LKP2874QF-ADJ型 低噪声线性稳压器 产品说明书

具有低噪声、低压差的 LKP2874QF-ADJ 线性稳压器 (LDO)

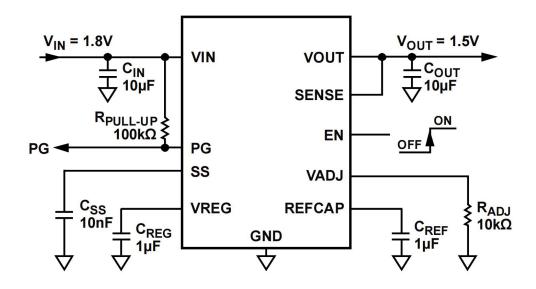
1 特点

- 输入电压范围: 1.10V~1.98V
- 可调输出电压范围: 0.5V~1.5V
- 最大输出电流: 3A
- 低压差: 95mV@3A
- 低噪声: 2μVRMS (100Hz~100KHz)
- PSRR:
 59dB(10kHz,V_{IN}=1.7V,V_{OUT}=1.3V&3A;43dB(
 100kHz,V_{IN}=1.7V,V_{OUT}=1.3V&3A)
- 工作温度: -40°C~85°C
- 具备限流和热过载保护
- 封装形式: QFN16(3.00mm×3.00mm×0.75mm),
 塑封

2 应用

适合噪声敏感的应用:如射频(RF)收发器、模数转换器(ADC)和数模转换器(DAC)
 电路、锁相环(PLL)、压控振荡器(VCO)
 和时钟集成电路。

- 现场可编程门阵列(FPGA)和数字信号 处理器(DSP)电源
- 医疗健康
- 工业与仪器仪表
- 汽车电子


3 概述

LKP2874QF-ADJ是一款低噪声、低压差的 线性稳压器(LDO)。采用单输入电源工作,输 入电压低至 1.10V,无需外部偏置电源用于提高 效率,并可提供高达 3 A 的输出电流。采用 10μF 小型陶瓷输出电容便能实现稳定工作。具有低至 95 mV (典型值, 3 A 负载)的压差,工作裕量小,同时可保持调节并提供更高效率。

输出电压可通过连接在 V_ADJ 和接地之间 的外部电阻设置为 0.5V~1.5V。LKP2874QF-ADJ 将电容连接至 SS 引脚,从而实现外部可编程软 启动时间。热过载保护电路可以防止器件在不利 条件下受损。

器件信息

型号	封装	封装尺寸		
LKP2874QF-ADJ	QFN16	3.00mm×3.00mm×0.75mm		

注: VOUT=3 x (R_ADJ x I_ADJ), I_ADJ=50uA

LKP2874QF-ADJ 典型应用电路图

目录

1 特点	2
2 应用	2
3 概述	2
4 管脚排布与功能描述	1
4.1 引脚排列	1
4.2 功能框图	2
5 电特性	2
5.1 绝对最大额定值	2
5.2 输入&输出电容推荐	3
5.3 热性能信息	3
5.4 电特性	3
6 特性曲线	4
7 应用信息	
7.1 功能结构	
7.2 典型应用	8
7.3 输入驱动要求	8
	8
7.5 可调输出电压	8
8 封装形式(QFN16)	9
9 机械、包装和可订购的信息	9
9.1 载带和卷盘信息	9
9.2 订货信息	11
10 版本信息	11

4 管脚排布与功能描述

4.1 引脚排列

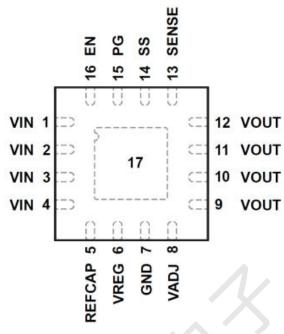


图 1 引脚排列图 (顶视图)

