

CMT10XXX 隔离 CAN 收发器

1 特性

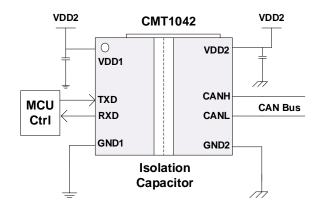
- 安全相关认证
 - 符合 DIN VDE V 0884-11: 2017-01 标准
 - 符合 UL 1577 组件认证
 - CSA和CQC认证
 - 符合 ISO11898-2 标准
- 高达 5 kV_{RMS} 隔离电压
- 工作电压范围:
 - VDD1: 2.5V to 5.5V
 - VDD2: 4.5V to 5.5V
- 数据率: 1Mbps (CMT1050)

5Mbps (CMT1042/CMT1052)

- 直流总线故障保护电压: ±70V
- 共模电压范围: ±30 V
- 驱动器显性超时(TXD DTO)
- 过电流以及过温保护
- 未上电时的理想无源,高阻抗总线终端
- 高 CMTI: 150kV/us
- 总线引脚的 HBM ESD 容差: 6 kV
- 工作环境温度范围: -40°C to 125°C
- 低环路延迟: <220 ns
- 增强电磁兼容性:
 - 系统级 ESD, EFT, 浪涌抗扰性
- 支持(WB) SOIC16, DUB8 和 SOW8L 封装

2 应用

- 隔离 CAN 总线
- 逆变器和电机控制
- PLC 和 DCS 通讯模块
- 电池管理系统 (BMS)
- 工业电源应用


3 说明

CMT10XXX 器件是一款符合 ISO11898-2 (2016) 标准规格的电隔离控制器局域网 (CAN) 收发器。CMT10XXX 提供 ±70V直流母线故障保护功能和 ±30V 共模电压范围。该器件在CAN FD 模式下最高支持 5Mbps 数据速率,与经典 CAN 相比可实现更为快速的载荷传输。该器件采用二氧化硅 (SiO2) 绝缘隔栅,可承受 5000VRMS 的电压和 1060VRMS 的工作电压。电磁兼容性得到了显著增强,可实现系统级 ESD、EFT 和浪涌并符合辐射标准。与隔离式电源一起使用,此器件可抵御高电压冲击,并防止总线的噪声电流进入本地接地。CMT10XXX 器件提供基础型和增强型隔离。CMT10XXX 器件支持 - 40° C 至 +125° C 的宽环境温度范围,该器件采用(WB) SOIC16,DUB8 和 SOW8L 封装。

芯片信息

器件型号	封装	封装尺寸(标称值) (mm)
CMT1050	SOW8L	5.85 * 7.50
CMT1042	SOVVOL	5.85 * 7.50
CMT1050W		10.30 * 7.50
CMT1052W	SOIC16-WB	10.30 * 7.50
CMT1042W		10.30 * 7.50
CMT1050U	DUB8	6.35 * 9.20

简化原理图

景目

1 犌	\$性		
2 应	俎		1
3 说	.明		
4 绝	最快	大额定值	3
		: :作条件	
0 20	/梦剱	【 是置与功能描述	4 -
7号	脚配	置与功能描述	5
8 典	.型应	t用	
8	3.1	典型应用原理图	
	3.2	PCB 布局指南	
9 参	数测	试电路	9
10 F	电气机	特性	12
	10.1	电气特性 电气特性	
	10.1	· 开关电气特性	
	10.3	隔离指标	
	10.4	安规认证	
1	10.5	安全限定值	
11 J	功能扩	描述	18
1	11.1	功能说明	18
-	11.2	总线状态	
	11.3	接收器	
	11.4	发送器	
1	11.5	保护功能	
1	11.6	总线显性超时功能	19
1	11.7	发送器超时功能	
1	11.8	限流保护	
1	11.9	热关断	19
12 ∄	封装值	信息	20
1	12.1	CMT10XXX SOW8L 封装	20
1	12.2	CMT10XXX SOIC16 封装	21
1	12.3	CMT10XXX DUB8 封装	22
13 ì	订购化	信息	24
14 최	卷带	信息	25
		变更记录	
		た。 信息	
IO #	ひかり ひんりょう ひんりょう ひんりょう しょうしょう しょうしょ ひんりょう ひんりょう ひんりょう ひんりょう ひんり ひんり しゅうしゅう しゅうしゅう しゅうしゅう しゅうしゅう しゅうしゅう ひんかり しゅうしゅう しゅうしゅう ひんかり しゅうしゅう しゅうしゅう はいまい しゅうしゅう しゅうしゅう しゅうしゅう しゅうしゅう しゅうしゅう しゅうしゅう しょう はいれい しゅうしゅう しゅうしゃ しゅうしゃ はいれい しゅうしゅう しゅうしゅう しゅうしゃ しゅうしゃ しゅうしゃ しゅうしゃ しゅうしゃ しゅうしゃ しゅうしゃ はいれい しゅうしゃ しゃり しゅうしゃ しゅうしゃ しゅうしゃ しゅうしゃ しゅうしゃ しゅうしゃ しゅうしゃ しゅうしゃ しゃくり しゅうしゃ しゅうしゃ しゃく しゃく しゃく しゃく しゃく しゃく しゃく しゃく しゃく し	日心	29

4 绝对最大额定值

表 1. 绝对最大额定值[1]

参数	符号	条件	最小	最大	单位
电源电压[2]	VDD1, VDD2		-0.5	6.5	V
最大输入电压	V _{IN}		-0.4	VDD+0.4	V
最大总线侧信号电压	V _{CANH} , V _{CANL}		-70	+70	V
输出电流	lo		-15	15	mA
运行温度	Topr		-40	125	℃
存储温度范围	T _{STG}		-65	150	~℃
静电放电	НВМ			±6000	V
	CDM			±2000	V

注:

- [1]. 工作条件等于或超出上述绝对最大额定值可能会导致器件永久性损坏。这里给出的是器件额定值,并非工作条件,不能据此推断产品能否正常工作。器件长期在超出最大额定值条件下工作会影响产品的可靠性,甚至导致产品损坏。
- [2]. 除总线差分输出/输入电压以外,所有电压值均相对于本地接地端(GND1或GND2),并且是峰值电压值。

