

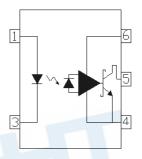
DATASHEET

5 PIN SOP HIGH SPEED 10MBit/s LOGIC GATE PHOTOCOUPLER ELM6XX Series

Features

- •Compliance Halogen Free . (Br <900 ppm ,Cl <900 ppm , Br+Cl < 1500 ppm)
- High speed 10Mbit/s
- Guaranteed performance from -40 to 85°C
- Logic gate output
- High isolation voltage between input and output (Viso=3750 V rms)
- Compliance with EU REACH
- Pb free and RoHS compliant.
- UL and cUL approved(No. E214129)
- VDE approved (No. 40028116)
- SEMKO approved
- NEMKO approved
- DEMKO approved
- FIMKO approved
- CQC approved

Description


The ELM600, ELM601 and ELM611 are consists of an infrared emitting diode optically coupled to a high speed integrated photo detector logic gate with a strobable output.

The devices are packaged in a 5-pin small outline package which conforms to the standard footprint.

Applications

- Ground loop elimination
- LSTTL to TTL, LSTTL or 5 volt CMOS
- Line receiver, data transmission
- Data multiplexing
- Switching power supplies
- Pulse transformer replacement
- Computer peripheral interface

Schematic

Pin Configuration

- 1, Anode
- 3, Cathode
- 4, Gnd
- 5. Vout
- 6, VCC

Truth Table

Input	Output
Н	L
L	Н

Absolute Maximum Ratings (T_A=25 °C)

	Parameter	Symbol	Rating	Unit
	Forward current	l _F	50	mA
Input	Reverse voltage	V _R	5	V
	Power dissipation	P_{D}	100	mW
	Power dissipation	P _C	85	mW
0 1 1	nput Reverse voltage Power dissipation	lo	50	mA
Output	Output voltage	Vo	7.0	V
	Supply voltage	Vcc	7.0	V
Output Po	ower Dissipation	Po	85	mW
Isolation '	Voltage*1	V _{ISO}	3750	V rms
Operating	Temperature	T _{OPR}	-40 ~ +85	°C
Storage 7	emperature	T _{STG}	-55 ~ +125	°C
Soldering	Temperature*2	T _{SOL}	260	°C

Notes:

^{*1} AC for 1 minute, R.H.= 40 ~ 60% R.H. In this test, pins 1 & 3 are shorted together, and pins 4, 5 & 6 are shorted together.

^{*2} For 10 seconds

Electrical Characteristics (T_A=-40 to 85°C unless specified otherwise)

Input

Parameter	Symbol	Min.	Тур.	Max.	Unit	Condition
Forward voltage	V_{F}	-	1.45	1.8	V	$I_F = 10 \text{mA}$
Reverse voltage	V_R	5.0	-	-	V	I _R = 10μA, T _A =25°C
Temperature coefficient of forward voltage	V _F /T _A	-	-1.9	-	mV/°C	I _F =10mA
Input capacitance	C _{IN}	-	70	-	pF	V _F =0, f=1MHz

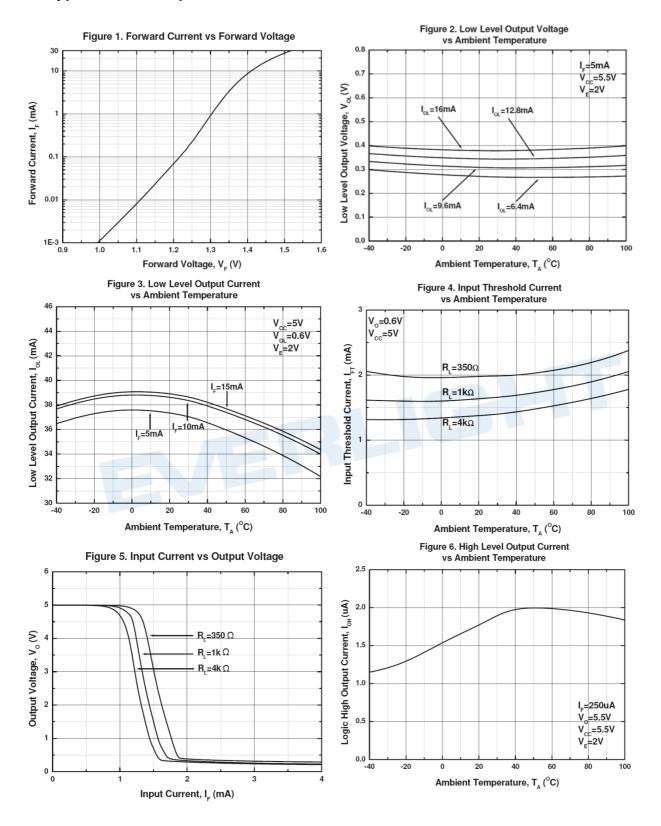
Note: Reverse Voltage(VR) Condition is applied to IR test only The device is not designed for reverse operation

