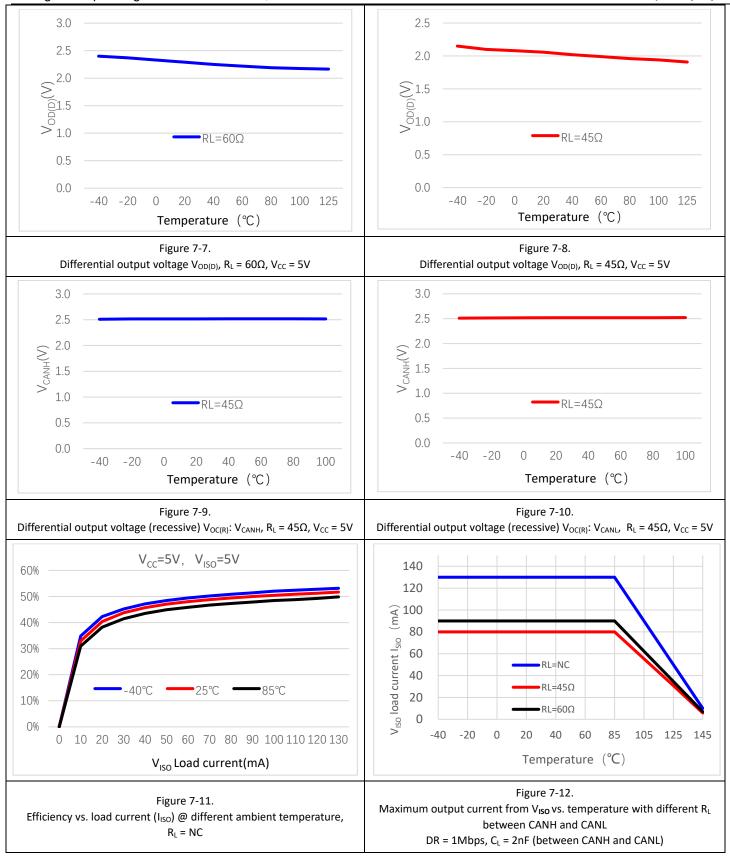
Shanghai Chipanalog Microelectronics Co., Ltd.

Switching Characteristics

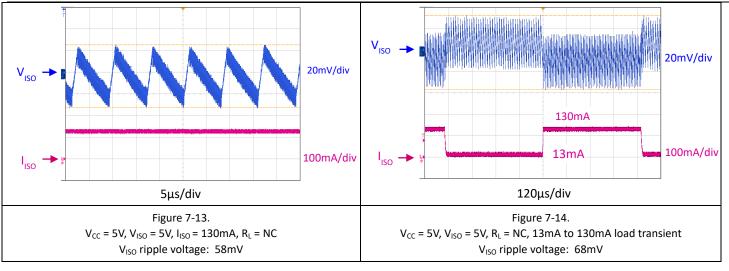
over recommended operating conditions (unless otherwise noted). All typical values are at 25°C with V_{CC} = 5 V, V_{CCL} = V_{CC}.


Parameters	Test conditions	MIN	TYP	MAX	Unit
Device					
t _{loop1} Total loop delay, driver input (TXD) to receiver o (RXD), recessive to dominant	utput See Figure 8-8.	110	150	210	ns
t _{loop2} Total loop delay, driver input (TXD) to receiver of (RXD), dominant to recessive	output See Figure 8-8.	110	150	210	ns
Driver					
t _{PLH} TXD propagation delay (recessive to dominant	t)	35	75	130	ns
t _{PHL} TXD propagation delay (dominant to recessive	Soo Figure 9.4	35	55	100	
t _r Differential driver output rise time	See Figure 8-4.		55	100	
t _f Differential driver output fall time			60	105	
t _{TXD_DTO} ¹ TXD dominant timeout	$C_L = 100 \text{ pF}$; see Figure 8-9.	2	5	8	ms
Receiver					
t _{PLH} RXD propagation delay (recessive to dominant)		85	140	
t _{PHL} RXD Propagation delay (dominant to recessive) San Figure 8 6		60	140	1
t _r RXD Output signal rise time	See Figure 8-6.		2.5	6	ns
t _f RXD Output signal fall time			2.5	6	

^{1.} The TXD dominant time out (t_{TXD_DTO}) disables the driver of the transceiver once the TXD has been dominant longer than (t_{TXD_DTO}) which releases the bus lines to recessive preventing a local failure from locking the bus dominant.