5 建议工作条件

表 2. 建议工作条件

参数	符号	条件	最小	典型	单位	备注
控制端电源电压	V_{DD1}	2.5		5.5	V	
总线侧电源电压	V_{DD2}	4.5	5	5.5	V	
总线引脚电压(单端或共模)	V _I or V _{IC}	-30		30	V	
高电平输入电压	V _{IH}	0.7*V _{DD1}		5.5	V	驱动器(TXD)
低电平输入电压	V _{IL}	0		0.3*V _{DD1}	V	驱动器(TXD)
输出电流@高电平	I _{OH}	-70			mA	驱动器(Driver)
	ЮН	-6			1117 (接收器(Receiver)
输出电流@低电平			70	70	A	驱动器(Driver)
制出电流 电低电子	I _{OL}		6	6	mA	接收器(Receiver)
环境温度	T _A	-40		125	$^{\circ}$	
结温	TJ	-40		150	$^{\circ}$	

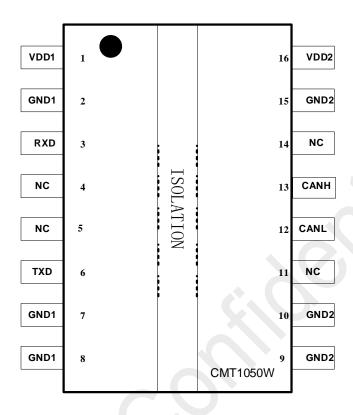
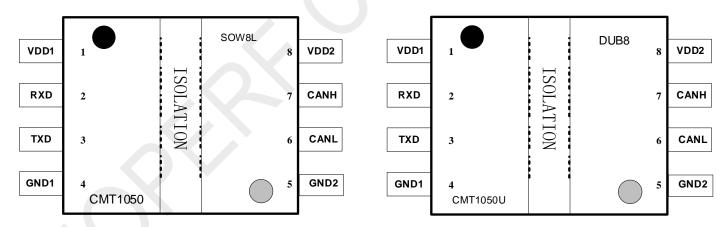

6 热参数

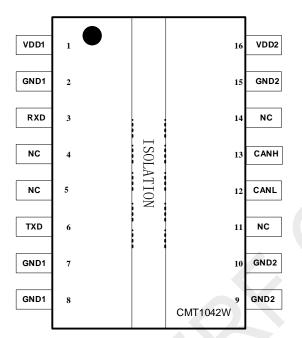
表 3. 热参数

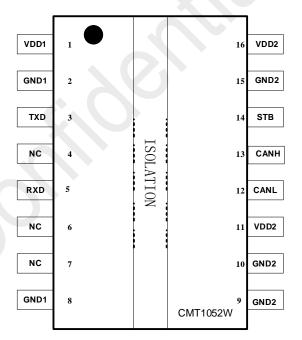
参数	符号	SOW8L	(WB) SOIC16	单位
芯片结到环境的热阻	θ_{JA}	100	69.9	
芯片结到板的热阻	θ _{ЈВ}	51.8	29	°C/W
芯片结到壳(顶部)的热阻	θ _{JC (top)}	40.8	31.8	. 0

www.hoperf.cn

7 引脚配置与功能描述




图 1. CMT1050X 引脚图


表 3.CMT1050X 引脚描述

引脚名称		引脚编号		描述				
刀腳右你	CMT1050W	CMT1050	CMT1050U	加 处				
VDD1	1	1	1	隔离侧 1 供电电压				
RXD	3	2	2	CAN 接收器数据输出端,总线为隐性状态时,RX 输出高电平;总线为显性状态时,RXD 输出低电平				
TXD	6	3	3	CAN 发送器数据输入端。当 TXD 为低电平时,CANH、CANL输出为显性状态;当 TXD 为高电平时,CANH、CANL输出为隐性状态				

Rev 0.3 | 5/29

引脚名称		引脚编号		描述	
刀牌石你	CMT1050W	CMT1050	CMT1050U	抽处	
GND1	2,7,8	4	4	逻辑侧地,逻辑侧信号的地参考点。	
GND2	9,10,15	5	5	总线侧地,GND2 是 CAN 总线信号的参考点。	
CANH	13	7	7	CAN 总线差分输入/输出,高电平逻辑端。	
CANL	12	6	6	CAN 总线差分输入/输出,低电平逻辑端。	
VDD2	16	8	8	隔离侧 2 供电电压	
NC	4,5,11,14			浮空,请勿从外部连接这些引脚,应将其置于悬空状态。	

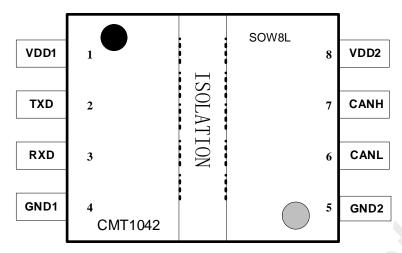


图 2. CMT1042W / CMT1052W 引脚图

表 5. CMT1052X/CMT1042X 管脚描述

可删点物	引脚编号			42#
引脚名称	CMT1052W	CMT1042W	CMT1042	描述
VDD1	1	1	1	隔离侧 1 供电电压
TXD	3	6	2	CAN 发送器数据输入端。当 TXD 为低电平时,CANH、CANL输出为显性状态;当 TXD 为高电平时,CANH、CANL输出为隐性状态
RXD	5	3	3	CAN 接收器数据输出端,总线为隐性状态时,RX 输出高电平;总线为显性状态时,RXD 输出低电平
GND1	2,8	2,7,8	4	逻辑侧地,逻辑侧信号的地参考点。
GND2	9,10,15	9,10,15	5	总线侧地,GND2是 CAN 总线信号的参考点。
CANH	13	13	6	CAN 总线差分输入/输出,高电平逻辑端。
CANL	12	12	7	CAN 总线差分输入/输出,低电平逻辑端。
VDD2	11,16	16	8	总线侧地, PIN11 必须外接到 PIN16。
NC	4,6,7	4,5,11,14		浮空,请勿从外部连接这些引脚,应将其置于悬空状态。
STB	14			待机模式控制输入