Output

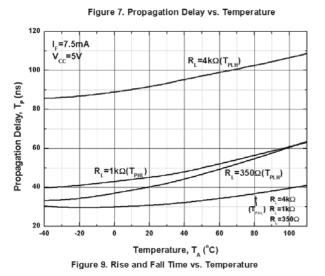
Parameter	Symbol	Min	Тур.	Max.	Unit	Condition
High level supply current	Іссн	-	6.0	9	mA	I _F =0mA, V _{CC} =5.5V
Low level supply current	Iccl	-	7.5	10	mA	I _F =10mA, V _{CC} =5.5V

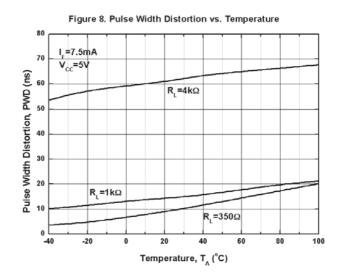
Transfer Characteristics

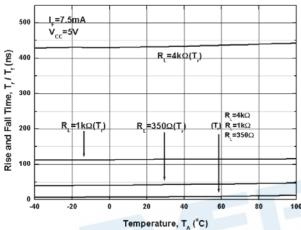
Parameter	Symbol	Min	Тур.	Max.	Unit	Condition
High Level Output Current	Іон		2.1	30	uA	V _{CC} =5.5V, V _O =5.5V, I _F =250uA
Low Level Output Current	Vol	-	0.4	0.6	V	$V_{CC} = 5.5V$, $I_{F}=5mA$, $I_{OL}(Sinking)=13mA$
Input Threshold Current	I _{FT}	-	2.4	5	mA	V_{CC} = 5.5V, V_{O} =0.6V, I_{OL} (Sinking)=13mA

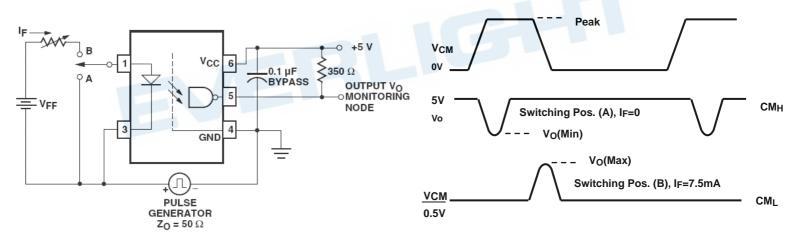

Switching Characteristics (T_A=-40 to 85°C, V_{CC}=5V, I_F=7.5mA unless specified otherwise)