7.9 Typical Characteristics

over recommended operating conditions (unless otherwise noted). All typical values are at 25°C with V_{CC} = 5 V, V_{CCL} = V_{CC}.



Shanghai Chipanalog Microelectronics Co., Ltd.

Version 1.08, 2023/09/17

Shanghai Chipanalog Microelectronics Co., Ltd.

8 Parameter Measurement Information

Shanghai Chipanalog Microelectronics Co., Ltd.

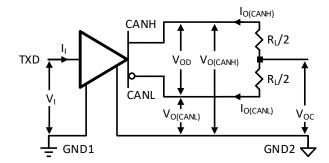


Figure 8-1. Driver Voltage and Current Definition

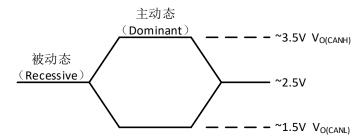


Figure 8-2. Bus Logic State Voltage Definition

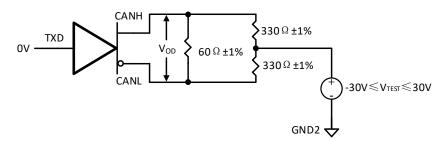
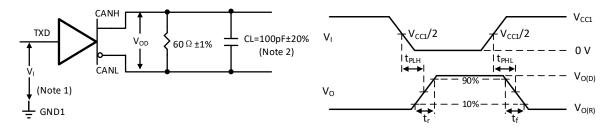



Figure 8-3. Driver V_{OD} with Common Mode Loading Test Circuit

- 1. The input pulse is supplied by a generator with characteristics: PRR \leq 125 kHz, 50% duty cycle; rise time $t_i \leq 6$ ns, fall time $t_i \leq 6$ ns; $Z_0 = 50 \Omega$.
- 2. Load capacitance C_L includes external circuit (instrumentation and fixture etc.) capacitance.

Figure 8-4. Transmitter Test Circuit and Timing Diagram

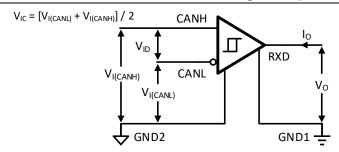
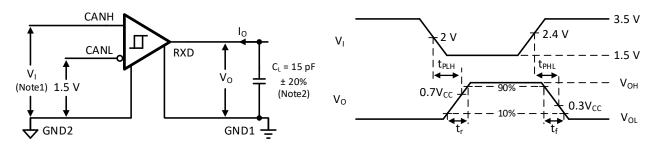



Figure 8-5. Receiver Voltage and Current Definition

- 1. The input pulse is supplied by a generator with characteristics: PRR \leq 125 kHz, 50% duty cycle; rise time $t_r \leq 6$ ns, fall time $t_r \leq 6$ ns; $Z_0 = 50 \Omega$.
- 2. Load capacitance C_L includes external circuit (instrumentation and fixture etc.) capacitance.

Figure 8-6. Receiver Test Circuit and Timing Diagram

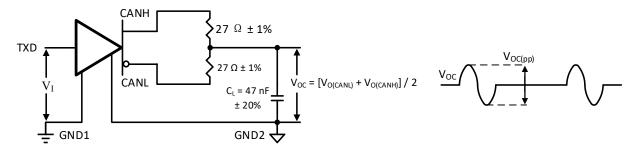


Figure 8-7. Peak-to-Peak Output Voltage Test Circuit and Waveform

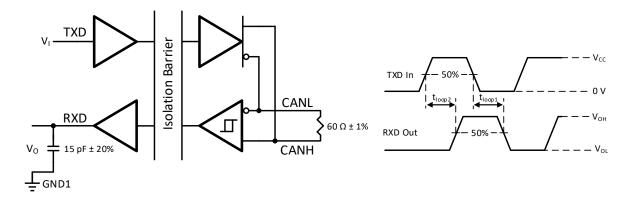
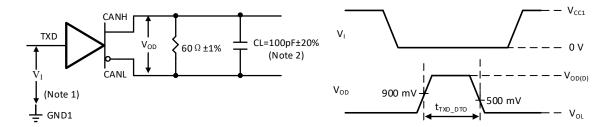