8 典型应用

8.1 典型应用原理图

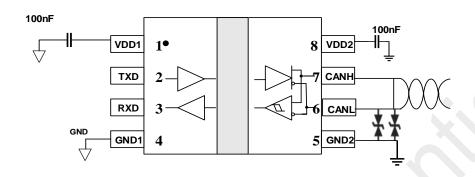


图 3.典型应用原理图

注: 用户须注意不能将 VDD 与地接反。

8.2 PCB 布局指南

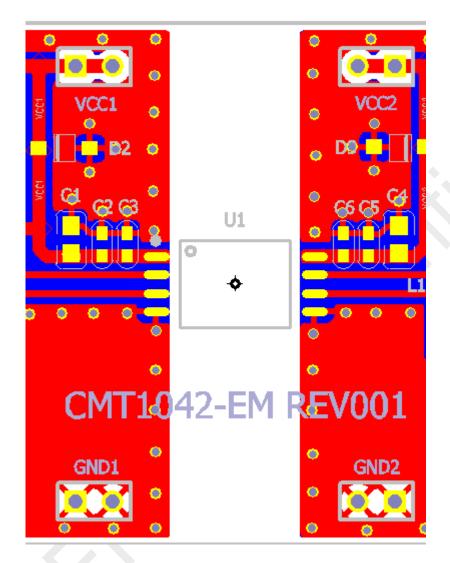


图 4.推荐布局指南(顶层)

9参数测试电路

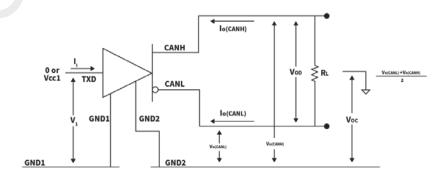


图 5. 驱动电压, 电流指标定义

Rev 0.3 | 9/29

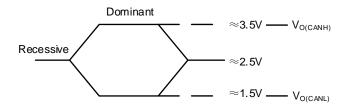


图 6.总线逻辑状态的电压定义

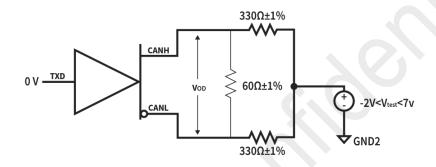
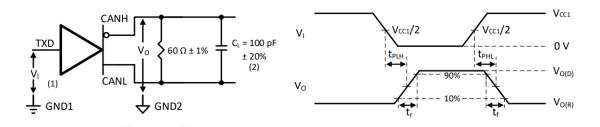



图 7. 驱动器 VoD 电压测试电路 (带共模负载)

- A. 输入脉冲由波形发生器产生,其中 PRR \leq 125kHz, 50% duty cycle, $t_r \leq$ 6 ns, $t_f \leq$ 6ns, Zo = 50 Ω
- B. 负载电容包括仪器和夹具的计生电容在±20%以内。

图 8. 驱动测试电路以及电压波形

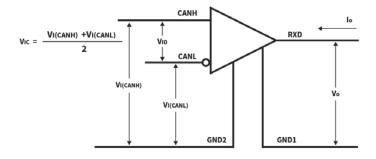
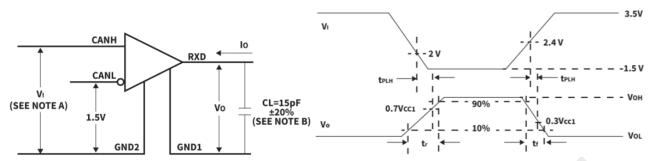



图 9. 接收器输出电压和电流定义

A. 输入脉冲由波形发生器产生,其中 PRR \leq 125kHz, 50% duty cycle, $t_r \leq 6$ ns, t_r

B. 负载电容包括仪器和夹具的计生电容在±20%以内。

图 10. 接收器测试电路和电压波形

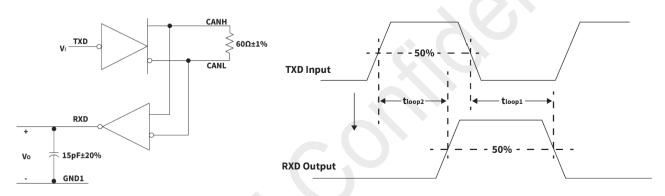
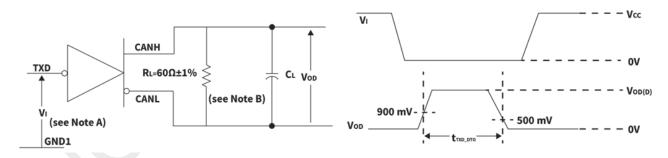



图 11. tLoop 测试电路和电压波形

A. 输入脉冲由波形发生器产生,其中 PRR \leq 125kHz, 50% duty cycle, $t_r \leq$ 6 ns, $t_r \leq$ 6ns, Zo = 50 Ω

B.负载电容包括仪器和夹具的计生电容在±20%以内。

图 12. 显性超时功能测量电路和电压波形

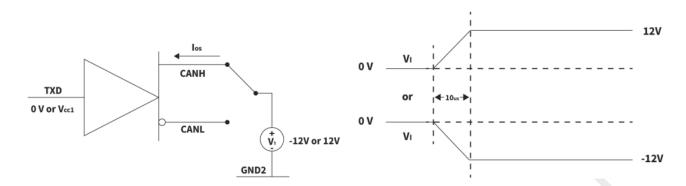


图 13. 驱动器短路电流测试电路及波形

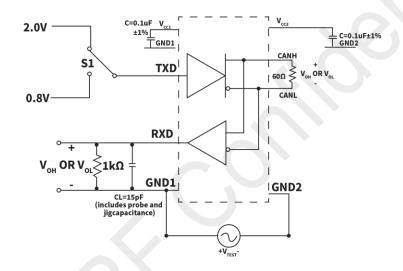


图 14. 共模瞬态抑制(CMTI)测量电路

10 电气特性

10.1 电气特性

VDD1 = $2.5V \sim 5V$, VDD2 = $4.5V \sim 5.5V$, $T_A = -40$ to 125 °C.

