

TA31101 COMPANDER IC FOR CORDLESS TELEPHONE

1. General Description

1.1 Description

The TA31101 is a compander IC for cordless telephone, it is individually composed of the rectification circuit, the gain cell and the operation amplification circuit.

1.2 Features

 Low operation supply voltage and small consumption current make this IC suitable for its application to the sets using the battery such as the cordless telephone set. etc. ICCQ=2.7mA(Typ.)(Vcc=3V,Ta=25°C)

- For noise reduction, compressor and expander are incorporated into a package.
- Wide operating supply voltage range: Vcc=1.8V-9V
- Recommendable operating supply voltage: Vcc=3V

1.3 Device Information

PART NUMBER	PACKAGE
	DIP
TA31101	SOP

Vcc(MIN)=1.8V(Ta=25℃)

2. Connection Diagrams and Pin Description

Figure 2.1 Top View

3. System Diagram

3.1 Logic Diagram

Figure 3.1: TA31101 Logic Diagram

4. Specifications

4.1 Absolute Maximum Ratings

Symbol	Parameter	MIN	MAX	Unit
Vcc	Supply Voltage		10	V
Tstg	Storage Temperature	-55	150	°C
T _{OP}	Operating Temperature	-25	75	°C

Absolute maximum ratings are those values beyond which the device could be permanently damaged, These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions.

4.2 Electrical Characteristics

4.2.1 DC Specifications

(VCC-3V, I = I(I)Z, Ia = 23C, 0ab = -20ab V alless of letwise specified	(Vcc=3V,	f=1KHZ,	Ta = 25°C,	0dB = -20dBV unle	ss otherwise specified)
---	----------	---------	------------	-------------------	-------------------------

Character	istic	Symbol	Test	Condition	Test Circuit	Min	Туе	Max	Unit	
Supply Voltage	9	Vcc				1.8	3.0	9	V	
Quiescent Current		lccQ	Vcc=3V		1		2.7	5.0	mA	
Input Reference	e Level	Vref	Vin=Vo	Vin=Vout		-21.5	-20.0	-18.5	dBV	
Total Harmonic	COMP	THDC	Vin-OdP		2		-55	-46	40	
Distortion	EXP	THDE		D	5		-55	-46	UD	
Output Noise	COMP	VNOC	Vin= -∝	[,]	4		0.5		mVrms	
Voltage	EXP	VNOE	F=15HZ-20KHZ		4		15		uVrms	
Cross Talk	Cross Talk		Vin=0dBV		5		-95		dBV	
		CT(E→C)	Vin=-12dBV		6		-55			
Ripple Rejection	Ripple Rejection Ratio		VR=100mVrms, F=1KHZ		7		-30		dB	
							-60			
Maximum Out Voltage(EXP)	out	Vom	RL=10KΩ		8		800		mVrms	
Frequency		FRCOMP	Vin=0dB,f=200-				±0.1			
Characteristic		FREXP	3500HZ and f =1KHZ are references		10		±0.1		dB	
			Voc1	Vin=20dB	9	-0.4	0.1	0.6	dB	
Output Deviation(Note 1)		COMP	Voc2	Vin=-20dB		-0.5	0	0.5		
			Voc3	Vin=-40dB		-0.6	-0.1	0.4		
			Voe1 Vin=6.50			-1.1	-0.1	0.9		
		EXP	Voe2	Vin=-10dB	9	-0.9	0.1	1.1		
			Voe3	Vin=-25dB		-1.0	0	1.0		

Note1: Output Deviation = (Vout - Vref) - Vin× $\alpha\beta$;

αβ: (COMP=0.5,EXP=2)

4.2.2 Test Circuit

SW1-ON

Test Circuit:

1: I_{CCQ}

2: VREF

3: THDC, THDE

5: CT(C→E)

6: CT(E→C)

7: RR_{COMP} , RR_{EXP}

Setting is made so as to make V_{CC} become 3V

8: Vom

V_{IN} = 750mV_{rms} SW1→ON EXPIN Vcc O VIN GND 1 3v EXPOUT ok Ω DISTORTION 1 ş GND GND 1 #

9: Voc1,2,3, Voe1,2,3

10: FRCOMP, FREXP

5. Circuit Description

The compressor and the expander of this IC are individually composed of the rectification circuit, the gain cell and the operation amplification circuit as shown in the figure below.