Figure 8-8. TXD to RXD Loop Delay

- 1. The input pulse is supplied by a generator with characteristics: PRR \leq 125 kHz, 50% duty cycle; rise time $t_r \leq 6$ ns, fall time $t_r \leq 6$ ns; $Z_0 = 50 \Omega$.
- 2. Load capacitance C_L includes external circuit (instrumentation and fixture etc.) capacitance.

Figure 8-9. Transmitting Dominant Timeout Timing Diagram

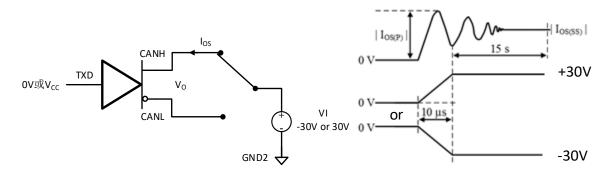


Figure 8-10. Driver Short Circuit Current Test Circuit and Measurement

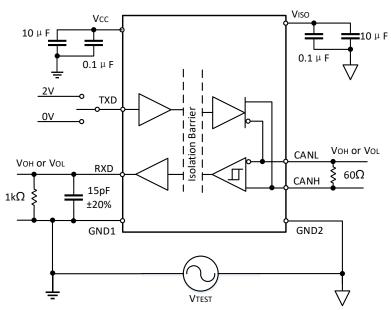


Figure 8-11. Common-Mode Transient Immunity Test Circuit

9 Detailed Description

9.1 Overview

The CA-IS3062x isolated CAN transceivers provide up to 5000V_{RMS} (60s) of galvanic isolation between the CAN cable-side and the logic-side of the transceivers. These integrated transceivers are suitable for applications that have limited board space and require more integration. Only external bypass capacitors are needed to fully realize an isolated CAN port. The devices feature up to 150 kV/µs common mode transient immunity, allow up to 1Mbps communication across an isolation barrier. Robust isolation coupled with high standoff voltage and increased speeds enables efficient communication in noisy environments, making them ideal for communication with the microcontroller in a wide range of applications such as industrial control, building automation, telecom rectifiers, HVACs etc. industrial applications.

The supply voltage range for the logic side is 4.5V to 5.5V (V_{CC}), also the CA-IS3062VW provides individual logic supply input and allows fully compatible +2.7V to +5.5V logic for the digital lines. Power isolation is achieved with an integrated DC-DC convertor to generate a regulated 5V supply for the cable-side. The receiver input common-mode range is $\pm 30V$, exceeding the ISO 11898 specification of -2V to +7V, and the fault tolerant is up to $\pm 58V$. Dominant timeout prevents the bus from being blocked by a hung-up microcontroller, and the outputs CANH and CANL are short-circuit current-limited, protected against excessive power dissipation by thermal shutdown circuitry that places the driver outputs in a high-impedance state.

9.2 CAN Bus Status

The CAN bus has two states: dominant and recessive. In the dominant state (a zero bit, used to determine message priority), CANH-CANL are defined to be logic '0' when the voltage across them is between +1.5V and +3V (higher than 0.9V). In the recessive state (a 1-bit and the state of the idle bus), the driver is defined to be logic '1' when differential voltage is between -120mV and +12mV, or when it is near zero(lower than 0.5V), see Figure 8-2.

9.3 Receiver

The receiver reads the differential input from the bus line (CANH and CANL) and transfers this data as a single-ended output RXD to the CAN controller. The internal comparator senses the difference voltage $V_{DIFF} = (V_{CANH}-V_{CANL})$, with respect to an internal threshold of 0.7V. If $V_{DIFF} > 0.9V$, a logic-low is present on RXD; If $V_{DIFF} < 0.5V$, a logic-high is present. The CANH and CANL common-mode range is $\pm 30V$ in normal mode. RXD is a logic-high when CANH and CANL are shorted or terminated and un-driven. See Table 9-1 for more details.