(除非另外说明, 所有典型规格在 VDD1= 3.3V, VDD2 = 5V, T_A= 25℃的情况下测得。)

参数	符号	条件	最小	典型	最大	单位
电源电压	VDD1		2.5		5.5	V
	VDD2		4.5	5	5.5	V
		$VDD_1 = 3.3 \text{ V}, TXD = 0$		2.2	3.50	A
逻辑侧供电电流	IDD1	$VDD_1 = 3.3 \text{ V}, TXD = VDD1$		1.1	2.00	mA
		$VDD_1 = 5 V$, $TXD = 0$		2.2	3.50	mA

表 6. 电气特性

		$VDD_1 = 5 \text{ V}, TXD = VDD1$		1.1	2.00	1
27. AD Joseph J. L. J. 32-	IDDo	$VI = 0V$, $R_{load} = 60 \Omega$		46	70	
总线侧供电电流	IDD2	VI = VDD ₂		5.3	10	mA
热阻断阈值	T _{TS}		155	165	180	$^{\circ}$
共模瞬态抑制	CMTI		±100	±150		kV/us
逻辑端	<u>.</u>					
高电平输入电压	V _{IH}	TXD pin	0.7*V _{DD1}			V
低电平输入电压	V _{IL}	TXD pin			0.3*V _{DD1}	٧
高电平输入电流	I _{IH}	TXD pin		0		uA
低电平输入电流	I _{IL}	TXD pin	-15			uA
高电平输出电压	V _{OH}	I _{OH} = -4mA, RXD pin	V _{DD1} - 0.4			V
低电平输出电压	V _{OL}	I _{OL} = 4mA, RXD pin			0.4	V
输入电容	C _{IN}	TXD pin		6.5		pF
驱动器	•					•
CANH 输出电压 (显性)	V _{OH}	TXD=0 V, R _{LOAD} = 60 Ω	2.8	3.4	4.5	V
CANL 输出电压(显性)	V _{OL(D)}	TXD=0 V, R _{LOAD} = 60 Ω	0.8	1.2	2.25	V
CAN 总线输出电压(隐性)	V _{O(R)}	TXD=VDD1, R _{LOAD} = 60 Ω	2	0.5*V _{DD2}	3	V
总线输出电压(显性)	V _{OD(D)}	VDD=5V, TXD=0, $R_{load} = 60$	1.5		3	٧
总线输出电压(隐性)	V _{OD(R)}	VDD=5V, TXD=V _{IO} , R _{load} = 60Ω	-0.05		0.05	V
心线相山电压(修压)	V OD(R)	VDD=5V, TXD=V _{IO} , No load.	-0.1		0.1	
显性短路输出电流	I _{O(SC)DOM}	$ \begin{aligned} & TXD\text{=}0V, t \!<\! t_{to(dom)TXD}.\\ & V_{CANH}\text{=} \text{-}30V\\ & TXD\text{=}0V, t \!<\! t_{to(dom)TXD}. \end{aligned} $	-100		-40	mA
		V _{CANL} =30V	40		100	
隐性短路输出电流	I _{O(SC)REC}	Normal/Silent mode; Vtxd=VDD1; V _{CANH} = V _{CANL} =-27V to +30V	-6		6	mA
接收器						
高电平输入阈值电压	V _{IT+}			750	900	mV
低电平输入阈值电压	V _{IT-}		500	650		mV
迟滞电压	V _{HYS}			100		mV
未上电总线输入漏电流	I _{IOFF(LKG)}	V _{CANH} = V _{CANL} =5V, VDD=0V, VIO=0V	-5		5	uA
输入电容	Cı	CANH or CANL		13		pF
差分输入	C _{ID}			5		pF
差分输入电阻	R _{ID}		20		40	kΩ
输入电阻	R _{IN}		15	30	40	kΩ
输入电阻匹配	RI _{MATCH}	CANH = CANL	-5		+5	%
共模电压范围	V _{сом}		-30		+30	V

10.2 开关电气特性

VDD1 = 2.5V ~ 5V, VDD2 = 4.5V~5.5V, T_{A} = -40 to 125 ℃. (除非另外说明,所有典型规格是在 VDD1= 3.3V,VDD2 = 5V, T_{A} = 25 ℃的情况下测得的。)

表 7. 开关电气特性

参数	符号	条件	最小	典型	最大	单位
总环路延时 1	T _{LOOP1}	驱动器输入到接收器输出,隐性到显 性		120	220	ns
总环路延时 2	T_{LOOP2}	驱动器输入到接收器输出,显性到隐 性		100	220	ns
隐性传输位宽	T _{bit(bus)}	$T_{bit(TXD)} = 500ns$ $T_{bit(TXD)} = 200ns$	435 155	488 186	530 210	ns
		$T_{bit(TXD)} = 500 \text{ns}$	400	490	550	
接收端引脚上的位时间	$T_{bit(RXD)}$	T _{bit(TXD)} = 200ns	150	191	240	ns
驱动器						ı
传播延时,输出从隐性变为显性	t_{PLH}			73		ns
传播延时,输出从显性变为隐性	t _{PHL}			63		ns
差分输出信号上升时间	t _r			62		ns
差分输出信号下降时间	t _f			60		ns
主线显性超时时间	t _{TXD_DTO}		800	1900	4000	us
接收器						
传播延时,输出由低电平变为高 电平	t _{PLH}			58		ns
传播延时,输出由高电平变为低 电平	t _{PHL}			46		ns
接收信号上升时间	t _r			1		ns
接收信号上升时间	t _r			1		ns