Parameter		Symbol	Min	Тур.	Max.	Unit	Condition
			-	41	100	ns	C _L = 15pF, R _L =350Ω, TA=25°C
	Propagation delay time to output Low level*3		-	50	100	ns	C _L = 15pF, R _L =350Ω, TA=25°C
Pulse width distortion		TPHL — TPLH	-	9	35	ns	$C_L = 15pF, R_L = 350\Omega$
Propagation Skew*4	Delay	t _{PSK}	-	-	40	ns	$C_L = 15pF, R_L = 350\Omega$
Output rise (Fig.10)	time	tr	-	40	-	ns	$C_L = 15pF, R_L = 350\Omega$
Output fall t (Fig.10)	Output fall time (Fig.10)		-	10	-	ns	$C_L = 15pF, R_L = 350\Omega$
Common Mode	M600		-	-	-		$I_F = 7.5 mA$, $V_{OH} = 2.0 V$, $R_L = 350 \Omega$, $T_A = 25 °C$ $V_{CM} = 10 Vp-p$
Transient Immunity at Logic	M601	СМн	5,000		V/µ\$	V/µS	$I_F = 7.5 \text{mA}$, $V_{OH} = 2.0 \text{V}$, $R_L = 350 \Omega$, $T_A = 25 ^{\circ} \text{C}$ $V_{CM} = 50 \text{Vp-p}$
High ^{*6} (Fig.11)	M611	Æ	20,000				$I_F = 7.5 mA$, $V_{OH} = 2.0 V$, $R_L = 350 \Omega$, $T_A = 25 ^{\circ} C$ $V_{CM} = 1000 Vp-p$
Common Mode	M600		M600	-		$I_F = 0 mA$, $V_{OL} = 0.8 V$, $R_L = 350 \Omega$, $T_A = 25 °C$ $V_{CM} = 10 Vp-p$	
Transient Immunity at Logic	M601	CML	5,000			V/µS	$I_F = 0$ mA , $V_{OL} = 0.8$ V, $R_L = 350\Omega$, $T_A = 25$ °C $V_{CM} = 50$ Vp-p
Low * ⁷ (Fig.11)	M611	•	20,000			•	$ \begin{array}{l} \text{If} = 0\text{mA} \text{ , Vol} = 0.8\text{V}, \\ \text{Rl} = 350\Omega, \text{ Ta} = 25^{\circ}\text{C} \\ \text{Vcm} = 1000\text{Vp-p} \end{array} $


^{*}All typicals at $T_A = 25$ °C, VCC = 5 V




Typical Electro-Optical Characteristics Curves



Note: The graphs shown in this datasheet are representing typical data only and do not show guaranteed values

I_F=7.5mA PULSE GEN. I_F=3.75mA Input $Z_O = 50 \Omega$ $t_f = t_r = 5 \text{ ns}$ (IF) tpHI \rightarrow **tPLH** 0.1μF OUTPUT V_O MONITORING BYPASS Output NODE (Vo) *CL INPUT 1.5V 3 MONITORING C GND NODE 90% Output (Vo) *C_L IS APPROXIMATELY 15 pF WHICH INCLUDES PROBE AND STRAY WIRING CAPACITANCE. 10%

Fig. 10 Test circuit and waveforms for tPHL, tPLH, tr, and tf

Fig. 11 Test circuit Common mode Transient Immunity

Notes:

- *3 The t_{PLH} propagation delay is measured from 3.75 mA point on the falling edge of the input pulse to the 1.5V point on the rising edge of the output pulse.
- *4 The tphL propagation delay is measured from 3.75 mA point on the rising edge of the input pulse to the 1.5 V point on the falling edge of the output pulse
- *5 t_{PSK} is equal to the magnitude of the worst case difference in t_{PHL} and/or t_{PLH} that will be seen between units at any given temperature within the worst case operating condition range.
- *6 CMH- The maximum tolerable rate of rise of the common mode voltage to ensure the output will remain in the HIGH state (i.e., VOUT > 2.0V).
- *7 CML- The maximum tolerable rate of fall of the common mode voltage to ensure the output will remain in the LOW output state (i.e., VOUT < 0.8V).

Order Information

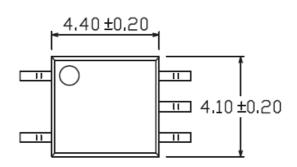
Part Number

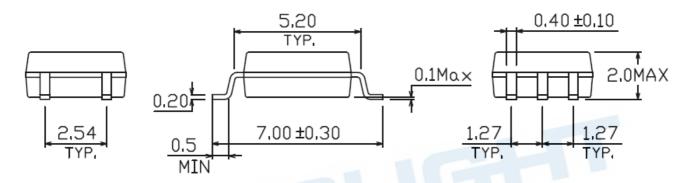
ELM6XX(Z)-V

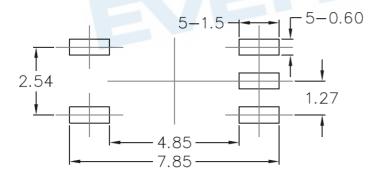
Note

XX = Part no.(00, 01 or 11)

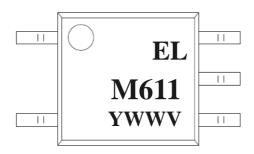
Z = Tape and reel option (TA, TB or none).