 $\begin{tabular}{c|cccc} V_{ID}=V_{CANH}-V_{CANL} & BUS STATE & RXD \\ \hline V_{ID}\geq 0.9V & Dominant & Low \\ \hline $0.5V < V_{ID} < 0.9V$ & Indeterminate & Indeterminate \\ \hline $V_{ID} \leq 0.5V$ & Recessive & High \\ \hline $Open \ (V_{ID} \approx 0V)$ & Open & High \\ \hline \end{tabular}$

Table 9-1. Receiver Truth Table

9.4 Transmitter

The transmitter converts a single-ended input signal (TXD) from the local CAN controller to differential outputs for the bus lines CANH and CANL. The truth table for the transmitter is provided in Table 9-2. CANH and CANL outputs are short-circuit current limited and are protected against excessive power dissipation by thermal shutdown circuitry that places the driver outputs in a high-impedance state.

Shanghai Chipanalog Microelectronics Co., Ltd.

Table 5-2. Italismitter Truth Table (When not connected to the bus)								
V _{cc}	INPUT	TVD LOW TIME	оит	DIIC CTATE				
	TXD	TXD LOW TIME	CANH	CANL	BUS STATE			
	Low	< t _{TXD_DTO}	High	Low	Dominant			
Power Up	Low	> t _{TXD_DTO}	V _{ISO} /2	V _{ISO} /2	Recessive			
	High or Open	Х	V _{ISO} /2	V _{ISO} /2	Recessive			
Power Down	Х	Х	Hi-Z	Hi-Z	Hi-Z			

Table 9-2. Transmitter Truth Table (When not connected to the bus)

9.5 **Isolated Supply Output**

The integrated DC-DC converter provides up to 650mW of isolated power with +5V fixed output voltage configuration. The maximum output current from V_{ISO} is shown as Table 9-3. Note that the I_{ISO} value in Table 9-3 is the maximum output current at +25°C. With the increase of temperature, especially when the temperature exceeds +85°C, the maximum load current will be decreased, see Figure 7-12. Maximum output current from V_{Iso} at different temperature and bus load.

Table 9-3. Maximum Output Current of V_{ISO} @ $T_A = 25$ °C

1								
NC^1	130							
4.5~5.5 5 60								
45	80							
Note: 1. NC means no-load connection between CANH and CANL.								
	60							

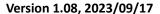
9.6 **Protection Functions**

9.6.1 Signal Isolation and Power Isolation

The CA-IS3062x devices integrated digital galvanic isolators using Chipanalog's capacitive isolation technology based on the ON-OFF keying (OOK) modulation scheme, allow data transmission between the controller side and cable side of the transceiver with different power domains. Also, the power isolation is achieved with an integrated DC-DC convertor to generate a regulated 5V supply for the cable-side.

9.6.2 Undervoltage Lockout

Both CA-IS3062W and CA-IS3062VW devices have undervoltage detection on V_{CC} supply terminal, the CA-IS3062VW also features undervoltage detection on V_{CCL} supply terminal, that place the device in protected mode during an undervoltage event on V_{CCL} or/and V_{CC}, see Table 9-3 and Table 9-4. Once the undervoltage condition is cleared and the supply voltage has returned to a valid level, the devices transition to normal mode. The host controller should not attempt to send or receive messages until the transceivers enter normal mode.


Table 9-4. CA-IS3062W Undervoltage Lockout

V _{cc}	DEVICE STATE	BUS OUTPUT	RXD
> V _{CC(UVLO+)}	Normal	Per TXD	Mirrors Bus
< V _{CC(UVLO_)}	Protected mode	High Impedance	High Impedance

Table 9-5. CA-IS3062VW Undervoltage Lockout

X = Don't care, Hi-Z = high-impedance.

CA-IS3062W, CA-IS3062VW

Shanghai Chipanalog Microelectronics Co., Ltd.

