

ZHEJIANG UNIU-NE Technology CO., LTD 浙江宇力微新能源科技有限公司

V 2.6

版权归浙江宇力微新能源科技有限公司

■ 产品描述

U3211是一款高性能低成本PWM控制功率器,适用于离线式小功率降压型应用场合,外围电路简单、器件个数少。同时产品启动模块内置高耐压(650V)MOSFET可提高系统浪涌耐受能力。

与传统的 PWM 功率开关不同,U3211内部无固定时钟驱动 MOSFET ,系统开关频率随负载变化可实现自动调节。同时芯片采用了多模式PWM控制技术,有效简化了外围电路设计,提升线性调整率和负载调整率并消除系统工作中的可闻噪音。此外,芯片内部峰值电流检测阈值可跟随实际负载情况自动调节,可以有效降低空载情况下的待机功耗。

U3211集成有完备的带自恢复功能的保护功能: VDD 欠压保护、逐周期电流限制、输出过压保护、 过热保护、过载保护和 VDD 过压保护。

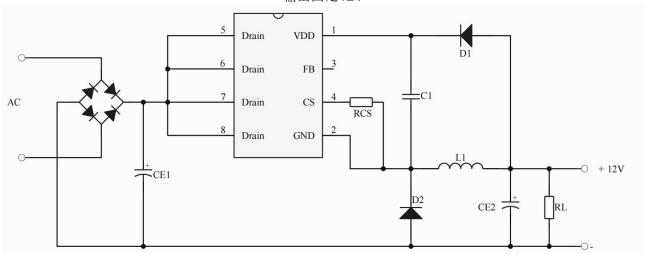
■ 典型应用

- 小家电电源
- 工业控制

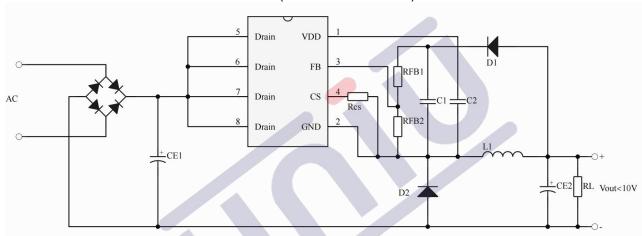
■ 主要特点

- 集成 650V 高压启动电路
- 多模式控制、无异音工作
- 支持降压和升降压拓扑
- 默认 12V 输出 (FB 脚悬空)
- 待机功耗低于 50mW
- 良好的线性调整率和负载调整率
- 集成软启动电路
- 内部保护功能:
 - ▶ 过载保护 (OLP)
 - ▶ 逐周期电流限制 (OCP)
 - ➤ 输出过压保护 (OVP)
 - > VDD 过压、欠压和电压箝位保护

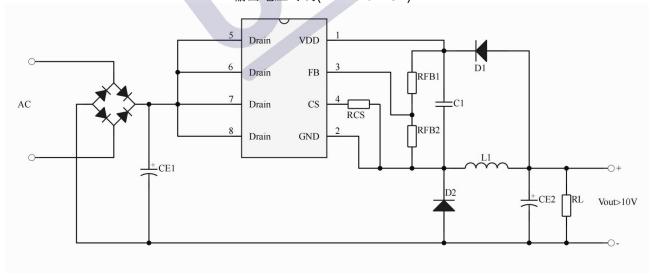
■ 封装信息


■ 应用推荐

产品型号	封装	MOS参数	输出电压	MOS IPK
U3211	SOP-8	650V,4.5Ω	> 2V	1.2A


注: 1、默认降压型输出。 2、实际输出功率取决于输出电压和散热条件。

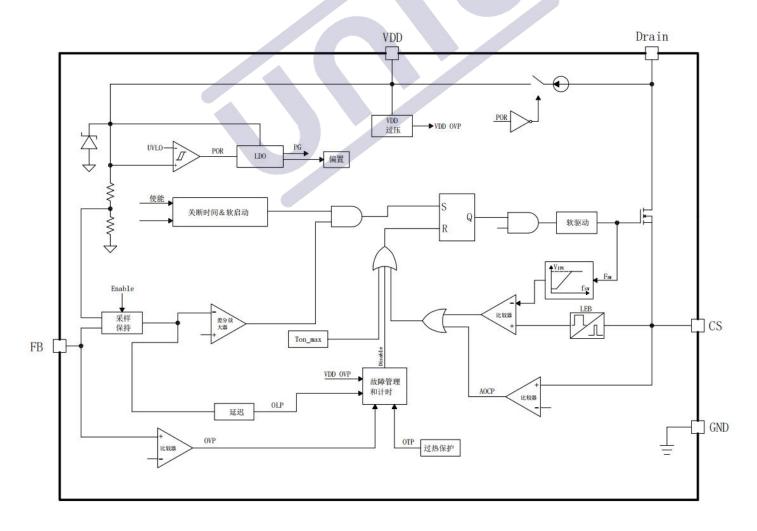
■ 典型应用电路


输出固定12V

输出电压可调(Vout<10V Vout>20V)

