

高灵敏度低功耗315/433MHz ASK/OOK射频接收芯片

主要特性

- 频率范围: 300MHz 440MHz
- 高接收灵敏度 (2kbps, BER 10E-2)
 - -109 dBm @ 315MHz
 - -109 dBm @ 433.92MHz
- 低功耗
 - 2.8mA/3.3V @ 315MHz
 - 2.9mA/3.3V @ 433.92MHz
 - 0.01uA/3.3V @ Shut Down Mode
- 低启动时间: <2.3ms
- 数据速率: ≤ 10kbps
- 宽工作电压: DC 2.0V~ 5.5V
- 内建镜像抑制, 抗干扰性能好
- 接收带宽: ±200KHz
- 高ESD防护标准: ±8KV HBM
- 独立运行,无需外部MCU控制
- 无需寄存器配置
- 符合RoHS标准
- SOP8封装

GND RO GND VCC SHUT DO

主要应用

- 低成本消费电子应用,如遥控风扇、遥控灯、遥控门、遥控玩具等
- 远距离钥匙进入系统(RKE)
- 智慧家庭、楼宇监控自动化

■ 工业检测及控制系统

■ 远距离RFID

芯片简介

WS490 是一款高集成度、低功耗的单片 ASK/OOK 射频接收芯片。高频信号接收功能全部集成于片内以达到用最少的外围器件和最低的成本获得最可靠的接收效果。因此它是真正意义上的"无线高频调制信号输入,数字解调信号输出"的单片接收器件。

WS490 为 SOP8 封装,正常工作电压范围2.0~5.5V ,正常工作电流2.9mA,启动时间2.3ms,接收灵敏度最高可达到-109dBm,非常适合各种低功耗要求的设备等。片内自动完成所有的 RF 和 IF 调谐,在开发和生产中省略了手工调节的工艺环节,进而降低成本,可加快产品上市。

1 典型应用

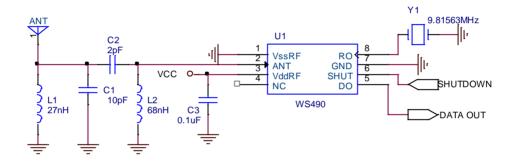


图1 315MHz 1 kbps典型电路

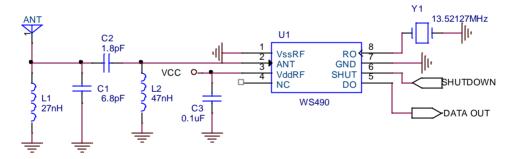


图2 433.92MHz 1kbps典型电路

2 管脚定义

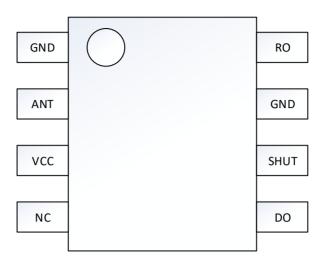


图3 WS490管脚排列图

表1 WS490管脚定义

序号	名称	类型	描述		
1	GND	Р	接地管脚		
2	ANT	I	RF 信号输入脚		
3	VDD	Р	电源管脚,DC 2.0~5.5V		
4	NC		悬空		
5	DO	0	解调数据信号输出		
6	SHUT	I	工作模式选择脚。关断模式:接电源;工作模式:接地		
7	GND	Р	接地管脚		
8	RO	I	外接晶振管脚		

3 电气特性

3.1 工作条件

符号	参数	条件	最小	典型	最大	单位
VDD	电源电压		2.0	3.3	5.5	V
TA	工作温度		-40		+125	$^{\circ}\!\mathbb{C}$
θ	电源电压斜率		1			mV/µs

3.2 极限参数

符号	参数	条件	最小	典型	最大	单位
VDD	电源电压[1]		-0.3		5.5	V
Vin	接口电压		-0.3		VDD+ 0.3	V
TJ	结温		-40		150	$^{\circ}$
T _{STG}	储藏温度		-65		150	Ĵ
T _{SDR}	焊接温度	持续至少 30 秒			255	$^{\circ}$
V _{НВМ}	ESD等级 ^[2]	人体模型(HBM)	-8		8	kV

备注:

- [1] 超过极限参数的最大值可能会造成器件的永久性损坏,请在此极限参数范围内使用,保证设备安全。
- [2] 本芯片ESD防护等级达到了很高的标准,但仍请注意在良好的ESD保护的工作台上进行各项操作。