表1 引脚说明

序号	符号	功能
1,2,3,4	VIN	输入端。连接一个至少 10μF 电容到 GND。请注意,四个 VIN 引脚都必须接输入电源
5	REFCAP	参考滤波电容端。应连接一个 1μF 电容到 GND。该引脚不可接负载
6	VREG	稳压输入电源端。应连接一个至少 1μF 电容到 GND。该引脚不可接负载
7	GND	接地端
8	VADJ	可调输出端。若用于固定输出时,此引脚需悬空
9,10,11,12	VOUT	输出端。连接一个至少 10μF 电容到 GND。请注意,四个 VOUT 引脚都必须接到负载上
7,10,11,12	VO01	$V_{OUT}=3\times (R_{ADJ}\times 50uA)$
13	SENSE	检测输入端。该引脚应尽可能靠近负载,以实现最佳负载调节
		软启动端。连接 10nF 电容到地,启动时间设置为 0.6ms
14	SS	固定输出启动时间: t _{START-UP_FIXED} = t _{DELAY} + V _{REF} ×(C _{SS} /I _{SS})
		可调输出启动时间: t _{START-UP_ADJ} = t _{DELAY} + V _{ADJ} ×(C _{SS} / _{ISS})

序号	符号	功能
15	PG	Power Good, 开漏输出。如果器件处于限流模式或热关断模式,或者 VOUT 降至标称输出电压的 90%以下,该引脚会立即变为低电平
16	EN	使能端。高电平有效。EN 引脚不能悬空
17	散热焊盘	增强散热性能,与封装内部的 GND 形成电气连接。为确保正常工作,应将裸露焊盘连接至电路板的接地层

4.2 功能框图

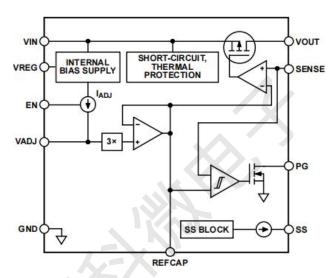


图 2 功能框图

5 电特性

5.1 绝对最大额定值

表 2 绝对最大额定值

参数	符号	最小值	最大值	单位
输入电压范围	V _{IN}	-0.3	2.16	V
EN 管脚电压范围	V _{EN}	-0.3	3.96	V
输出电压范围	Vout	-0.3	$ m V_{IN}$	V
SENSE 管脚电压范围	V _{SENSE}	-0.3	$ m V_{IN}$	V
VREG 管脚电压范围	V _{VREG}	-0.3	$ m V_{IN}$	V
REFCAP 管脚电压范围	V _{REFCAP}	-0.3	$V_{ m IN}$	V
VADJ 管脚电压范围	V_{VADJ}	-0.3	$V_{\rm IN}$	V
SS 管脚电压范围	V_{SS}	-0.3	$V_{\rm IN}$	V
PG 管脚电压范围	V_{PG}	-0.3	3.96	V

参数	符号	最小值	最大值	单位
贮存温度	T_{STG}	-65 +150		°C
结温	TJ	+150		°C

5.2 输入&输出电容推荐

表 3 电容值推荐

在自然通风条件下的工作温度范围内测得(除非另有说明)(1)

参数	符号	条件	最小值	典型值	最大值	单位
输入电容	C_{IN}	T _A = -40°C~125°C	7	10	-	uF
输出电容	C_{OUT}	T _A = -40°C~125°C	7	10	-	uF
VREG 管脚电容	C_{VREG}	T_A = -40°C~125°C	0.7	1	-	uF
REFCAP 管脚电容	C_{REFCAP}	T_A = -40°C~125°C	0.7	1	-	uF
输入&输出电容 ESR	R _{ESR}	T _A = -40°C~125°C	0.001	-	0.5	Ω
VREF&REFCAP 管脚 ESR	R _{ESR}	T _A = -40°C~125°C	0.001	-	0.2	Ω

注:

5.3 热性能信息

表 4 热性能信息

热指标	LKP2874QF-ADJ	单位
	16 个引脚	
RθJA 结至环境热阻	-56	°C/W
ψJB 结至电路板特征参数	28.4	°C/W

5.4 电特性

表 5 直流电特性

在推荐的自然通风条件下的工作温度范围 (除非另有说明)