Compressor

Expander

5.1 Rectification circuit

In this circuit, the feedback-type full-wave rectification circuit is applied for improving the precision of detection, and the response characteristics (attack time, recovery time) are determined by the time constant of the smoothing capacitor of the rectifying output current connected to the $E \cdot RECT$ terminal and the C·RECT terminal (pin 1, pin 16) and by the time constant of the internal resistance of IC.

The internal resistance of E·RECT terminal and C·RECT terminal (pin 1, pin 16) becomes the series resistance of the R·RET 6.8 Ω and the emitter resistance re in the current miller circuit. The emitter resistance re of transistor varies according to the signal level as shown below.

The input resistance of the input $E \cdot RECT_{IN}$ terminal and $C \cdot RECT_{IN}$ terminal (pin 2, pin 15) of the rectification circuit is approximately 9.5k Ω .

5.2 Gain cell(ΔG)

This circuit is a variable gain amplifier for controlling the gain with the rectification output current of the rectification circuit.

The input resistance of the input $E \cdot \Delta G_{IN}$ terminal and $C \cdot \Delta G_{IN}$ terminal of the gain cell (pin 3. pin 14) is approximately $15k\Omega$.

5.3 Operation amplification circuit

In the compressor, since the variable gain amplifier is involved in the feedback loop of the operation amplification circuit, the oscillation is liable to be generated, however, in this circuit since the C·CP terminal (pin 9) for phase compensation is provided, the countermeasure can be taken against the oscillation through the external capacitor.

In the compressor, for making the current gain maximum, the capacitor for decoupling the current signal is connected to the $C \cdot NF$ terminal (pin 12).

The cut-off frequency of the compressor is determined by the product of the capacitor C10 connected to the C·NF terminal multiplied by R_{NF} 20k Ω of the internal resistance.

The cut-off frequency is obtained by the expression below.

$$f_{C} = \frac{1}{2\pi \cdot C_{10} \cdot R_{NF}}$$

6. Application Circuit

7. Ordering Information

Orderable Device	Package Type	Pins	Packing	Package Qty
TA31101ND16ATBE	DIP	16	Tube	25
TA31101NS16ARDQ	SOP	16	Tape & Reel	4000

8. Package Information

8.1 DIP16

Dim	mm.			inch.			
Dim.	Min.	Тур.	Max.	Min.	Тур.	Max.	
at	0.51			0.020			
В	0.77		1.65	0.030		0.065	
b		0.5			0.020		
b1		0.25			0.010		
D	1.		20			0.787	
E		8.5			0.335		
e		2.54			0.100		
e3		17.78			0.700		
F			7.1			0.280	
1			5.1			0.201	
L		3.3			0.130	2	
Z			1.27			0.050	

8.2 SOP16

Dim		mm.		inch.			
Dim.	Min.	Тур.	Max.	Min.	Тур.	Max.	
A			1.75			0.068	
at	0.1		0.25	0.004		0.010	
a2			1.64			0.063	
b	0.35		0.46	0.013		0.018	
b1	0.19		0.25	0.007		0.010	
С		0.5			0.019		
c1			45°	(typ.)			
D	9.8		10	0.385		0.393	
E	5.8		6.2	0.228		0.244	
e		1.27			0.050		
e3		8.89			0.350		
F	3.8	1	4.0	0.149		0.157	
G	4.6		5.3	0.181		0.208	
L	0.5		1.27	0.019		0.050	
M		1	0.62			0.024	
S			8° (r	nax.)			