V = VDE (optional)


Option	Description	Packing quantity
None	Standard SMD option	100 units per tube
(TA)	Surface mount lead form + TA tape & reel option	3500 units per reel
(TB)	Surface mount lead form + TB tape & reel option	3500 units per reel

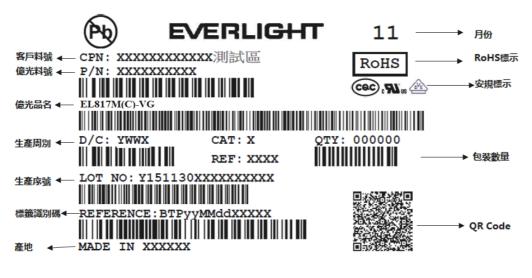


Package Dimension (Dimensions in mm)

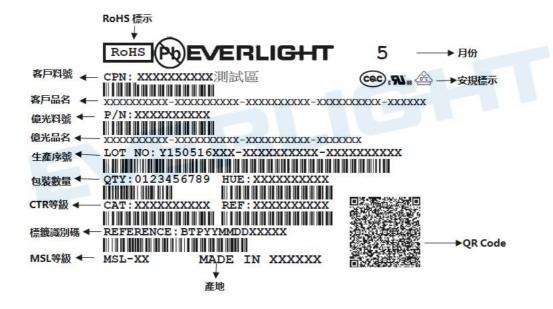


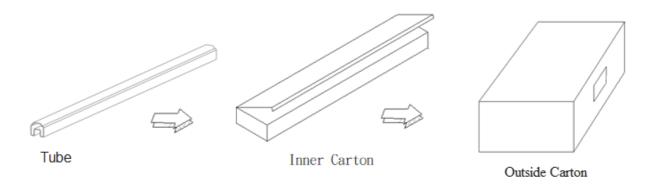
Recommended pad layout for surface mount leadform

Device Marking

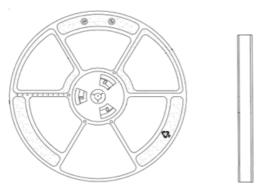

Notes

EL denotes EVERLIGHT
M611 denotes Device Number
Y denotes 1 digit Year code
WW denotes 2 digit Week code
V denotes VDE (optional)