3.3 接收器规格

符号	参数	条件	最小	典型	最大	单位
VDD	电源电压		2.0		5.5	V
f _{RF}	工作成本共用	f _{RF} =9.81563MHz		315		MHz
IRF	工作频率范围	f _{RF} =13.52127MHz		433.92		MHz
DR	数据率				10	kbps
		f _{RF} =315MHz,VDD=3.3V		2.8		mA
I _{OP}	工作电流	f _{RF} =315MHz,VDD=5V		2.84		mA
IOP		f _{RF} =433.92MHz,VDD=3.3V		2.9		mA
		f _{RF} =433.92MHz,VDD=5V		2.96		mA
Іѕтву	休眠电流	V _{SHUT} =VDD		0.01		μΑ
	接收灵敏度	f _{RF} = 315MHz / 2kbps		-109		dBm
		f _{RF} = 433.92MHz / 2kbps		-109		dBm
BW	接收器带宽	f _{RF} = 315MHz		250		kHz
BVV	3文4文和F 印 处	f _{RF} = 433.92MHz		250		kHz
fıF	中频频率			0.86		MHz
f _{BW}	中频带宽			0.43		MHz
	饱和输入电平	RSC = 50Ω		-20		dBm
	Spurious Reverse Isolation	ANT pin, $R_{SC} = 50\Omega$		30		μVr/ms

Z _{REFOSC}	Reference Oscillator Input Impedance		290	kΩ
	Reference Oscillator Source Current		5.2	μΑ
f⊤	晶体振荡器频率		13.52127 (433.92M)	MHz
Z _{CTH}	CTH Source Impedance		145	kΩ
I _{ZCTH(leak)}	CTH Leakage Current	TA = +85°C	±100	nA
	接收器启动时间	从VDD上电到接收	3	ms
	SHUT启动时间	从SHUT引脚拉低到接收	2.3	ms

3.4 晶体振荡器规格

符号	参数	条件	最小	典型	最大	单位
F _{XTAL315}		FRF =315 MHz		9.81563		MHz
FXTAL390	晶体频率 ^[1]	FRF =390 MHz		12.15269		MHz
F _{XTAL318}	田孙州平	FRF =418 MHz		13.02519		MHz
FXTAL433.92		FRF =433.92 MHz		13.52127		MHz
	晶体频率精度[2]			±20		ppm
C _{LOAD}	负载电容			15		pF
Rm	晶体等效电阻				60	Ω
txtal	晶体启动时间[3]			400		μs

备注:

- [1] 可以直接用外部参考时钟通过耦合电容驱动 REFOSC 管脚工作。外部时钟信号的峰峰值要求在0.3 到 0.7 V 之间。
- [2] 该参数选择仅供参考,可接受的晶体频率误差受限于接收机的带宽和与之搭配的发射器之间射频频率偏差。
- [3] 该参数很大程度上与晶体的选择相关

WS490使用了基本的Colpitts结构晶振电路。将外部负载电容内置于芯片内部,只需要外接合适频率的晶体振荡器即可提供准确的参考时钟。

晶振频率选择通过如下公式进行计算:

FOSC=FRF/(32+1.1/12).

对于433.92MHz, FOSC=13.52127MHz.

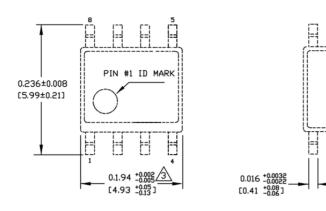
4 SHUTDOWN功能

SHUT引脚(6pin)用于控制WS490芯片的工作状态。

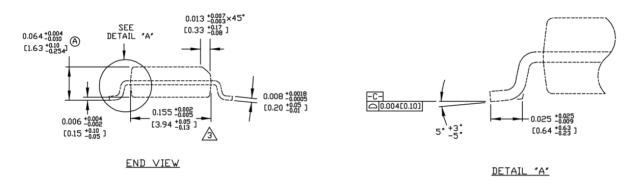
SHUT为高电平时, WS490为休眠状态, 电流0.1uA, DO引脚输出低电平。

SHUT为低电平时, WS490为正常工作状态, 电流2.9mA/433.92MHz, DO引脚输出固定电平或者解调的 信号。

BOTTOM MARK


0.050[1.27] BSC

BOTTOM VIEW


0.085-0.100 DIA.

5 封装

NOTES:

- 1. DIMENSIONS ARE IN INCHESIMM].
 2. CONTROLLING DIMENSION: INCHES.

 DIMENSION DOES NOT INCLUDE MOLD FLASH OR PROTRUSIONS, EITHER OF WHICH SHALL NOT EXCEED 0.010[0.25] PER SIDE.

8-Pin SOP Package