参数	符号	测试条件	最小值	典型值	最大值	单位
		$I_{LOAD} = 0 mA$	-	4.5	8	
工作电流	T	$I_{LOAD} = 10 \text{mA}$	-	4.9	8	A
工作电视	I_{CC}	$I_{LOAD} = 100 \text{mA}$	-	5.5	8.5	mA
		$I_{LOAD} = 3A$	-	12	16	
关断电流	I_{SD}	EN=GND, $V_{IN}=(V_{OUT}+0.2V)\sim 1.98V$	-	2	800	μΑ
		10 Hz \sim 100 kHz, V_{IN} = 1.1 V, V_{OUT} = 0.9 V	-	12	-	
	OUT _{NOISE}	100 Hz \sim 100 kHz, $V_{IN} = 1.1 \text{ V}, V_{OUT} = 0.9 \text{ V}$	-	2	-	
输出噪声		10 Hz \sim 100 kHz, V_{IN} = 1.5 V, V_{OUT} = 1.3 V	-	15	-	VDMC
制山'朱尸		100 Hz \sim 100 kHz, $V_{IN} = 1.5 \text{ V}, V_{OUT} = 1.3 \text{ V}$	-	2	-	μVRMS
		$10 \text{ Hz} \sim 100 \text{ Hz}, V_{\text{IN}} = 1.7 \text{ V}, V_{\text{OUT}} = 1.5 \text{ V}$	-	21	-	
		$100 \text{ Hz} \sim 100 \text{ kHz}, \ V_{IN} = 1.7 \text{ V}, V_{OUT} = 1.5 \text{ V}$	-	2	-	
噪声光谱密度	OUT	10kHz, $V_{OUT} = 0.9 V \sim 1.5 V$, $I_{LOAD} = 100 \text{ mA}$	-	4	-	
**************************************	OUT _{NSD}	100kHz, $V_{OUT} = 0.9 \text{ V} \sim 1.5 \text{ V}$, $I_{LOAD} = 100 \text{ mA}$	-	3	-	nV/√Hz
电源抑制比	PSRR	$I_{LOAD} = 3 \text{ A}, 10 \text{ kHz}, V_{OUT} = 1.3 \text{ V}, V_{IN} = 1.7 \text{ V}$	-	59	-	dB

⁽¹⁾ 在整个工作条件范围内,最小的输入&输出电容必须>7.0 μF。在选择器件时,要考虑应用中所有的工作条件,以确保满足最小电容规格。推荐使用 X7R、X5R 型电容。Y5V 和 Z5U 电容器不建议与任何 LDO 一起使用。