V_{cc}	V _{CCL}	DEVICE STATE	BUS OUTPUT	RXD
> V _{CC(UVLO+)}	> V _{CCL(UVLO+)}	Normal	Per TXD	Mirrors Bus
< V _{CC(UVLO_)}	> V _{CCL(UVLO+)}	Protected mode	High Impedance	High Impedance
> V _{CC(UVLO+)}	< V _{CCL(UVLO_)}	Protected mode	High Impedance	High Impedance
< V _{CC(UVLO_)}	< V _{CCL(UVLO_)}	Protected mode	High Impedance	High Impedance

9.6.3 Thermal Shutdown

If the junction temperature of the CA-IS3062W/CA-IS3062VW devices exceed the thermal shutdown threshold T_{J(shutdown)} (180°C, typ.), the devices turn off the CAN driver circuits thus blocking the TXD-to-bus transmission path. The CAN bus terminals are biased to the recessive level during a thermal shutdown, and the receiver-to-RXD path remains operational. The shutdown condition is cleared when the junction temperature drops to normal operation temperature of the device(160°C, typ.).

9.6.4 Current-Limit

The CA-IS3062x protect the transmitter output stage against a short-circuit to a positive or negative voltage by limiting the driver current. However, this will cause large supply current and dissipation. Thermal shutdown further protects the devices from excessive temperatures that may result from a short circuit. The transmitter returns to normal operation once the short is removed.

9.6.5 Transmitter-Dominant Timeout

The CA-IS3062x devices feature a transmitter-dominant timeout (t_{TXD_DTO}) that prevents erroneous CAN controllers from clamping the bus to a dominant level by maintaining a continuous low TXD signal. When TXD remains in the dominant state (low) for greater than t_{TXD_DTO} , the transmitter is disabled, releasing the bus to a recessive state. After a dominant timeout fault, the transmitter is re-enabled when receiving a rising edge at TXD. The CAN protocol allows a maximum of eleven successive dominant bits (on TXD) for the worst case, where five successive dominant bits are followed immediately by an error frame. So the minimum transmitted data rate can be calculated as: 11 bits/ t_{TXD_DTO} = 11 bits / 2ms = 5.5kbps. The transmitter-dominant timeout limits the minimum possible data rate of the CA-IS3062W/CA-IS3062VW to 5.5kbps.

10 Application Information

CAN interface has been a very popular serial communication standard in the industry and automotive applications due to its excellent prioritization and arbitration capabilities. In systems with different voltage domains, isolation is typically used to protect the low voltage side from the high voltage side in case of any faults. The CA-IS3062x provide complete isolated solution for these kind of applications, see Figure 10-1 the typical application circuit.

The CA-IS3062x devices can operate up to 1Mbps data rate. However, the maximum data rate is limited by the bus loading, number of nodes, cable length etc. factors. For CAN network design, margin must be given for signal loss across the system and cabling, parasitic loadings, timing, network imbalances, ground offsets and signal integrity thus a practical maximum data rate, number of nodes often lower. The ISO11898 Standard specifies a maximum of 30 nodes. However, with careful design, and consider of high input impedance of the CA-IS3062x, designers can have many more nodes (up to 110) on the CAN bus.