输出电压可调(Vout=10~20V)

- 注: 1、典型应用电路及参数供参考,实际应用电路参数请在实测基础上设定,量产请和原厂沟通,其他不明请于我司工程师沟通联系。
 - 2、输入电解电容(CE1)和续流二极管(D2)根据实际使用电压、电流来调节。
 - 3、RL建议负载电流为3~5mA,续流二极管建议使用肖特基。
 - 4、1脚使用104低容值即可稳定工作。


■ 管脚功能描述

管脚	名称	I/O	描述
1	VDD	Р	芯片供电管脚,同时作为输出电压反馈端 (FB 悬空时)。 典型 应用中 VDD 电容推荐采用 100nF 贴片电容
2	GND	Р	芯片的参考地
3	FB	L 反馈输入管脚,该引脚悬空时默认 12V 输出	
4	CS	0	峰值电流检测管脚
5,6,7,8	Drain	Р	内部高压 MOSFET 漏极

■ 订货信息

型号	描述
U3211	SOP-8,无卤、编带盘装,4000 颗/卷

■ 内部功能框图

■ 极限参数(备注 1)

参数	数值	单位	
Drain 管脚电压	-0.3 to 650	V	
VDD 供电电压	25	V	
VDD 箝位电流	10	mA	
FB,CS 管脚电压	-0.3 to 7	V	
封装热阻结到环境(SOP-8)	165	°C/W	
最高芯片工作结温	160	°C	
储藏温度	-65 to 150	°C	
管脚温度 (焊接 10 秒)	260	°C	
ESD 能力 (人体模型)	3	KV	
ESD 能力 (机器模型)	250	V	

注: 针对静电敏感器件,操作时请注意ESD防护措施。

■ 推荐工作条件(备注 2)

参数	数值	单位
工作环境温度	-40 to 125	°C
开关频率	40 to 60	kHz

■ 电气参数 (无特殊注明, 环境温度为 25 ℃)

符号	参数	测试条件	最小	典型	最大	单位	
高压启动部分	高压启动部分(HV 管脚)						
I _{HV}	HV 脚供电电流	HV=650V, VDD=0V	1	2		mA	
I _{HV_leakage}	HV 脚漏电电流	HV=650V, VDD=12V	_	_	10	uA	
供电部分(VD	D 管脚)						
V_{DD_ON}	VDD 开启电压			7.5		V	
V_{DD_OFF}	VDD 欠压保护电压		_	7.0		V	
V_{DD_Reg1}	VDD 调制电压	FB 悬空	11.8	12	12.2	V	
I _{VDD_st}	VDD 启动电流	无开关工作	_	100	300	uA	
I _{VDD_Op}	VDD 工作电流	Fsw=60kHz	_	800	_	uA	
I_{VDD_Q}	VDD 静态电流		_	200		uA	
Vdd_ovp	VDD 过压保护阈值			25		V	
VDD_Clamp	VDD 钳位电压	I _{VDD} =10mA		27		V	

反馈部分(FB'	管脚)					
Vfb_ref	内部差分放大器输入端基准			2.0	2.03	V
Vfb_ovp	输出过压保护 (OVP) 检测 阈值			2.4	_	V
Vfb_olp	输出过载保护 (OLP) 检测阈 值			1.87	_	V
Td_olp	过载保护延迟时间			50	_	ms
电流检测输入	.部分 (CS 管脚)					•
T _{LEB}	前沿消隐			350		ns
Тд_оср	过流比较器延时			100		ns
V _{IPK}	峰值电流阈值			0.55	0.60	V
V _{AOCP}	异常过流保护检测阈值	_	0.9		V	
计时部分						
TOFF_min_norm	典型最短关断时间		14.5	16	17.5	us
TOFF_max_norm	典型最长关断时间		_	1.4		ms
TOFF_max_FDR	动态响应模式下最长关断时间		<u> </u>	420		us
TON_max	最长导通时间		7-	12		us
Tss	内部软启动时间		<u> </u>	3		ms
TAuto_Recovery	自动恢复延迟时间		_	500		ms
过热保护						
T _{SD}	过热保护阈值	(备注 3)	_	150		°C
功率 MOSFET 部分 (Drain 管脚)						
V_{BR}	功率 MOSFET 击穿电压		650		_	V
Rdson	静态导通阻抗 U3211 — 4.5 -			_	Ω	