10.3 隔离指标

表 8. 隔离与安全的相关参数

会业	Arts 🖂	AT C		值		
参数	新		SOW8L WB SOIC-		单位	
最小外部气隙(间隙)1	CLR	测量输入端至输出端,隔空最短距离	8.0	8.0	mm	
外部爬电距离1	CRP	测量输入端至输出端,沿壳体最短距离	8.0	8.0	mm	
隔离距离	DTI	Minimum internal gap	18		um	
相对漏电指数	СТІ	DIN EN 60112 (VDE 0303-11);	>60	0	V	
材料组	-	IEC 60112	1		-	
		Rated mains voltage ≤ 150 V _{RMS}	I to IV	I to IV	-	
A 64-17		Rated mains voltage ≤ 300 V _{RMS}	I to IV	I to IV	-	
安全等级 DIN VDE 0110	-	Rated mains voltage ≤ 600 V _{RMS}	I to IV	I to IV		
		Rated mains voltage≤ 1000 V _{RMS}	I to III	I tolli	-	
DIN VDE V 0884-11:2017-01 ^[2]						
气候类型			40/125	5/21		
污染等级		Per DIN VDE 0110	2			
最大重复峰值隔离电压	V_{IORM}	交流电压	1414		V_{pk}	
	交流电压; 时间相关的介质击穿 (TDDB) 测试		1000		V _{RMS}	
最大工作隔离电压	V_{IOWM}	直流电压	1414		V _{DC}	
输入到输出测试电压,方式 B1	$V_{pd(m)}$	$\begin{aligned} &V_{\text{ini,b}} = V_{\text{iotm}}, \ V_{\text{pd(m)}} = V_{\text{iorm}}^* 1.875, \\ &t_{\text{ini}} = t_{\text{m}} = 1 \text{ sec}, \end{aligned}$	<5	5	рс	
输入到输出测试电压,方式 A。 在分组 1 环境测试之后	$V_{pd(m)}$	$V_{\text{ini.a}} = V_{\text{iotm}}, \ V_{\text{pd(m)}} = V_{\text{iorm}}^* 1.6,$ $t_{\text{ini}} = 60 \text{ sec, } t_m = 10 \text{ sec,}$	<5	5	рс	
输入到输出测试电压,方式A。 在分组2和分组3安全测试分组 之后	$V_{\text{pd}(m)}$	$\begin{aligned} &V_{\text{ini.a}}{=} \ V_{\text{iotm}}, \ V_{\text{pd(m)}}{=} \ V_{\text{iorm}}{}^* 1.2, \\ &t_{\text{ini}}{=} \ 60 \ \text{sec}, \ t_m = 10 \ \text{sec}, \end{aligned}$	<5	5	рс	
最大瞬态隔离电压	V_{IOTM}	t = 60 s (qualification);	700	0	V_{pk}	
最大浪涌隔离电压[3]	V _{IOSM}	Test method per IEC62368-1, 1.2/50 us waveform, V _{TEST} = 1.6 x V _{IOSM}	625	0	V_{pk}	
栅电容,输入到输出[5]	C _{IO}	f = 1 MHz	1.2		pF	
,,,,,,		V _{IO} = 500 V, T _{amb} = T _s	>10 ⁹		Ω	
绝缘电阻,输入到输出 ^[5]	R_{IO}	V _{IO} = 500 V, 100 °C ≤ T _{amb} ≤ 125 °C	>1011			
UL 1577		I L				
最大隔离电压	V _{ISO}	$V_{TEST} = 1.2 \times V_{ISO}, t = 1 s (100\% production)$	500	0	V _{RMS}	

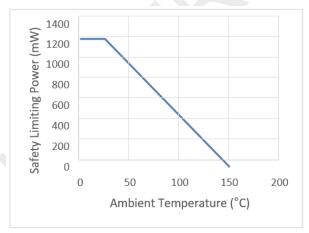
注:

- [1]. 应根据应用的设备隔离标准采纳相应的爬电距离和间隙需求标准。PCB设计中应注意保持爬电距离和间隙距离,确保板上隔离器的安装垫不会导致相应距离减少。某些情况下,PCB板上的爬电距离和间隙是相等的。在 PCB板上加凹槽和/肋条设计有助于改善该指标。
- [2]. 该隔离器仅适用于安全额定值范围内的安全电气绝缘。应通过适当的保护电路确保符合安全额定值。
- [3]. 在空气或油中进行测试,以确定隔离栅的固有浪涌抗扰度。
- [4]. 表观电荷是由局部放电(pd)引起的放电。
- [5]. 隔离栅两侧的所有管脚连接在一起,形成一个双端装置。

10.4 安规认证

表 9.安规认证

VDE	UL		CQC	TUV
DIN VDE V0884- 11:2017-01(申请中)	UL 1577 Component Recognition Program	Approved under CSA Component Acceptance Notice 5A	GB 4943.1-2011	EN 61010-1:2010 (3rd Ed) and EN 60950- 1:2006/A2: 2013 (申请中)
证书编号:申请中	证书编号: UL-US-2439077-1	证书编号: UL-CA-2429797-1	证书编号: CQC11-471543-2022	证书编号: 申请中


10.5 安全限定值

设置安全限定值的目的在于: 当输入或输出电路故障时可以尽量减少对隔离栅的可能损坏。I/O 故障可能导致对地或电源的低电阻;因而,在不限制电流的情况下,过多的功率损耗会导致模具过热并造成隔离栅损坏,从而可能导致系统二次故障。

表 10. 安全限定值

参数	符号	值	单位
安全供电电压	R _{0JA} = 100 °C/W,	1250	mW
女主族电电压	T _J = 150°C, T _A = 25 °C	1230	mA
安全供电电流	$R_{\theta JA} = 100 \text{ °C/W}, V_1 = 5 \text{ V},$ $T_J = 150 \text{ °C}, T_A = 25 \text{ °C}$	250	W
外壳温度		150	$^{\circ}$ C

- 1. 使用 SOP8 (300mil)封装的结对空气热阻 R_{θJA}进行计算,该封装是根据 JESD51-3,安装在低有效热导率测试板(1s)器件上。
- 2. 最高安全温度与器件规定的最高结温(Tj)相同。