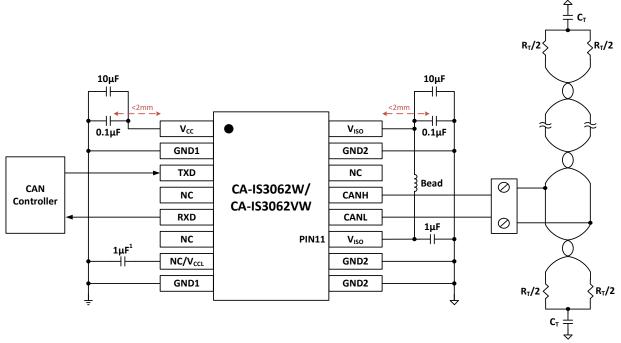


Figure 10-1. Typical Application Circuit

In multi-drop CAN applications, it is important to maintain a single linear bus of uniform impedance that is properly terminated at each end. A star, ring, or tree configuration should never be used. Any deviation from the end-to-end wiring scheme creates a stub. High-speed data edges on a stub can create reflections back down to the bus. These reflections can cause data errors by eroding the noise margin of the system. Although stubs are unavoidable in a multi-drop system, care should be taken to keep these stubs as short as possible, especially when operating with high data rates. See Figure 10-2, the typical CAN bus operating circuit, termination may be a single 120Ω resistor (R_T) at the end of the bus, either on the cable or in a terminating node; or split termination, the two 60Ω termination resistors in parallel may be used if filtering and stabilization of the common mode voltage of the bus is desired.

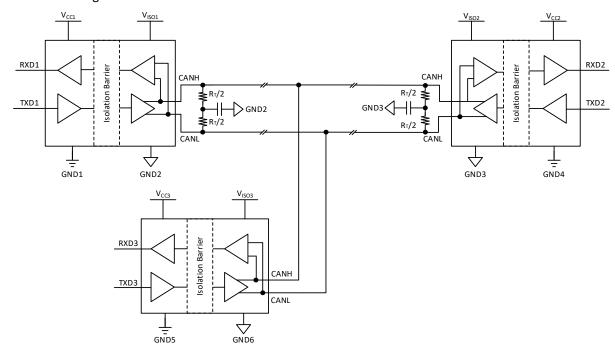
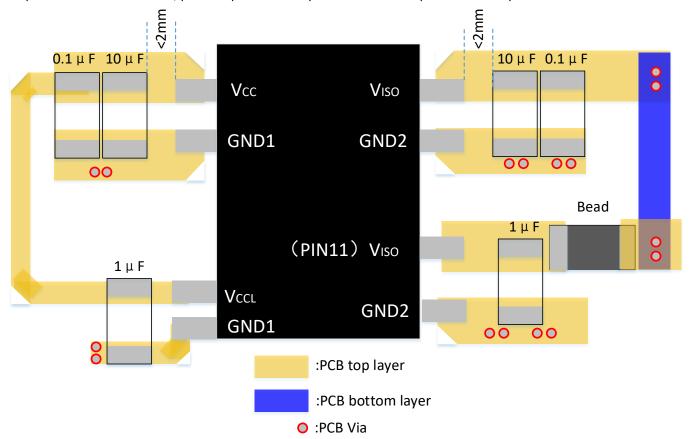
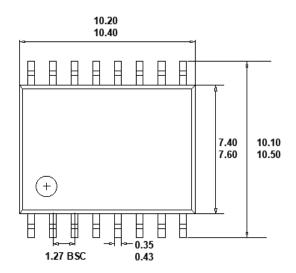
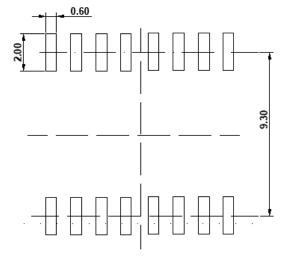


Figure 10-2. Typical CAN Bus Operating Circuit

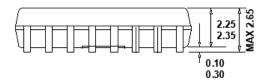
To ensure reliable operation at all data rates, it is strongly recommended to bypass V_{CC} and V_{ISO} with $0.1\mu F$ | $10\mu F$ low-ESR ceramic capacitors to GND1 and GND2 respectively. Place the bypass capacitors as close to the power supply input/output pins as possible. The PCB designer should follow some critical recommendations in order to get the best performance from the design. For the high-speed operating digital circuit boards, we recommend to use the standard FR-4 PCB material and a minimum of four layers is required to accomplish a low EMI PCB design. Also, keep the input/output traces as short as possible, avoid using vias to make low-inductance paths for the signals. For harsh industrial environments, external protection might be necessary to protect the CAN transceiver during normal operation. If the $10\mu F$ ceramic capacitor can't be placed for some reason, a $4.7\mu F$ ceramic capacitor is the minimal value needed. Place the $10\mu F$ ceramic close to V_{CC} and V_{ISO} pins and keep distance within 2mm. The input/output ceramic capacitor and the IC must be placed on the same PCB layer and connected without any vias to reduce parasite. The recommended PCB layout of CA-IS3062VW is shown in Figure 10-3. For the logic supply input, we recommend to use a $1\mu F$ ceramic capacitors with X5R or X7R between V_{CCL} pin and GND1. V_{ISO} (PIN11) is power pin for CAN module inside, place a $1\mu F$ ceramic capacitors as close as possible to this pin.