备注 1:超出列表中"极限参数"可能会对器件造成永久性损坏。极限参数为应力额定值。在超出推荐的工作条件和应力的情况下,器件可能无法正常工作,所以不推荐让器件工作在这些条件下。过度暴露在高于推荐的最大工作条件下,可能会影响器件的可靠性。

备注 2: 在超出以上参数的条件下,无法保障芯片的正常运行。 备注 3: 参数取决于实际设计,在批量生产时进行功能性测试。

■ 功能描述

U3211 系列是一款集成高压启动和供电功能的多模式 PWM 控制功率开关。该系列产品支持离线式非隔离降压和升降压型拓扑电路,适用于小家电电源和线性电源替代等场所。同时,U3211 具有输出精度高和外围成本低的特点。

● 电流、电压调节

1. 电流估算公式: $I_{PK} = \frac{V_{IPK}}{R_{CS}}$ 在典型应用中: $I_{PK} = \frac{0.55V}{1.50} = 0.37A$

2. 电压估算公式: $V_{OUT} = V_{FB} \times (1 + \frac{R_{FB1}}{R_{FB2}}) - V_{D2} + V_{D1}$

在典型应用中:

$$V_{OUT} = 1.87V \times (1 + \frac{6K\Omega}{3.3K\Omega}) - V_{D2} + V_{D1} \approx 5V$$

注: 电压计算会受续流二极管影响, 以实际调试为准。

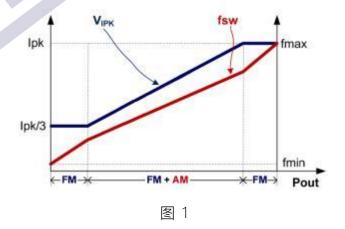
● 超低静态工作电流

U3211 的静态工作电流典型值为 200uA。如此低的工作电流降低了对于 VDD 电容大小的要求,同时也可以提高系统效率。

● 高压启动电路和超低待机功耗 (<50mW)

U3211 内置有一个 650V 高压启动单元。在开机过程中该启动单元开始工作,从 HV 端取电并通过高压电流源对 VDD 电容进行充电,如"功能模块"中所述。当 VDD 电压上升至 V_{DD_ON}(典型 7.5V)时,芯片开始工作且芯片工作电流增加至约 0.8mA。在稳态工作时,芯片通过反馈二极管由输出进行供电,同时借助高压启动电路,系统待机功耗可以低至 50mW 以下。

逐周期峰值电流限制和前沿消隐


U3211 内置的峰值电流检测阈值具有随系统工作频率变化而变化的特点,并通过 CS 管脚实现对电感峰值电流的调制。当 CS 管脚采样到的电压超过该阈值时,功率 MOSFET 立即关断直至下一开关周期开始。同时芯片内置有前沿消隐电路(消隐时间约 300ns),

消隐期间内部的逐周期峰值电流比较器将被屏蔽而不能关闭 MOSFET。

● 多模式 PWM 控制

为满足系统平均效率和空载待机方面的严格要求, U3211 采用了调幅控制 (AM) 和调频控制 (FM) 相 结合的 工作模式, 如图 1 所示。

满载情况下系统工作于调频模式 (FM); 重载至轻载阶段, 系统同时工作于调频和调幅模式 (FM+AM)中,以达到良好的调整率和较高的系统效率; 当工作于空载附近时, 系统将重新进入调频模式以降低待机损耗。通过这种方式, 可以将系统 待机功耗降至 50mW以下。

• 软启动

U3211 内集成有 4ms (典型值)的软启动电路,在芯片启动过程中系统开关频率逐渐增加,而且每次系统的重新启动都会伴随着一次软启动过程。

● 输出过压保护 (OVP)

当在连续的 3 个工作周期里 U3211 检测到 FB 脚电压高于 2.4V 以上时,芯片将进入输出电压过压保护 (OVP),随后系统将进入自动重启模式。

● 过载保护(OLP)/短路保护(SLP)