LkwIC 統科微(上海)集成电路有限责任公司 Link Micro (Shanghai) Integrated Circuit Co., Ltd

参数	符号	测试条件	最小值	典型值	最大值	单位	
		$I_{LOAD} = 3 \text{ A}, 100 \text{ kHz}, V_{OUT} = 1.3 \text{ V}, V_{IN} = 1.7 \text{ V}$	-	43	-		
		$I_{LOAD} = 3 \text{ A}$, 1 MHz, $V_{OUT} = 1.3 \text{ V}$, $V_{IN} = 1.7 \text{ V}$	-	37	-		
		$I_{LOAD} = 3 \text{ A}$, 10 kHz , $V_{OUT} = 0.9 \text{ V}$, $V_{IN} = 1.3 \text{ V}$	-	62	-		
		$I_{LOAD} = 3 \text{ A}$, 100 kHz , $V_{OUT} = 0.9 \text{ V}$, $V_{IN} = 1.3 \text{ V}$	-	45	-		
		$I_{LOAD} = 3 \text{ A}, 1 \text{ MHz}, V_{OUT} = 0.9 \text{ V}, V_{IN} = 1.3 \text{ V}$	-	33	-		
输出电压	V _{OUT}	-	0.9	-	1.5	V	
ADJ 输出电压	V_{ADJ}	-	0.5	-	1.5	V	
固定输出电压 精度	$ m V_{OUT}$	$I_{LOAD} = 100 \text{ mA}, 10 \text{ mA} < I_{LOAD} < 3 \text{ A}$ $V_{IN} = (V_{OUT} + 0.2 \text{ V}) \sim 1.98 \text{ V}$	-1.5	-	1.5	%	
ADJ 端电流	I_{ADJ}	$V_{IN} = (V_{OUT} + 0.2 \text{ V}) \sim 1.98 \text{ V}$	48.8	50.0	51.0	μΑ	
ADJ 输出增益	$A_{ m ADJ}$	$V_{IN} = (V_{OUT} + 0.2 \text{ V}) \sim 1.98 \text{ V}$	2.95	3.0	3.055	-	
线性调整率	$\Delta V_{OUT} / \Delta V_{IN}$	$V_{IN} = (V_{OUT} + 0.2 \text{ V}) \sim 1.98 \text{ V}, I_{LOAD} = 10 \text{mA} \sim 3 \text{A}$	-0.15	-	0.15	%/V	
负载调整率	$\Delta V_{ m OUT}$ / $\Delta I_{ m OUT}$	$V_{IN} = (V_{OUT} + 0.2 \text{ V}) \sim 1.98 \text{ V}, I_{LOAD} = 10 \text{mA} \sim 3 \text{A}$	-	0.12	0.45	%/A	
压差	17	$I_{LOAD} = 100 \text{mA}$, $V_{OUT} \geqslant 1.2 \text{V}$	<u> </u>	12	23	V	
<u> </u>	V DRP	V_{DRP} $I_{LOAD} = 3A, V_{OUT} \geqslant 1.2V$		- 95 145		mV	
软启动电流	ISS	$1.1~V \le V_{\rm IN} \le 1.98~V$	8	10	12	μΑ	
V _{OUT} 限流阈值	I _{L_OUT}	- X	3.1	4	5	A	
PG 端输出阈值输	PG_{FALL}	$1.1 \ V \le V_{\rm IN} \le 1.98 \ V$	-	-7.5	-	%	
出电压	PG _{RISE}	$1.1~V \leq V_{\rm IN} \leq 1.98~V$	-	-5	-	%	
PG 端输出低电平	PG_{LOW}	$1.1~V \leq V_{IN} \leq 1.98~V$, $~I_{PG} \!\! \leq 1 mA$	-	-	0.35	V	
PG 端漏电流	I_{PG_LKG}	$1.1~V \leq V_{\rm IN} \leq 1.98~V$	-	0.01	1	μΑ	
EN 端逻辑高电平	EN _{HIGH}	 	595	625	690	mV	
EN 端逻辑低电平	EN _{LOW}	- ·	550	580	630	mV	
EN 端迟滞电压	EN _{HYS}	-	-	45	-	mV	
EN 端漏电流	I _{EN_LKG}	EN=V _{IN} 或 GND	-	0.01	1	μΑ	
EN 端延时	t _{EN_DLY}	EN 从 0V∼V _{IN} 到 V _{OUT} 从 0V~0.1×V _{OUT}	-	100	-	μs	
	UVLO _{RISE}	-	-	1.01	1.06	V	
过电压锁存	UVLOFALL	-	0.87	0.93	-	V	
	UVLO _{HYS}	-	-	80	-	mV	

6 特性曲线

若没有其他说明,测试条件为 $V_{\text{IN}}=1.5V$, $V_{\text{OUT}}=1.3V$, $T_{\text{A}}=25\,^{\circ}$

