

Product Specification

XBLW ULN2001D

Three way Darlington transistor array circuit

Descriptions

ULN2001D is a high-voltage, high current Darlington transistor Array. Each device consists of three NPN Darlington pairs, These Darlington pairs have high voltage outputs and are equipped with switches for use Common cathode clamp diode for inductive loads.

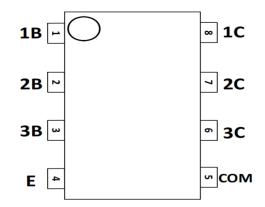
It adopts SOP-8 packaging form.

.

Feature

- Withstanding High Voltage
- Internal Overvoltage Protection Circuit(prevent overvoltage damage introduced by inductive load)
- > The Peak Influx Current reaches 500mA, which can drive the incandescent lamp.
- \triangleright The input impedance is 2.7k Ω, which can be used in conjunction with TTL or CMOS logic circuits that use 5V voltage.

Applications


- > Relay drive
- Indicator light drive
- Display screen driver

Ordering Information

Product Model	Package Type	Marking	Packing	Packing Qty
XBLW ULN2001DTR	SOP-8	ULN2001D	Таре	2500Pcs/Reel

Pins Configuration

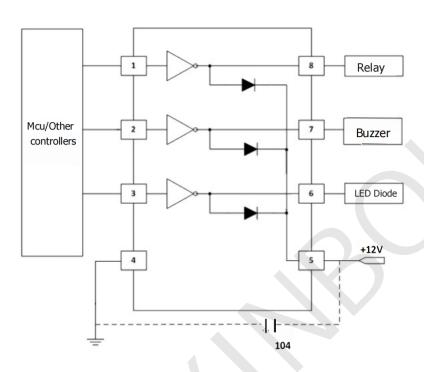
Pin Descriptions

Pin Number	Pin Name	Function			
1	1B	Input pair1			
2	2B	Input pair2			
3	3B	Input pair3			
4	E	Common Emitter (ground)			
5	COM	Common Clamp Diodes			
6	3C	Output pair3			
7	2C	Output pair2			
8	1C	Output pair1			

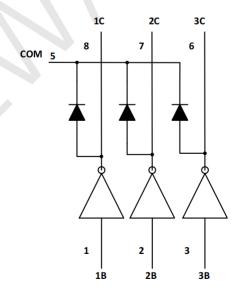
Extreme Ratings

(Tamb =2 5 $^{\circ}$ C ,unless otherwise noted)

Davamakar	Symbol	Va	11	
Parameter		Min.	Max.	Unit
Output Voltage	Vo	-	50	V
Input Voltage	Vi		30	V
Continuous Collector Current	Ic	-	500	mA
Continuous Base Current	Ів		25	mA
Junction Temperature	Tj		125	$^{\circ}$ C
Operating Ambient Temperature Range	Tamb	-40	85	$^{\circ}$ C
Storage Temperature Range	Tstg	-55	150	${\mathbb C}$

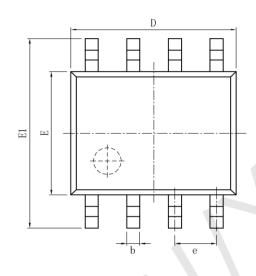

Electrical Characteristics

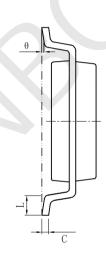
(Tamb =2 5 $^{\circ}$ C ,unless otherwise noted)

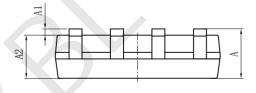

Chava stavistics	Test Conditions		Complete	Value			
Characteristics			Symbol	Min.	Тур.	Max.	Unit
Output Lookaga Current	Vo=50V , T	amb= +85 °C				100	μA
Output Leakage Current Vo=50V ,		amb= +25°C	ICEX			50	μA
	Ic=350mA ,	I _B =500 pA			1.1	1.7	V
Collector-Emitter Voltage	Ic=200mA,	I _B =350pA	Vces		0.95	1.3	V
Condition Limited Voltage	Ic= 100mA,	I _B =250pA	, CES		0.85	1.1	V
Input Current (On)	V _I =3.	85 V	II (ON)		0.93	1.35	mA
	Vce=2.0V ,	Ic=200mA				2.4	
Input Voltage	Vce=2.0V , Ic=250mA		V _I (ON)			2.7	V
mpat voltage	Vce=2.0V , Ic=300mA		, i (ON)			3.0	
Input Current (Off)	Vce=2.0V , Ic=300mA		II (OFF)	50	100		μA
Input Capacitance			Cı		15	30	pF
Turn-On Delay Time	50%Ei to 50%Eo		t _{ON}		0.25	1	μs
Turn-Off Delay Time	50%Ei to 50%Eo		$t_{ m OFF}$		0.25	1	μs
Clamp Diada Laakaga Current	V _R = 50 V	Tamb= +25 °C				50	μA
Clamp Diode Leakage Current		Tamb= +85 °C	IR			100	μΑ
Clamp Diode Forward Voltage	I _F =350 mA		VF		1.5	2	V

Typical Application Diagram

Logic Diagram






Package Information

• SOP-8

Size	Dimensions In Millimeters		Size	Dimensions In Inches		
Symbol Symbol	Min(mm)	Max(mm)	Symbol	Min(in)	Max(in)	
A	1.350	1.750	A	0.053	0.069	
A1	0. 100	0.250	A1	0.004	0.010	
A2	1.350	1.550	A2	0.053	0.061	
b	0.330	0.510	b	0.013	0. 020	
С	0.170	0. 250	С	0.006	0.010	
D	4.700	5. 100	D	0. 185	0. 200	
Е	3.800	4.000	Е	0. 150	0.157	
E1	5.800	6. 200	E1	0. 228	0. 224	
е	1. 270 (BSC)		е	0.050 (BSC)		
L	0. 400	1.270	L	0.016	0. 050	
θ	0°	8°	θ	0°	8°	

Statement:

- XBLW reserves the right to modify the product manual without prior notice! Before placing an order, customers need to confirm whether the obtained information is the latest version and verify the completeness of the relevant information.
- Any semi-guide product is subject to failure or malfunction under specified conditions. It is the buyer's responsibility to comply with safety standards when using XBLW products for system design and whole machine manufacturing. And take the appropriate safety measures to avoid the potential in the risk of loss of personal injury or loss of property situation!
- XBLW products have not been licensed for life support, military, and aerospace applications, and therefore XBLW is not responsible for any consequences arising from the use of this product in these areas.
- If any or all XBLW products (including technical data, services) described or contained in this document are subject to any applicable local export control laws and regulations, they may not be exported without an export license from the relevant authorities in accordance with such laws.
- The specifications of any and all XBLW products described or contained in this document specify the performance, characteristics, and functionality of said products in their standalone state, but do not guarantee the performance, characteristics, and functionality of said products installed in Customer's products or equipment. In order to verify symptoms and conditions that cannot be evaluated in a standalone device, the Customer should ultimately evaluate and test the device installed in the Customer's product device.
- XBLW documentation is only allowed to be copied without any alteration of the content and with the relevant authorization. XBLW assumes no responsibility or liability for altered documents.
- XBLW is committed to becoming the preferred semiconductor brand for customers, and XBLW will strive to provide customers with better performance and better quality products.