当过流或短路情况发生时,输出电压和反馈电压将降低 且低于输出过载保护阈值VFB_OLP。如果在3s(典型 值)的时间内该状态持续存在,则芯片进入短路自锁状态,需重新上电。

● 异常过流保护 (AOCP)

过热保护(OTP)在某些情况下(如重载或者输出短路等),系统的电感电流峰值将上升过于剧烈。为避免电感峰值电流过大对系统元器件造成损坏,芯片内部设计有异常过流检测模块(AOCP,典型阈值为0.9V)。当CS电压高于该阈值时,芯片进入降频工作状态。

● 过热保护(OTP)

U3211内部集成的过热保护电路会检测芯片的内部结温, 当芯片结温超过150 ℃ (典型值) 时,系统进入到自 动重启模式。

• 优化的动态响应

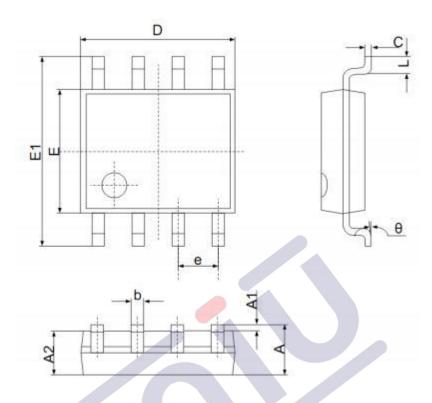
U3211集成有快速动态影响功能,可降低负载切换时的输出电压跌落。

消除可闻噪音

U3211 通过采用频率调制和 CS 峰值电压调制调相结合的多模式控制方式,可实现在全负载范围内有效消除可闻噪音。

● VDD 过压保护(OVP)和 VDD 电压箝位

当 VDD 电压高于 V_{DD_OVP} (典型值28V)时,芯片将停止工作。随后 VDD 电压下降至 V_{DD_OFF}(典型值 7V)并进入重启模式。此外,芯片内部集成有 30V 稳压管,避免 VDD 脚电压过高而损坏。


• 软驱动电路

U3211 内置有软驱动电路优化了系统 EMI 性能。

■ 封装尺寸

SOP-8

かたロ	尺寸 (毫米)		尺寸 (英寸)		
符号	最小	最大	最小	最大	
Α	1.350	1.750	0.053	0.069	
A1	0.100	0.250	0.002	0.010	
A2	1.350	1.550	0.049	0.065	
b	0.330	0.510	0.012	0.020	
С	0.170	0.250	0.006	0.010	
D	4.700	5.100	0.185	0.203	
е	1.270 (中心到中心)		0.050(中	心到中心)	
E1	5.800	6.200	0.228	0.244	
Е	3.800	4.000	0.15	0.157	
L	0.400	1.270	0.016	0.050	
θ	0°	8°	0°	80	

1、版本记录

DATE	REV.	DESCRIPTION
2018/04/19	1.0	首次发布
2021/03/30	2.0	变更标题
2021/07/03	2.1	调整布局
2022/05/17	2.2	变更应用电流及Logo
2023/04/05	2.3	拆分 U3210 和 3211
2023/09/20	2.4	简化应用电路及更新免责声明
2023/10/15	2.5	修正参数
2023/11/10	2.6	优化应用原理图

2、免责声明

浙江宇力微新能源科技有限公司保留对本文档的更改和解释权力,不另行通知!

客户在下单前应获取我司最新版本资料,并验证<mark>相关</mark>信息是否最新和完整。量产方案需使用方自 行验证并自担所有批量风险责任。未经我司授权,该文件不得私自复制和修改。

产品不断提升,以追求高品质、稳定性强、可靠性高、环保、节能、高效为目标,我司将竭诚为客户提供性价比高的系统开发方案、技术支持等更优秀的服务。

版权所有 浙江宇力微新能源科技有限公司/绍兴宇力半导体有限公司

3、联系我们

浙江宇力微新能源科技有限公司

总部地址:绍兴市越城区斗门街道袍渎路25号中节能科创园45幢4/5楼

电话: 0575-85087896 (研发部)

传真: 0575-88125157

E-mail:htw@uni-semic.com

无锡地址:江苏省无锡市锡山区先锋中路6号中国电子(无锡)数字芯城1#综合楼503室

电话:0510-85297939

E-mail:zh@uni-semic.com

深圳地址:深圳市宝安区西乡街道南昌社区宝源路泳辉国际商务大厦410

电话: 0755-84510976

E-mail:htw@uni-semic.com