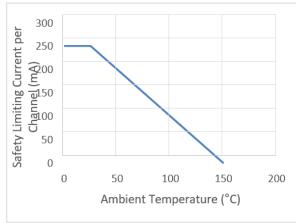


图 15. CMT10XXX 热降额曲线

11 功能描述

11.1 功能说明

CMT10XXX 集成了双通道数字隔离器和一个高可靠性 CAN 收发器。数字隔离器是氧化硅隔离器基于 CMOSTEK 容量隔离技术。高集成度的解决方案有助于简化系统设计,提高可靠性。这款器件具有 150kV/ μ s 的共模瞬态抑制。在逻辑侧可以接受 2.5V 至 5.5V 的供电电压范围(VCC1),方便连接工作在不同电压的 CAN 控制器,无需额外的电平转换器。总线侧则采用独立的 4.5V 至 5.5V 隔离电源供电 (VCC2)。器件接收器输入端允许±30V 共模输入,远远超出 ISO 11898 规范定义的-2V 至+7V 范围;总线引脚 CANH、CANL 可承受高达±58V 的故障电压,为系统提供有效的过压保护。此外,当输出级发生短路故障时,发送器的限流保护电路即刻将器件置于保护状态,而热关断保护则在检测到器件过热时,将发送器输出强制于高阻态,避免器件产生过大功耗。发送器超时检测电路用于防止总线闭锁。CMT10XXX 器件通过 UL1577 安全认证,支持 5 kVrms 绝缘耐压,同时提供高电磁抗扰度和低辐射。CMT10XXX 的数据速率最高可达 5Mbps。CMT10XXX 具有热保护和传输数据主导超时功能。

11.2 总线状态

CAN 总线具有两个逻辑状态:显性状态和隐性状态。显性状态下(代表"0"数据位,用于确定信息发送的优先级),CANH-CANL之间的差分电压介于 1.5V 至 3V(高于 0.9V),该状态对应于 TXD/RXD 的逻辑"0";隐性状态下(代表"1"数据位,总线空闲状态),总线通过内部电阻拉至总线侧电源 VCC2/2,CANH-CANL之间的差分电压介于-120mV 至+12mV,或接近 0V(低于 0.5V,取决于总线负载),对应于 TXD/RXD 的逻辑"1"。

11.3 接收器

接收器将总线的差分输入(CANH 和 CANL)转换成 CAN 控制器需要的单端输出信号 RXD,内部比较器检测差分电压 VDIFF = (VCANH-VCANL),门限电压约为 0.7V。如果 VDIFF > 0.9V,则在 RXD 引脚输出逻辑低电平;如果 VDIFF < 0.5V,RXD 输出逻辑高电平。CANH、CANL 的共模输入电压范围为±30V。当 CANH、CANL 短路,或处于空闲状态时,RXD 输出高电平

V _{ID} = V _{CANH} -V _{CANL}	RXD	总线状态
V _{ID} ≥0.9V	低电平	显性
$0.5 < V_{ID} < 0.9V$	不确定	不确定
V _{ID} ≤0.5V	高电平	隐性
Open	高电平	开路

表 11. 接收器真值表

11.4 发送器

发送器将来自 CAN 控制器的单端输入信号 (TXD)转换成差分输出 CANH、CANL。内部发送器超时检测确保显性电平未超出 t_{TXD DTO}的前提下,收发器处于正常工作状态。CANH、CANL 输出具有短路限流保护,热关断则进一步限制器件的最大功耗。

表 12. 发送器真值表

TXD	VCANH	VCANL	总线状态		
L	Н	L	显性		
Н	Z	Z	隐性		
Open	Z	Z	隐性		
注: H = 高电平; L = 低电平; Z = 共模(隐性)偏置到 VDD/2					

11.5 保护功能

CMT10XXX 在待机状态下无法收发常规 CAN 报文。只有隔离器和低功率 CAN 接收器处于活动状态,监测总线的活动情况。只有总线显性和隐性状态持续时间长于总线唤醒滤波器时 t_{fltr(wake)bus},唤醒才会反映在 RXD 引脚上。为了减少电流消耗,CAN 总线端接到 GND,而不是像正常模式那样偏置到 VDD2/2。待机模式通过管脚 STB HIGH 来设置。内部上拉确保在机顶盒引脚未连接时默认选择 Standby 模式。

- 发送器关闭
- 正常模式下 CAN 接收器关闭
- 低功耗 CAN 接收器处于活动状态
- CANH 和 CANL 偏向 GND
- 低功耗 CAN 接收机接收到的信号在引脚 RXD 上反射

特机状态下,未关闭 CMT10XXX 的隔离功能。在这种模式下,总体静态电流不会显著减小。CMT10XXX 不支持非常低静态电流下的 CAN 总线唤醒功能。

11.6 总线显性超时功能

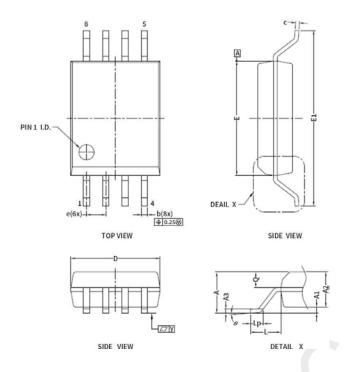
在待机模式下,当 CAN 总线从隐性状态变为显性状态时,启动"总线优势超时"定时器。即如果总线上的主导状态持续的时间比总线(tto(dom)bus)长,则 RXD 引脚将维持为显性状态。

11.7 发送器超时功能

如果引脚 TXD 由于硬件或者软件应用程序故障,被强制持续显示低电平(LOW)。TXD 显性超时起可以防止总线钳制在显性状态(阻塞所有网络通信)。

如果引脚 TXD 上的低电平持续时间超过内部定时器值(T_{txd_dto}),则发送器被关闭,驱动总线进入隐性状态。超时故障解除后,在 TXD 收到的信号上升沿重新使能发送器,收发器恢复正常工作。

11.8 限流保护


CMT10XXX 器件的发送器还提供输出短路保护,一旦发生输出短路到电源或短路到地的故障时,驱动器将限制输出电流。当然,由于此时处于最大限流状态,有可能消耗较大的电源电流,而热关断功能为输出短路提供了二次防护。一旦短路故障解除,发送器将退出限流保护而进入有效工作状态。

11.9 热关断

CMT10XXX 器件的发送器还提供热关断保护,当器件的结温超出热关断门限 T_{ts}(shutdown) (190°C, 典型值)时,将关闭驱动器,阻断驱动器输出 TXD 与总线的连接。热关断期间,CAN 总线偏置在隐性电平,接收器则保持有效工作状态。一旦结温降低到正常工作范围,器件自动退出热关断,恢复正常工作。

12 封装信息

12.1 CMT10XXX SOW8L 封装

CONTROLLING DIMENSION:MM

Symbol		MM	
Syllibot	MIN.	NOM.	MAX.
Α			2.80
A1	0.36		0.46
A2	2.20	2.30	2.40
А3		0.25	
Q	0.97	1.02	1.07
b	0.31	0.41	0.51
С	0.13		0.33
D	5.75	5.85	5.95
E	7.40	7.50	7.60
E1	11.25	11.50	11.75
е		1.27 b	sc
L		2.00 b	sc
Lp	0.50		1.00
Υ		0.10	
θ	0 °		8º

NOTES
1.0 COPLANCRITY APPLIES TO LEADS, CORNER LEADS AND DIE ATTAACH PAD.