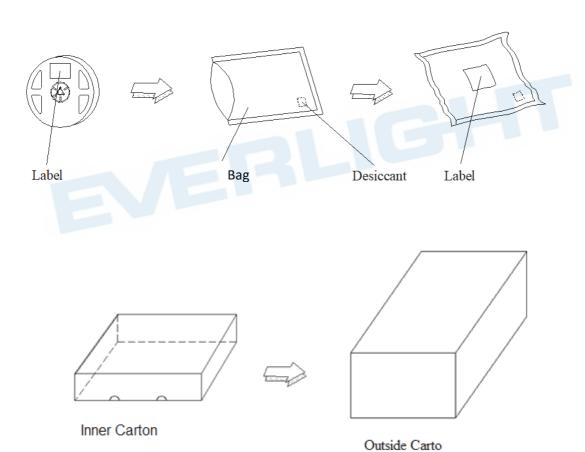



Label form

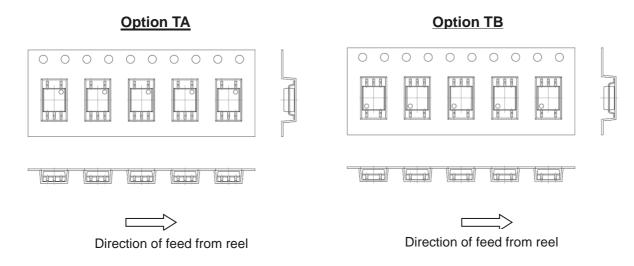
or



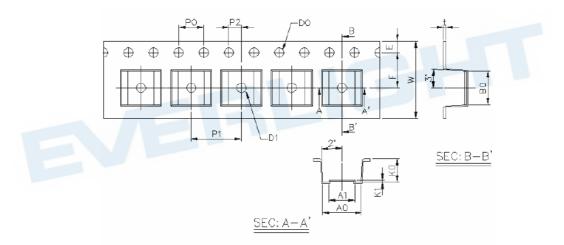
TUBE Dimension



Reel Dimension

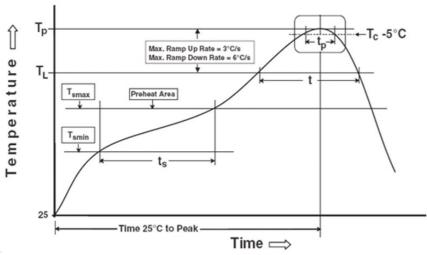


Moisture Resistant Packaging



Tape & Reel Packing Specifications

Tape dimensions


Dimension No.	Α	В	Do	D1	E	F
Dimension(mm)	10.4±0.1	10.0±0.1	1.5±0.1	1.5±0.1	1.75±0.1	7.5±0.1
Dimension No.	Ро	P1	P2	t	w	К
Dimension(mm)	4.0±0.1	12.0±0.1	2.0±0.1	0.4±0.1	16.0+0.3/ -0.1	4.5±0.1

Precautions for Use

1. Soldering Condition

1.1 (A) Maximum Body Case Temperature Profile for evaluation of Reflow Profile

Note: Reference: IPC/JEDEC J-STD-020D

Preheat

Temperature min (T_{smin}) 150 °C

Temperature max (T_{smax}) 200 °C

Time $(T_{smin} \text{ to } T_{smax})$ (ts) 60-120 seconds

Average ramp-up rate (T_{smax} to T_p) 3 °C/second max

Other

Liquidus Temperature (T_L) 217 °C Time above Liquidus Temperature (t_L) 60-100 sec

Peak Temperature (T_P) 260°C

Time within 5 °C of Actual Peak Temperature: T_P - 5 °C 30 s

Ramp- Down Rate from Peak Temperature 6°C /second max.

Time 25°C to peak temperature 8 minutes max.

Reflow times 3 times

Precautions for General Storage

- Avoid storage locations where devices may be exposed to moisture or direct sunlight.
- Follow the precautions printed on the packing label of the device for transportation and storage.
- Keep the storage location temperature and humidity within a range of 5°C to 35°C and 20 % to 60 %,respectively.
- Do not store the products in locations with poisonous gases (especially corrosive gases) or in dusty conditions.
- Store the products in locations with minimal temperature fluctuations. Rapid temperature changes during storage can cause condensation, resulting in lead oxidation or corrosion, which will deteriorate the solderability of the leads.
- When restoring devices after removal from their packing, use anti-static containers.
- Do not allow loads to be applied directly to devices while they are in storage.
- If devices have been stored for more than two years under normal storage conditions, it is recommended that you check the leads for ease of soldering prior to use.

DISCLAIMER

- 1. Above specification may be changed without notice. EVERLIGHT will reserve authority on material change for above specification.
- 2. The graphs shown in this datasheet are representing typical data only and do not show guaranteed values.
- 3. When using this product, please observe the absolute maximum ratings and the instructions for use outlined in these specification sheets. EVERLIGHT assumes no responsibility for any damage resulting from use of the product which does not comply with the absolute maximum ratings and the instructions included in these specification sheets.
- 4. These specification sheets include materials protected under copyright of EVERLIGHT. Reproduction in any form is prohibited without the specific consent of EVERLIGHT.
- 5. This product is not intended to be used for military, aircraft, automotive, medical, life sustaining or life saving applications or any other application which can result in human injury or death. Please contact authorized Everlight sales agent for special application request.
- 6. Statements regarding the suitability of products for certain types of applications are based on Everlight's knowledge of typical requirements that are often placed on Everlight products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Everlight's terms and conditions of purchase, including but not limited to the warranty expressed therein.