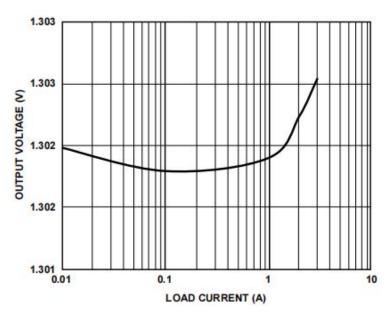


图 3 输出电压和负载电流关系曲线图

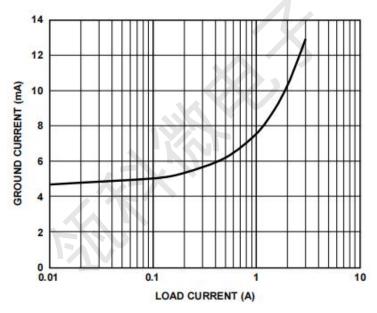


图 4 接地电流和负载电流关系曲线图

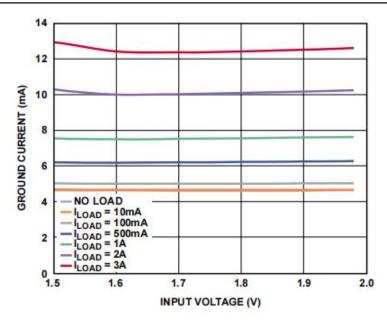


图 5 接地电流和输入电压关系曲线图

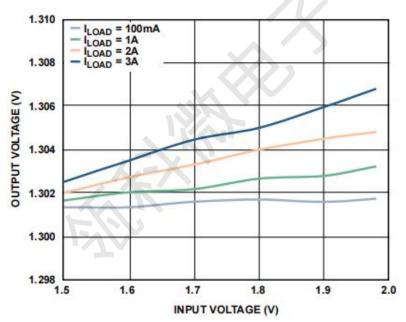


图 6 输入电压和输出电压关系曲线图

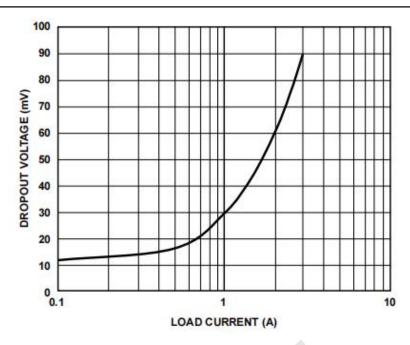


图 7 压差和负载电流关系曲线图 (Vour=1.3V)

7 应用信息

LKP2874QF-ADJ 设计用于与小型、节省空间的陶瓷电容器一起工作,但只要注意有效串联电阻(ESR)值,它可以与大多数常用电容器一起工作。输出电容的 ESR 影响 LDO 控制回路的稳定性。为保证 LKP2874QF-ADJ 的稳定性,建议电容值不小于 $10~\mu F$, ESR 不超过 $500~m\Omega$ 。负载电流变化的瞬态响应也受输出电容的影响。使用较大的输出电容值可以改善 LKP2874QF-ADJ 对负载电流大变化的瞬态响应。

7.1 功能结构

LKP2874QF-ADJ是一款低噪声线性稳压器,采用先进的专有架构实现高效调节。在内部,LKP2874QF-ADJ由一个基准、一个误差放大器和一个通断器件组成。输出电流通过通断器件传递,通断器件由误差放大器控制,形成一个理想的负反馈系统,驱动反馈电压等于参考电压。如果反馈电压低于参考电压,则负反馈驱动更大的电流,增加输出电压。如果反馈电压高于参考电压,则负反馈驱动的电流较小,从而降低输出电压。

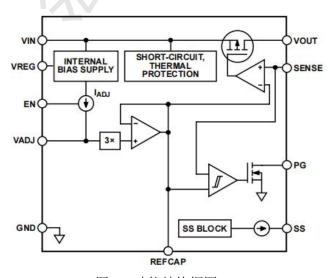
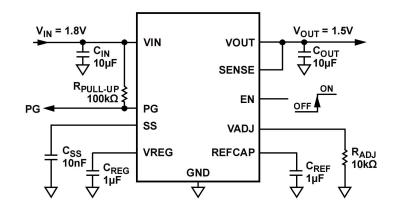



图 8 功能结构框图

7.2 典型应用

注1: VOUT=3 x (R ADJ x I ADJ), I ADJ=50uA

图 9 典型应用

7.3 输入驱动要求

对于需要受控启动的应用,ADP1763 提供了可编程软启动功能。可编程软启动可用于减少启动时的涌流电流和提供电压排序。为了实现软启动,将一个小陶瓷电容器从 SS 连接到 GND。在启动时,一个 10 μ A 的电流源对该电容器 充电。SS 处的电压限制 ADP1763 的启动输出电压,提供平滑的上升到标称输出电压。固定输出和可调输出的启动时间计算公式如下:

$$t_{START-UP_FIXED} = t_{DELAY} + V_{REF} X (C_{SS}/I_{SS})$$
 (1)

$$t_{START-UP\ ADJ} = t_{DELAY} + V_{ADJ} X (C_{SS}/I_{SS})$$
 (2)