图 16. CMT10XXX SOW8L 封装

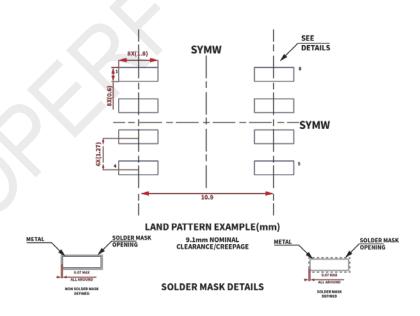
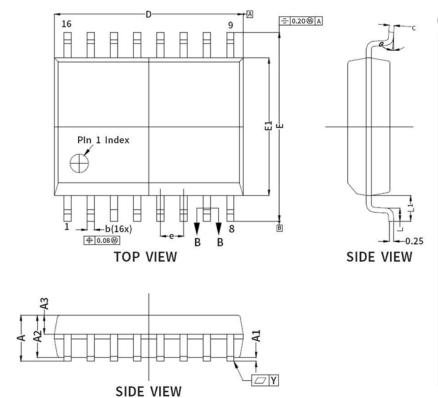



图 17. CMT10XXX SOW8L 封装板布局示例

12.2 CMT10XXX SOIC16 封装

CONTROLLING DIMENSION:MM

Symbol	ММ				
Syllibot	MIN.	NOM.	MAX.		
Α			2.65		
A1	0.11		0.30		
A2	2.25	2.30	2.35		
А3		0.25			
b	0.35		0.43		
С	0.23		0.32		
D	10.20	10.30	10.40		
E	10.10	10.30	10.50		
E1	7.40	7.50	7.60		
е		1.27 b	sc		
L1	2.00 bsc				
L	0.55		0.85		
Υ		0.10			
θ	0 º		8º		

图 18. CMT10XXX SOIC 16 封装外形和尺寸

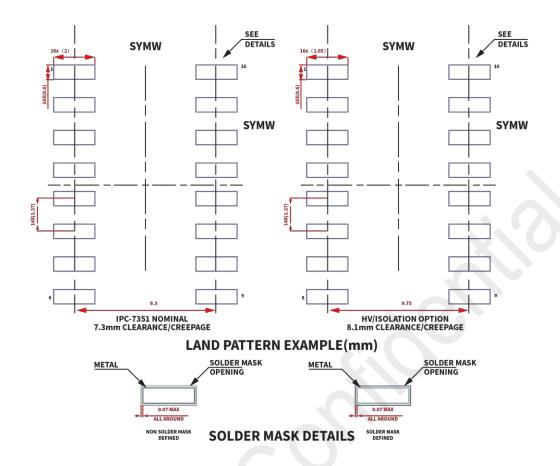
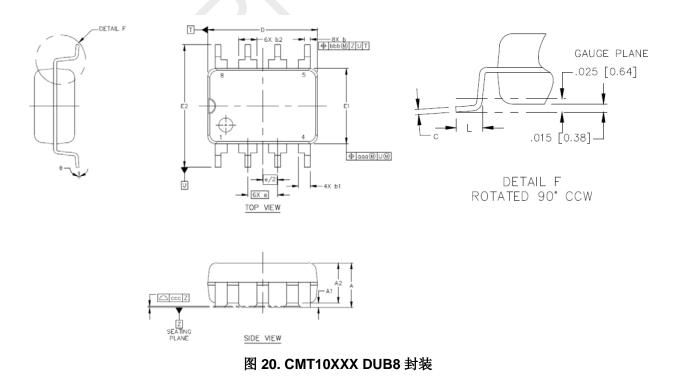
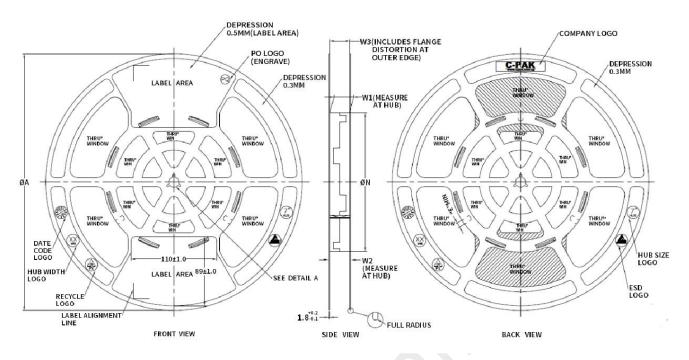



图 19. CMT10XXX SOIC-16 封装板布局示例

12.3 CMT10XXX DUB8 封装

	SYMBOL	MIN	NOM	MAX
TOTAL THICKNESS	Α	3.58		4.19
STAND OFF	A1	0.38		0.58
MOLD THICKNESS	A2	3.20		3.61
LEAD WIDTH	ь	0.36		0.56
	b1		0.99 REF	
	b2		1.524 REF	
L/F THICKNESS	С	0.20		0.36
BODY SIZE	D	9.27		9.37
BOUT SIZE	E1	6.20		6.60
	E2	10.11		10.69
LEAD PITCH	е	2.54 BSC		
LEAD LENGTH	L	1.15		1.45
	θ	0.		8 *
LEAD OFFSET	aaa		0.254	


表 13. CMT10XXX DUB8 封装尺寸

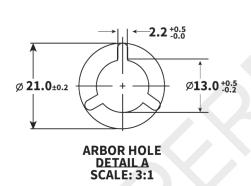
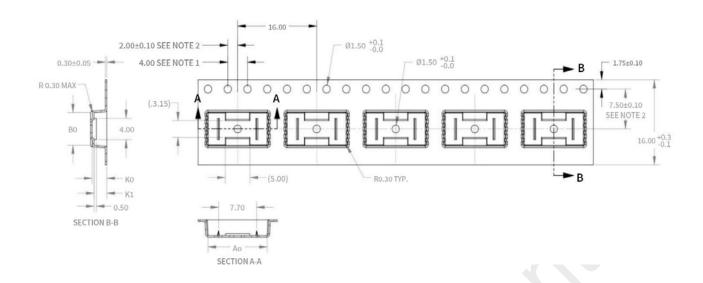