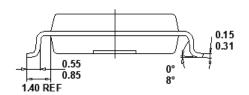

Figure 10-3. Recommended PCB Layout



11 Package Information


Wide-body SOIC16 Package Outline

Shanghai Chipanalog Microelectronics Co., Ltd.



TOP VIEW

RECOMMMENDED LAND PATTERN

FRONT VIEW

LEFT SIDE VIEW

Note:

1. All dimensions are in millimeters, angles are in degrees.

12 Soldering Temperature (reflow) Profile

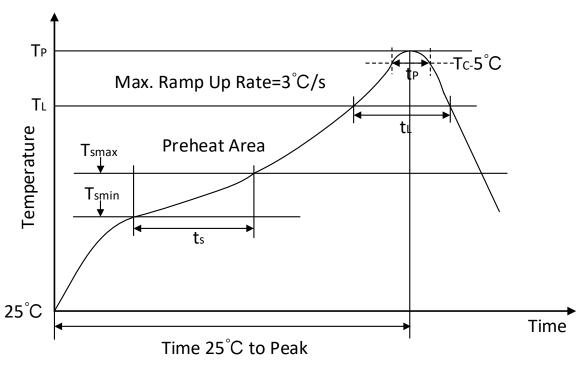
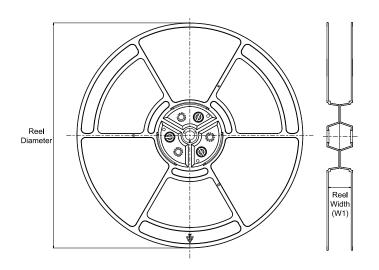
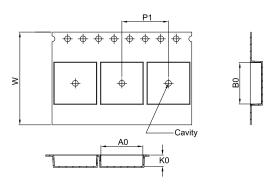


Figure 12-1. Soldering Temperature (reflow) Profile

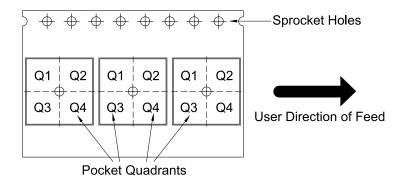

Table 12-1. Soldering Temperature Parameter

	5 1						
Profile Feature	Pb-Free Assembly						
Average ramp-up rate(217 °C to Peak)	3°C ∕second max						
Time of Preheat temp(from 150 °C to 200 °C	60-120 second						
Time to be maintained above 217 ℃	60-150 second						
Peak temperature	260 +5/-0 °C						
Time within 5°C of actual peak temp	30 second						
Ramp-down rate	6 °C /second max.						
Time from 25°C to neak temp	8 minutes max						



13 Tape and Reel Information

REEL DIMENSIONS



TAPE DIMENSIONS

Α0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
CA-IS3062W	SOIC	W	16	1000	330	16.4	10.9	10.7	3.2	12.0	16.0	Q1
CA-IS3062VW	SOIC	W	16	1000	330	16.4	10.9	10.7	3.2	12.0	16.0	Q1

14 Important Statement

The above information is for reference only and intended to help Chipanalog customers with design, research and development. Chipanalog reserves the rights to change the above information due to technological innovation without advance notice.

All Chipanalog products pass ex-factory test. As for specific practical applications, customers need to be responsible for evaluating and determining whether the products are applicable or not by themselves. Chipanalog's authorization for customers to use the resources are only limited to development of the related applications of the Chipanalog products. In addition to this, the resources cannot be copied or shown, and Chipanalog is not responsible for any claims, compensations, costs, losses, liabilities and the like arising from the use of the resources.

Trademark information

Chipanalog Inc.® and Chipanalog® are registered trademarks of Chipanalog.

http://www.chipanalog.com