注:

t_{DELAY} 为 100 μs 的固定延迟。

VREF 是固定输出模型选项的 0.5 V 内部参考

Css 为从 SS 到 GND 的软启动电容。

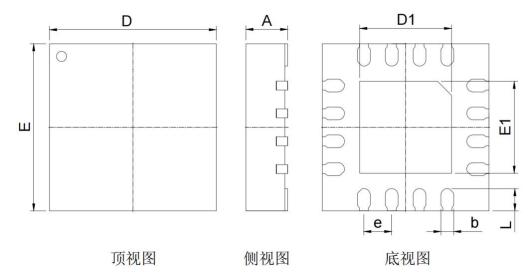
Iss 为来自 SS 的电流(10 μA)。

VADJ 是 VADJ 引脚处的电压,等于 RADJ × IADJ

7.4 输出负载注意事项

PCB 布线时建议走线长度要短,输入输出电容应尽可能的靠近芯片管脚处,保证芯片底部的散热焊盘与 PCB 板的接地层连接。

7.5 可调输出电压

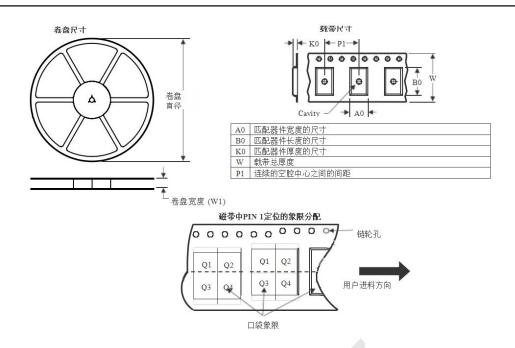

LKP2874QF-ADJ 的输出电压可以设置在 0.5 V 到 1.5 V 范围。从 VADJ 引脚到地连接一个电阻(RADJ)以设置输出电压。输出电压的计算公式如下:

$$V_{OUT} = A_D \times (R_{ADJ} \times I_{ADJ})$$

注:

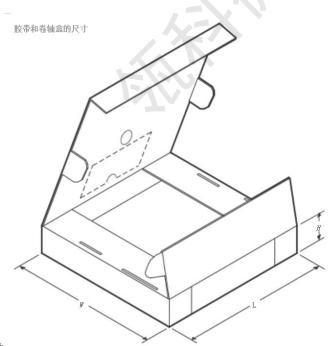
AD 是增益因子, 典型值为 3.0, I_{ADJ} 为 50mA

8 封装形式 (QFN16)



口小竹口		数值: mm				
尺寸符号	最小	公称	最大			
A	0.65	0.75	0.85			
ь	0.18	0.24	0.30			
D	2.80	3.00	3.20			
D1	1.45	1.65	1.85			
Е	2.80	3.00	3.20			
E1	1.45	1.65	1.85			
e	,-\.'\	0.50BSC				
L	0.20	0.35	0.50			

9 机械、包装和可订购的信息


以下页面包括机械、包装和可订购的信息。

9.1 载带和卷盘信息

*所有尺寸均为标称尺寸

器件	封装	引脚数	卷盘直径(mm)	卷盘宽度 W1 (mm)	AO (mm)	BO (mm)	KO (mm)	P1 (mm)	W (mm)	引脚1象限
LKP2874QF-ADJ	QFN	16	330. 0	16. 4	6.7	6.8	1.48	7.95	16.0	Q1

*所有尺寸均为标称尺寸

器件	封装	引脚数	长度 (mm)	宽度 (mm)	高度 (mm)
LKP2874QF-ADJ	QFN	16	356. 0	356. 0	35. 0

9.2 订货信息

- ① 产品系列代号
- ② 分类标识
- ③ 产品代号
- ④ 封装形式
- ⑤ 输出电压

表 2 订货信息表

型号	封装	质量等级	工作温度
LKP2874QF-ADJ	QFN16	工业级	-40°C∼+85°C

10 版本信息

版本号	日期	版本说明	更改说明
REV 1.00	2024-04-24	更新版本	_