13 订购信息

表 14. 产品型号表

型号	MOQ	隔离电压(kV)	最大数据率(Mbps)	温度	封装	MSL
CMT1050	1000	5	1	-40 to 125℃	SOW8L	3
CMT1042	1000	5	5	-40 to 125℃	SOW8L	3
CMT1050W	1000	5	1	-40 to 125℃	WB SOIC-16	3
CMT1052W	1000	5	5	-40 to 125℃	WB SOIC-16	3
CMT1042W	1000	5	5	-40 to 125℃	WB SOIC-16	3
CMT1050U	1000	5	1	-40 to 125℃	DUB8	3

14 卷带信息



	PRODUCT SPECIFICATION						
TAPE WIDTH	Ø A ±2.0	Ø N ±2.0	W1	W2 (Max)	W3	(MIN)	
08MM	330	178	8.4 +1.5	14.4		5.5	
12MM	330	178	12.4 +2.0	18.4	SHALL ACCOMMODATE	5.5	
16MM	330	178	16.4 +2.0	22.4	TAPE WIDTH WITHOUT	5.5	
24MM	330	178	24.4 +2.0	30.4	NTERFERENCE	5.5	
32MM	330	178	32.4 +2.0	38.4		5.5	

	SURFACE RESISTIVITY						
LEGEND	SR RANGE	TYPE	COLOUR				
Α	BELOW 10 ¹²	ANTISTATIC	ALL TYPES				
В	10 ⁶ TO 10 ¹¹	STATIC DISSIPATIVE	BLACK ONLY				
С	105 & BELOW 105	CONDUCTIVE(GENERIC)	BLACK ONLY				
E	109 TO 1011	ANTISTATIC(COATED)	ALL TYPES				

图 21. CMT10XXX 卷带信息(适用于所有封装类型)

Rev 0.3 | 25/29

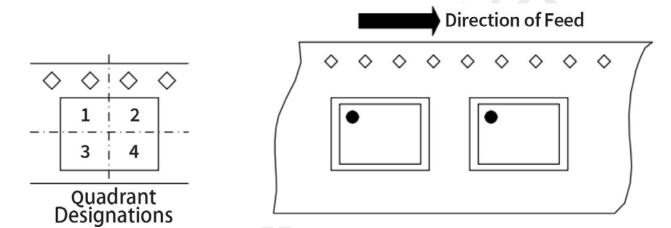


图 22. CMT10XXX SOIC8 卷带信息

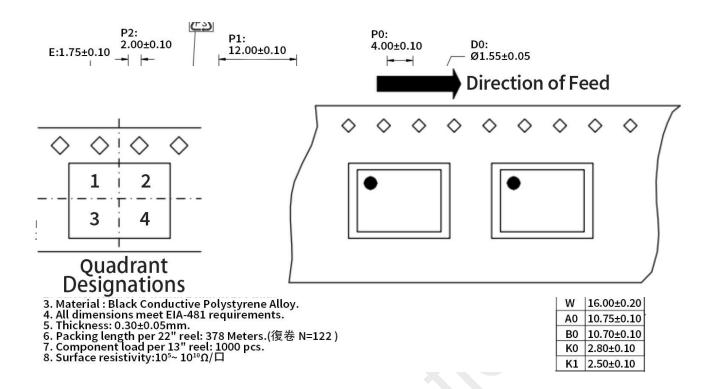


图 23. CMT10XXX SOIC16 卷带信息

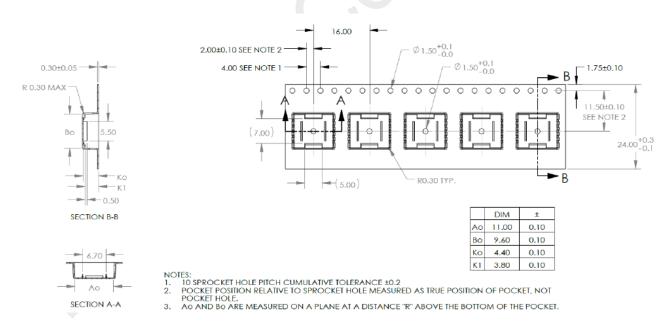


图 24. CMT10XXX DUB8 卷带信息

15 文档变更记录

表 15. 文档变更记录表

版本号	章节	变更描述	日期
0.1	全部	初始版本	2023/10/18
0.2	8.2	修改典型应用原理图	2023/11/14
	全部 修改数据率新增 1Mbps(CMT1050)		0004/0/47
0.2	7	修改 CMT1042W 引脚图	2024/6/17
0.3		更新 UL 证书编号	2024/10/30
	全部	订购信息增加 MSL 等级	2024/12/3

16 联系信息

深圳市华普微电子股份有限公司

中国广东省深圳市南山区西丽街道万科云城三期8A栋30层

邮编: 518052

电话: +86 - 755 - 82973805

销售: <u>sales@hoperf.com</u>

网址: <u>www.hoperf.cn</u>

版权所有 © 深圳市华普微电子股份有限公司, 保留一切权利

深圳市华普微电子股份有限公司(以下简称:"HOPERF")保留随时更改、更正、增强、修改 HOPERF 产品和/或本文档的权利,恕不另行通知。非经本公司书面许可,任何单位和个人不得擅自摘抄、复制本文档内容的部分或全部,并不得以任何形式传播。由于产品版本升级或其他原因,本文档内容会不定期进行更新。HOPERF 的产品不建议应用于生命相关的设备和系统,在使用该器件中因为设备或系统运转失灵而导致的损失,HOPERF 不承担任何责任。

HOPERF商标和其他 HOPERF 商标为深圳市华普徽电子股份有限公司的商标,本文档提及的其他所有商标或注册商标,由各自的所有人拥有。